1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// SPDX-FileCopyrightText: 2017 - 2022 Kamila Borowska <kamila@borowska.pw>
//
// SPDX-License-Identifier: MIT OR Apache-2.0

//! Array multiple elements constructor syntax.
//!
//! While Rust does provide those, they require copy, and you cannot obtain the
//! index that will be created. This crate provides syntax that fixes both of
//! those issues.
//!
//! # Examples
//!
//! ```
//! # #[macro_use]
//! # extern crate array_macro;
//! # fn main() {
//! assert_eq!(array![String::from("x"); 2], [String::from("x"), String::from("x")]);
//! assert_eq!(array![x => x; 3], [0, 1, 2]);
//! # }
//! ```

#![no_std]
#![deny(missing_docs)]

#[doc(hidden)]
pub extern crate core as __core;

/// Creates an array containing the arguments.
///
/// This macro provides a way to repeat the same macro element multiple times
/// without requiring `Copy` implementation as array expressions require.
///
/// There are two forms of this macro.
///
/// - Create an array from a given element and size. This will `Clone` the element.
///
///   ```
///   use array_macro::array;
///   assert_eq!(array![vec![1, 2, 3]; 2], [[1, 2, 3], [1, 2, 3]]);
///   ```
///
///   Unlike array expressions this syntax supports all elements which implement
///   `Clone`.
///
/// - Create an array from a given expression that is based on index and size.
///   This doesn't require the element to implement `Clone`.
///
///   ```
///   use array_macro::array;
///   assert_eq!(array![x => x * 2; 3], [0, 2, 4]);
///   ```
///
///   This form can be used for declaring `const` variables.
///
///   ```
///   use array_macro::array;
///   const ARRAY: [String; 3] = array![_ => String::new(); 3];
///   assert_eq!(ARRAY, ["", "", ""]);
///   ```
///
/// # Limitations
///
/// When using a form with provided index it's not possible to use `break`
/// or `continue` without providing a label. This won't compile.
///
/// ```compile_fail
/// use array_macro::array;
/// loop {
///     array![_ => break; 1];
/// }
/// ```
///
/// To work-around this issue you can provide a label.
///
/// ```
/// use array_macro::array;
/// 'label: loop {
///     array![_ => break 'label; 1];
/// }
/// ```
#[macro_export]
macro_rules! array {
    [$expr:expr; $count:expr] => {{
        let value = $expr;
        $crate::array![_ => $crate::__core::clone::Clone::clone(&value); $count]
    }};
    [$i:pat => $e:expr; $count:expr] => {
        $crate::__array![$i => $e; $count]
    };
}

use core::mem::{ManuallyDrop, MaybeUninit};
use core::ptr;

#[doc(hidden)]
#[repr(transparent)]
pub struct __ArrayVec<T, const N: usize>(pub __ArrayVecInner<T, N>);

impl<T, const N: usize> Drop for __ArrayVec<T, N> {
    fn drop(&mut self) {
        // This is safe as arr[..len] is initialized due to
        // __ArrayVecInner's type invariant.
        let initialized = &mut self.0.arr[..self.0.len] as *mut _ as *mut [T];
        unsafe { ptr::drop_in_place(initialized) };
    }
}

// Type invariant: arr[..len] must be initialized
#[doc(hidden)]
#[non_exhaustive]
pub struct __ArrayVecInner<T, const N: usize> {
    pub arr: [MaybeUninit<T>; N],
    pub len: usize,
    // This field exists so that array! macro could retrieve the value of N.
    // The method to retrieve N cannot be directly on __ArrayVecInner as
    // borrowing it could cause a reference to interior mutable data to
    // be created which is not allowed in `const fn`.
    //
    // Because this field doesn't actually store anything it's not possible
    // to replace it in an already existing instance of __ArrayVecInner.
    pub capacity: __Capacity<N>,
}

impl<T, const N: usize> __ArrayVecInner<T, N> {
    #[doc(hidden)]
    pub const unsafe fn new(arr: [MaybeUninit<T>; N]) -> Self {
        Self {
            arr,
            len: 0,
            capacity: __Capacity,
        }
    }
}

#[doc(hidden)]
pub struct __Capacity<const N: usize>;

impl<const N: usize> __Capacity<N> {
    #[doc(hidden)]
    pub const fn get(&self) -> usize {
        N
    }
}
#[doc(hidden)]
#[repr(C)]
pub union __Transmuter<T, const N: usize> {
    pub init_uninit_array: ManuallyDrop<MaybeUninit<[T; N]>>,
    pub uninit_array: ManuallyDrop<[MaybeUninit<T>; N]>,
    pub out: ManuallyDrop<[T; N]>,
}

#[doc(hidden)]
#[repr(C)]
pub union __ArrayVecTransmuter<T, const N: usize> {
    pub vec: ManuallyDrop<__ArrayVec<T, N>>,
    pub inner: ManuallyDrop<__ArrayVecInner<T, N>>,
}

#[doc(hidden)]
#[macro_export]
macro_rules! __array {
    [$i:pat => $e:expr; $count:expr] => {{
        let mut vec = $crate::__ArrayVec::<_, {$count}>(unsafe { $crate::__ArrayVecInner::new(
            // An uninitialized `[MaybeUninit<_>; LEN]` is valid.
            $crate::__core::mem::ManuallyDrop::into_inner(unsafe {
                $crate::__Transmuter {
                    init_uninit_array: $crate::__core::mem::ManuallyDrop::new($crate::__core::mem::MaybeUninit::uninit()),
                }
                .uninit_array
            }),
        )});
        while vec.0.len < (&vec.0.capacity).get() {
            let $i = vec.0.len;
            let _please_do_not_use_continue_without_label;
            let value;
            struct __PleaseDoNotUseBreakWithoutLabel;
            loop {
                _please_do_not_use_continue_without_label = ();
                value = $e;
                break __PleaseDoNotUseBreakWithoutLabel;
            };
            // This writes an initialized element.
            vec.0.arr[vec.0.len] = $crate::__core::mem::MaybeUninit::new(value);
            // We just wrote a valid element, so we can add 1 to len, it's valid.
            vec.0.len += 1;
        }
        // When leaving this loop, vec.0.len must equal to $count due
        // to loop condition. It cannot be more as len is increased by 1
        // every time loop is iterated on, and $count never changes.

        // __ArrayVec is representation compatible with __ArrayVecInner
        // due to #[repr(transparent)] in __ArrayVec.
        let inner = $crate::__core::mem::ManuallyDrop::into_inner(unsafe {
            $crate::__ArrayVecTransmuter {
                vec: $crate::__core::mem::ManuallyDrop::new(vec),
            }
            .inner
        });
        // At this point the array is fully initialized, as vec.0.len == $count,
        // so converting an array of potentially uninitialized elements into fully
        // initialized array is safe.
        $crate::__core::mem::ManuallyDrop::into_inner(unsafe {
            $crate::__Transmuter {
                uninit_array: $crate::__core::mem::ManuallyDrop::new(inner.arr),
            }
            .out
        })
    }}
}