ark_r1cs_std/fields/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
use ark_ff::{prelude::*, BitIteratorBE};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::{
fmt::Debug,
ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign},
};
use crate::convert::{ToBitsGadget, ToBytesGadget, ToConstraintFieldGadget};
use crate::prelude::*;
/// This module contains a generic implementation of cubic extension field
/// variables. That is, it implements the R1CS equivalent of
/// `ark_ff::CubicExtField`.
pub mod cubic_extension;
/// This module contains a generic implementation of quadratic extension field
/// variables. That is, it implements the R1CS equivalent of
/// `ark_ff::QuadExtField`.
pub mod quadratic_extension;
/// This module contains a generic implementation of prime field variables.
/// That is, it implements the R1CS equivalent of `ark_ff::Fp*`.
pub mod fp;
/// This module contains a generic implementation of "emulated" prime field
/// variables. It emulates `Fp` arithmetic using `Fq` operations, where `p != q`.
pub mod emulated_fp;
/// This module contains a generic implementation of the degree-12 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::Fp12`
pub mod fp12;
/// This module contains a generic implementation of the degree-2 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::Fp2`
pub mod fp2;
/// This module contains a generic implementation of the degree-3 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::Fp3`
pub mod fp3;
/// This module contains a generic implementation of the degree-4 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::Fp4`
pub mod fp4;
/// This module contains a generic implementation of the degree-6 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::fp6_2over3::Fp6`
pub mod fp6_2over3;
/// This module contains a generic implementation of the degree-6 tower
/// extension field. That is, it implements the R1CS equivalent of
/// `ark_ff::fp6_3over2::Fp6`
pub mod fp6_3over2;
/// This trait is a hack used to work around the lack of implied bounds.
pub trait FieldOpsBounds<'a, F, T: 'a>:
Sized
+ Add<&'a T, Output = T>
+ Sub<&'a T, Output = T>
+ Mul<&'a T, Output = T>
+ Add<T, Output = T>
+ Sub<T, Output = T>
+ Mul<T, Output = T>
+ Add<F, Output = T>
+ Sub<F, Output = T>
+ Mul<F, Output = T>
{
}
/// A variable representing a field. Corresponds to the native type `F`.
pub trait FieldVar<F: Field, ConstraintF: PrimeField>:
'static
+ Clone
+ From<Boolean<ConstraintF>>
+ R1CSVar<ConstraintF, Value = F>
+ EqGadget<ConstraintF>
+ ToBitsGadget<ConstraintF>
+ AllocVar<F, ConstraintF>
+ ToBytesGadget<ConstraintF>
+ CondSelectGadget<ConstraintF>
+ ToConstraintFieldGadget<ConstraintF>
+ for<'a> FieldOpsBounds<'a, F, Self>
+ for<'a> AddAssign<&'a Self>
+ for<'a> SubAssign<&'a Self>
+ for<'a> MulAssign<&'a Self>
+ AddAssign<Self>
+ SubAssign<Self>
+ MulAssign<Self>
+ AddAssign<F>
+ SubAssign<F>
+ MulAssign<F>
+ Debug
{
/// Returns the constant `F::zero()`.
fn zero() -> Self;
/// Returns a `Boolean` representing whether `self == Self::zero()`.
fn is_zero(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
self.is_eq(&Self::zero())
}
/// Returns the constant `F::one()`.
fn one() -> Self;
/// Returns a `Boolean` representing whether `self == Self::one()`.
fn is_one(&self) -> Result<Boolean<ConstraintF>, SynthesisError> {
self.is_eq(&Self::one())
}
/// Returns a constant with value `v`.
///
/// This *should not* allocate any variables.
fn constant(v: F) -> Self;
/// Computes `self + self`.
fn double(&self) -> Result<Self, SynthesisError> {
Ok(self.clone() + self)
}
/// Sets `self = self + self`.
fn double_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self += self.double()?;
Ok(self)
}
/// Coputes `-self`.
fn negate(&self) -> Result<Self, SynthesisError>;
/// Sets `self = -self`.
#[inline]
fn negate_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self = self.negate()?;
Ok(self)
}
/// Computes `self * self`.
///
/// A default implementation is provided which just invokes the underlying
/// multiplication routine. However, this method should be specialized
/// for extension fields, where faster algorithms exist for squaring.
fn square(&self) -> Result<Self, SynthesisError> {
Ok(self.clone() * self)
}
/// Sets `self = self.square()`.
fn square_in_place(&mut self) -> Result<&mut Self, SynthesisError> {
*self = self.square()?;
Ok(self)
}
/// Enforces that `self * other == result`.
fn mul_equals(&self, other: &Self, result: &Self) -> Result<(), SynthesisError> {
let actual_result = self.clone() * other;
result.enforce_equal(&actual_result)
}
/// Enforces that `self * self == result`.
fn square_equals(&self, result: &Self) -> Result<(), SynthesisError> {
let actual_result = self.square()?;
result.enforce_equal(&actual_result)
}
/// Computes `result` such that `self * result == Self::one()`.
fn inverse(&self) -> Result<Self, SynthesisError>;
/// Returns `(self / d)`.
/// The constraint system will be unsatisfiable when `d = 0`.
fn mul_by_inverse(&self, d: &Self) -> Result<Self, SynthesisError> {
// Enforce that `d` is not zero.
d.enforce_not_equal(&Self::zero())?;
self.mul_by_inverse_unchecked(d)
}
/// Returns `(self / d)`.
///
/// The precondition for this method is that `d != 0`. If `d == 0`, this
/// method offers no guarantees about the soundness of the resulting
/// constraint system. For example, if `self == d == 0`, the current
/// implementation allows the constraint system to be trivially satisfiable.
fn mul_by_inverse_unchecked(&self, d: &Self) -> Result<Self, SynthesisError> {
let cs = self.cs().or(d.cs());
match cs {
// If we're in the constant case, we just allocate a new constant having value equalling
// `self * d.inverse()`.
ConstraintSystemRef::None => Self::new_constant(
cs,
self.value()? * d.value()?.inverse().expect("division by zero"),
),
// If not, we allocate `result` as a new witness having value `self * d.inverse()`,
// and check that `result * d = self`.
_ => {
let result = Self::new_witness(ark_relations::ns!(cs, "self * d_inv"), || {
Ok(self.value()? * &d.value()?.inverse().unwrap_or(F::zero()))
})?;
result.mul_equals(d, self)?;
Ok(result)
},
}
}
/// Computes the frobenius map over `self`.
fn frobenius_map(&self, power: usize) -> Result<Self, SynthesisError>;
/// Sets `self = self.frobenius_map()`.
fn frobenius_map_in_place(&mut self, power: usize) -> Result<&mut Self, SynthesisError> {
*self = self.frobenius_map(power)?;
Ok(self)
}
/// Comptues `self^bits`, where `bits` is a *little-endian* bit-wise
/// decomposition of the exponent.
fn pow_le(&self, bits: &[Boolean<ConstraintF>]) -> Result<Self, SynthesisError> {
let mut res = Self::one();
let mut power = self.clone();
for bit in bits {
let tmp = res.clone() * &power;
res = bit.select(&tmp, &res)?;
power.square_in_place()?;
}
Ok(res)
}
/// Computes `self^S`, where S is interpreted as an little-endian
/// u64-decomposition of an integer.
fn pow_by_constant<S: AsRef<[u64]>>(&self, exp: S) -> Result<Self, SynthesisError> {
let mut res = Self::one();
for i in BitIteratorBE::without_leading_zeros(exp) {
res.square_in_place()?;
if i {
res *= self;
}
}
Ok(res)
}
}