ark_r1cs_std/pairing/bls12/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use ark_relations::r1cs::SynthesisError;

use super::PairingVar as PG;

use crate::{
    fields::{fp::FpVar, fp12::Fp12Var, fp2::Fp2Var, FieldVar},
    groups::bls12::{G1AffineVar, G1PreparedVar, G1Var, G2PreparedVar, G2Var},
};
use ark_ec::bls12::{Bls12, Bls12Config, TwistType};
use ark_ff::BitIteratorBE;
use ark_std::marker::PhantomData;

/// Specifies the constraints for computing a pairing in a BLS12 bilinear group.
pub struct PairingVar<P: Bls12Config>(PhantomData<P>);

type Fp2V<P> = Fp2Var<<P as Bls12Config>::Fp2Config>;

impl<P: Bls12Config> PairingVar<P> {
    // Evaluate the line function at point p.
    #[tracing::instrument(target = "r1cs")]
    fn ell(
        f: &mut Fp12Var<P::Fp12Config>,
        coeffs: &(Fp2V<P>, Fp2V<P>),
        p: &G1AffineVar<P>,
    ) -> Result<(), SynthesisError> {
        let zero = FpVar::<P::Fp>::zero();

        match P::TWIST_TYPE {
            TwistType::M => {
                let c0 = coeffs.0.clone();
                let mut c1 = coeffs.1.clone();
                let c2 = Fp2V::<P>::new(p.y.clone(), zero);

                c1.c0 *= &p.x;
                c1.c1 *= &p.x;
                *f = f.mul_by_014(&c0, &c1, &c2)?;
                Ok(())
            },
            TwistType::D => {
                let c0 = Fp2V::<P>::new(p.y.clone(), zero);
                let mut c1 = coeffs.0.clone();
                let c2 = coeffs.1.clone();

                c1.c0 *= &p.x;
                c1.c1 *= &p.x;
                *f = f.mul_by_034(&c0, &c1, &c2)?;
                Ok(())
            },
        }
    }

    #[tracing::instrument(target = "r1cs")]
    fn exp_by_x(f: &Fp12Var<P::Fp12Config>) -> Result<Fp12Var<P::Fp12Config>, SynthesisError> {
        let mut result = f.optimized_cyclotomic_exp(P::X)?;
        if P::X_IS_NEGATIVE {
            result = result.unitary_inverse()?;
        }
        Ok(result)
    }
}

impl<P: Bls12Config> PG<Bls12<P>> for PairingVar<P> {
    type G1Var = G1Var<P>;
    type G2Var = G2Var<P>;
    type G1PreparedVar = G1PreparedVar<P>;
    type G2PreparedVar = G2PreparedVar<P>;
    type GTVar = Fp12Var<P::Fp12Config>;

    #[tracing::instrument(target = "r1cs")]
    fn miller_loop(
        ps: &[Self::G1PreparedVar],
        qs: &[Self::G2PreparedVar],
    ) -> Result<Self::GTVar, SynthesisError> {
        let mut pairs = vec![];
        for (p, q) in ps.iter().zip(qs.iter()) {
            pairs.push((p, q.ell_coeffs.iter()));
        }
        let mut f = Self::GTVar::one();

        for i in BitIteratorBE::new(P::X).skip(1) {
            f.square_in_place()?;

            for &mut (p, ref mut coeffs) in pairs.iter_mut() {
                Self::ell(&mut f, coeffs.next().unwrap(), &p.0)?;
            }

            if i {
                for &mut (p, ref mut coeffs) in pairs.iter_mut() {
                    Self::ell(&mut f, &coeffs.next().unwrap(), &p.0)?;
                }
            }
        }

        if P::X_IS_NEGATIVE {
            f = f.unitary_inverse()?;
        }

        Ok(f)
    }

    #[tracing::instrument(target = "r1cs")]
    fn final_exponentiation(f: &Self::GTVar) -> Result<Self::GTVar, SynthesisError> {
        // Computing the final exponentation following
        // https://eprint.iacr.org/2016/130.pdf.
        // We don't use their "faster" formula because it is difficult to make
        // it work for curves with odd `P::X`.
        // Hence we implement the slower algorithm from Table 1 below.

        let f1 = f.unitary_inverse()?;

        f.inverse().and_then(|mut f2| {
            // f2 = f^(-1);
            // r = f^(p^6 - 1)
            let mut r = f1;
            r *= &f2;

            // f2 = f^(p^6 - 1)
            f2 = r.clone();
            // r = f^((p^6 - 1)(p^2))
            r.frobenius_map_in_place(2)?;

            // r = f^((p^6 - 1)(p^2) + (p^6 - 1))
            // r = f^((p^6 - 1)(p^2 + 1))
            r *= &f2;

            // Hard part of the final exponentation is below:
            // From https://eprint.iacr.org/2016/130.pdf, Table 1
            let mut y0 = r.cyclotomic_square()?;
            y0 = y0.unitary_inverse()?;

            let mut y5 = Self::exp_by_x(&r)?;

            let mut y1 = y5.cyclotomic_square()?;
            let mut y3 = y0 * &y5;
            y0 = Self::exp_by_x(&y3)?;
            let y2 = Self::exp_by_x(&y0)?;
            let mut y4 = Self::exp_by_x(&y2)?;
            y4 *= &y1;
            y1 = Self::exp_by_x(&y4)?;
            y3 = y3.unitary_inverse()?;
            y1 *= &y3;
            y1 *= &r;
            y3 = r.clone();
            y3 = y3.unitary_inverse()?;
            y0 *= &r;
            y0.frobenius_map_in_place(3)?;
            y4 *= &y3;
            y4.frobenius_map_in_place(1)?;
            y5 *= &y2;
            y5.frobenius_map_in_place(2)?;
            y5 *= &y0;
            y5 *= &y4;
            y5 *= &y1;
            Ok(y5)
        })
    }

    #[tracing::instrument(target = "r1cs")]
    fn prepare_g1(p: &Self::G1Var) -> Result<Self::G1PreparedVar, SynthesisError> {
        Self::G1PreparedVar::from_group_var(p)
    }

    #[tracing::instrument(target = "r1cs")]
    fn prepare_g2(q: &Self::G2Var) -> Result<Self::G2PreparedVar, SynthesisError> {
        Self::G2PreparedVar::from_group_var(q)
    }
}