ark_r1cs_std/poly/domain/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
use crate::{
    boolean::Boolean,
    eq::EqGadget,
    fields::{fp::FpVar, FieldVar},
};
use ark_ff::PrimeField;
use ark_relations::r1cs::SynthesisError;
use ark_std::vec::Vec;

pub mod vanishing_poly;

#[derive(Clone, Debug)]
/// Defines an evaluation domain over a prime field. The domain is a coset of
/// size `1<<dim`.
///
/// Native code corresponds to `ark-poly::univariate::domain::radix2`, but
/// `ark-poly` only supports subgroup for now.
// TODO: support cosets in `ark-poly`.
pub struct Radix2DomainVar<F: PrimeField> {
    /// generator of subgroup g
    pub gen: F,
    /// index of the quotient group (i.e. the `offset`)
    offset: FpVar<F>,
    /// dimension of evaluation domain, which is log2(size of coset)
    pub dim: u64,
}
impl<F: PrimeField> Radix2DomainVar<F> {
    /// Construct an evaluation domain with the given offset.
    pub fn new(gen: F, dimension: u64, offset: FpVar<F>) -> Result<Self, SynthesisError> {
        offset.enforce_not_equal(&FpVar::zero())?;
        Ok(Self {
            gen,
            offset,
            dim: dimension,
        })
    }

    /// What is the offset of `self`?
    pub fn offset(&self) -> &FpVar<F> {
        &self.offset
    }
}

impl<F: PrimeField> EqGadget<F> for Radix2DomainVar<F> {
    fn is_eq(&self, other: &Self) -> Result<Boolean<F>, SynthesisError> {
        if self.gen != other.gen || self.dim != other.dim {
            Ok(Boolean::FALSE)
        } else {
            self.offset.is_eq(&other.offset)
        }
    }
}

impl<F: PrimeField> Radix2DomainVar<F> {
    /// order of the domain
    pub fn order(&self) -> usize {
        1 << self.dim
    }

    /// Returns offset, offset*g, offset*g^2, ..., offset*g^{coset_size}
    pub fn elements(&self) -> Vec<FpVar<F>> {
        let mut result = Vec::new();
        result.push(self.offset.clone());
        for _ in 1..(1 << self.dim) {
            let new_element = result.last().unwrap() * self.gen;
            result.push(new_element);
        }
        result
    }

    /// Size of the domain
    pub fn size(&self) -> u64 {
        1 << self.dim
    }

    /// For domain `h<g>` with dimension `n`, `position` represented by
    /// `query_pos` in big endian form, returns all points of
    /// `h*g^{position}<g^{2^{n-coset_dim}}>`. The result is the query coset at
    /// index `query_pos` for the FRI protocol.
    ///
    /// # Panics
    /// This function panics when `query_pos.len() != coset_dim` or
    /// `query_pos.len() != self.dim`.
    pub fn query_position_to_coset_elements(
        &self,
        query_pos: &[Boolean<F>],
        coset_dim: u64,
    ) -> Result<Vec<FpVar<F>>, SynthesisError> {
        Ok(self
            .query_position_to_coset(query_pos, coset_dim)?
            .elements())
    }

    /// For domain `h<g>` with dimension `n`, `position` represented by
    /// `query_pos` in big endian form, returns all points of
    /// `h*g^{position}<g^{n-query_pos.len()}>`
    ///
    /// # Panics
    /// This function panics when `query_pos.len() < log2_num_cosets`.
    pub fn query_position_to_coset(
        &self,
        query_pos: &[Boolean<F>],
        coset_dim: u64,
    ) -> Result<Self, SynthesisError> {
        let coset_index = truncate_to_coset_index(query_pos, self.dim, coset_dim);
        let offset_var = &self.offset * FpVar::Constant(self.gen).pow_le(&coset_index)?;
        Ok(Self {
            gen: self.gen.pow(&[1 << (self.dim - coset_dim)]), // distance between coset
            offset: offset_var,
            dim: coset_dim,
        })
    }
}

fn truncate_to_coset_index<F: PrimeField>(
    query_pos: &[Boolean<F>],
    codeword_dim: u64,
    coset_dim: u64,
) -> Vec<Boolean<F>> {
    let log2_num_cosets = (codeword_dim - coset_dim) as usize;
    assert!(query_pos.len() >= log2_num_cosets);
    query_pos[0..log2_num_cosets].to_vec()
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;
    use ark_ff::PrimeField;
    use ark_relations::r1cs::ConstraintSystem;
    use ark_std::{rand::Rng, test_rng};

    use crate::{
        alloc::AllocVar, convert::ToBitsGadget, fields::fp::FpVar, poly::domain::Radix2DomainVar,
        R1CSVar,
    };

    fn test_query_coset_template<F: PrimeField>() {
        const COSET_DIM: u64 = 7;
        const COSET_SIZE: u64 = 1 << COSET_DIM;
        const LOCALIZATION: u64 = 3;
        let cs = ConstraintSystem::new_ref();
        let mut rng = test_rng();
        let gen = F::get_root_of_unity(COSET_SIZE).unwrap();
        let offset = F::rand(&mut rng);
        let offset_var = FpVar::new_witness(cs.clone(), || Ok(offset)).unwrap();
        let domain = Radix2DomainVar::new(gen, COSET_DIM, offset_var).unwrap();

        let num_cosets = 1 << (COSET_DIM - LOCALIZATION);

        let coset_index = rng.gen_range(0..num_cosets);
        println!("{:0b}", coset_index);
        let coset_index_var = UInt32::new_witness(cs.clone(), || Ok(coset_index))
            .unwrap()
            .to_bits_le()
            .unwrap()
            .into_iter()
            .take(COSET_DIM as usize)
            .collect::<Vec<_>>();

        let elements_actual = domain
            .query_position_to_coset(&coset_index_var, LOCALIZATION)
            .unwrap()
            .elements();

        let elements_expected = domain
            .elements()
            .into_iter()
            .skip(coset_index as usize)
            .step_by(1 << (COSET_DIM - LOCALIZATION))
            .collect::<Vec<_>>();

        assert_eq!(elements_expected.len(), elements_actual.len());

        elements_expected
            .into_iter()
            .zip(elements_actual.into_iter())
            .for_each(|(left, right)| {
                assert_eq!(left.value().unwrap(), right.value().unwrap());
            });
    }

    #[test]
    fn test_on_bls12_381() {
        test_query_coset_template::<ark_bls12_381::Fr>();
    }

    #[test]
    fn test_on_bls12_377() {
        test_query_coset_template::<ark_bls12_377::Fr>();
    }
}