1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Idiomatic iterators for [`Array`](crate::Array)
use crate::array::{
ArrayAccessor, BooleanArray, FixedSizeBinaryArray, GenericBinaryArray,
GenericListArray, GenericStringArray, PrimitiveArray,
};
use crate::{FixedSizeListArray, MapArray};
/// An iterator that returns Some(T) or None, that can be used on any [`ArrayAccessor`]
///
/// # Performance
///
/// [`ArrayIter`] provides an idiomatic way to iterate over an array, however, this
/// comes at the cost of performance. In particular the interleaved handling of
/// the null mask is often sub-optimal.
///
/// If performing an infallible operation, it is typically faster to perform the operation
/// on every index of the array, and handle the null mask separately. For [`PrimitiveArray`]
/// this functionality is provided by [`compute::unary`]
///
/// If performing a fallible operation, it isn't possible to perform the operation independently
/// of the null mask, as this might result in a spurious failure on a null index. However,
/// there are more efficient ways to iterate over just the non-null indices, this functionality
/// is provided by [`compute::try_unary`]
///
/// [`PrimitiveArray`]: crate::PrimitiveArray
/// [`compute::unary`]: https://docs.rs/arrow/latest/arrow/compute/fn.unary.html
/// [`compute::try_unary`]: https://docs.rs/arrow/latest/arrow/compute/fn.try_unary.html
#[derive(Debug)]
pub struct ArrayIter<T: ArrayAccessor> {
array: T,
current: usize,
current_end: usize,
}
impl<T: ArrayAccessor> ArrayIter<T> {
/// create a new iterator
pub fn new(array: T) -> Self {
let len = array.len();
ArrayIter {
array,
current: 0,
current_end: len,
}
}
}
impl<T: ArrayAccessor> Iterator for ArrayIter<T> {
type Item = Option<T::Item>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.current == self.current_end {
None
} else if self.array.is_null(self.current) {
self.current += 1;
Some(None)
} else {
let old = self.current;
self.current += 1;
// Safety:
// we just checked bounds in `self.current_end == self.current`
// this is safe on the premise that this struct is initialized with
// current = array.len()
// and that current_end is ever only decremented
unsafe { Some(Some(self.array.value_unchecked(old))) }
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(
self.array.len() - self.current,
Some(self.array.len() - self.current),
)
}
}
impl<T: ArrayAccessor> DoubleEndedIterator for ArrayIter<T> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.current_end == self.current {
None
} else {
self.current_end -= 1;
Some(if self.array.is_null(self.current_end) {
None
} else {
// Safety:
// we just checked bounds in `self.current_end == self.current`
// this is safe on the premise that this struct is initialized with
// current = array.len()
// and that current_end is ever only decremented
unsafe { Some(self.array.value_unchecked(self.current_end)) }
})
}
}
}
/// all arrays have known size.
impl<T: ArrayAccessor> ExactSizeIterator for ArrayIter<T> {}
/// an iterator that returns Some(T) or None, that can be used on any PrimitiveArray
pub type PrimitiveIter<'a, T> = ArrayIter<&'a PrimitiveArray<T>>;
/// an iterator that returns Some(T) or None, that can be used on any BooleanArray
pub type BooleanIter<'a> = ArrayIter<&'a BooleanArray>;
/// an iterator that returns Some(T) or None, that can be used on any Utf8Array
pub type GenericStringIter<'a, T> = ArrayIter<&'a GenericStringArray<T>>;
/// an iterator that returns Some(T) or None, that can be used on any BinaryArray
pub type GenericBinaryIter<'a, T> = ArrayIter<&'a GenericBinaryArray<T>>;
/// an iterator that returns Some(T) or None, that can be used on any FixedSizeBinaryArray
pub type FixedSizeBinaryIter<'a> = ArrayIter<&'a FixedSizeBinaryArray>;
/// an iterator that returns Some(T) or None, that can be used on any FixedSizeListArray
pub type FixedSizeListIter<'a> = ArrayIter<&'a FixedSizeListArray>;
/// an iterator that returns Some(T) or None, that can be used on any ListArray
pub type GenericListArrayIter<'a, O> = ArrayIter<&'a GenericListArray<O>>;
/// an iterator that returns Some(T) or None, that can be used on any MapArray
pub type MapArrayIter<'a> = ArrayIter<&'a MapArray>;
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::array::{ArrayRef, BinaryArray, BooleanArray, Int32Array, StringArray};
#[test]
fn test_primitive_array_iter_round_trip() {
let array = Int32Array::from(vec![Some(0), None, Some(2), None, Some(4)]);
let array = Arc::new(array) as ArrayRef;
let array = array.as_any().downcast_ref::<Int32Array>().unwrap();
// to and from iter, with a +1
let result: Int32Array = array.iter().map(|e| e.map(|e| e + 1)).collect();
let expected = Int32Array::from(vec![Some(1), None, Some(3), None, Some(5)]);
assert_eq!(result, expected);
// check if DoubleEndedIterator is implemented
let result: Int32Array = array.iter().rev().collect();
let rev_array = Int32Array::from(vec![Some(4), None, Some(2), None, Some(0)]);
assert_eq!(result, rev_array);
// check if ExactSizeIterator is implemented
let _ = array.iter().rposition(|opt_b| opt_b == Some(1));
}
#[test]
fn test_double_ended() {
let array = Int32Array::from(vec![Some(0), None, Some(2), None, Some(4)]);
let mut a = array.iter();
assert_eq!(a.next(), Some(Some(0)));
assert_eq!(a.next(), Some(None));
assert_eq!(a.next_back(), Some(Some(4)));
assert_eq!(a.next_back(), Some(None));
assert_eq!(a.next_back(), Some(Some(2)));
// the two sides have met: None is returned by both
assert_eq!(a.next_back(), None);
assert_eq!(a.next(), None);
}
#[test]
fn test_string_array_iter_round_trip() {
let array =
StringArray::from(vec![Some("a"), None, Some("aaa"), None, Some("aaaaa")]);
let array = Arc::new(array) as ArrayRef;
let array = array.as_any().downcast_ref::<StringArray>().unwrap();
// to and from iter, with a +1
let result: StringArray = array
.iter()
.map(|e| {
e.map(|e| {
let mut a = e.to_string();
a.push('b');
a
})
})
.collect();
let expected =
StringArray::from(vec![Some("ab"), None, Some("aaab"), None, Some("aaaaab")]);
assert_eq!(result, expected);
// check if DoubleEndedIterator is implemented
let result: StringArray = array.iter().rev().collect();
let rev_array =
StringArray::from(vec![Some("aaaaa"), None, Some("aaa"), None, Some("a")]);
assert_eq!(result, rev_array);
// check if ExactSizeIterator is implemented
let _ = array.iter().rposition(|opt_b| opt_b == Some("a"));
}
#[test]
fn test_binary_array_iter_round_trip() {
let array = BinaryArray::from(vec![
Some(b"a" as &[u8]),
None,
Some(b"aaa"),
None,
Some(b"aaaaa"),
]);
// to and from iter
let result: BinaryArray = array.iter().collect();
assert_eq!(result, array);
// check if DoubleEndedIterator is implemented
let result: BinaryArray = array.iter().rev().collect();
let rev_array = BinaryArray::from(vec![
Some(b"aaaaa" as &[u8]),
None,
Some(b"aaa"),
None,
Some(b"a"),
]);
assert_eq!(result, rev_array);
// check if ExactSizeIterator is implemented
let _ = array.iter().rposition(|opt_b| opt_b == Some(&[9]));
}
#[test]
fn test_boolean_array_iter_round_trip() {
let array = BooleanArray::from(vec![Some(true), None, Some(false)]);
// to and from iter
let result: BooleanArray = array.iter().collect();
assert_eq!(result, array);
// check if DoubleEndedIterator is implemented
let result: BooleanArray = array.iter().rev().collect();
let rev_array = BooleanArray::from(vec![Some(false), None, Some(true)]);
assert_eq!(result, rev_array);
// check if ExactSizeIterator is implemented
let _ = array.iter().rposition(|opt_b| opt_b == Some(true));
}
}