1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! The central type in Apache Arrow are arrays, which are a known-length sequence of values
//! all having the same type. This crate provides concrete implementations of each type, as
//! well as an [`Array`] trait that can be used for type-erasure.
//!
//! # Building an Array
//!
//! Most [`Array`] implementations can be constructed directly from iterators or [`Vec`]
//!
//! ```
//! # use arrow_array::{Int32Array, ListArray, StringArray};
//! # use arrow_array::types::Int32Type;
//! #
//! Int32Array::from(vec![1, 2]);
//! Int32Array::from(vec![Some(1), None]);
//! Int32Array::from_iter([1, 2, 3, 4]);
//! Int32Array::from_iter([Some(1), Some(2), None, Some(4)]);
//!
//! StringArray::from(vec!["foo", "bar"]);
//! StringArray::from(vec![Some("foo"), None]);
//! StringArray::from_iter([Some("foo"), None]);
//! StringArray::from_iter_values(["foo", "bar"]);
//!
//! ListArray::from_iter_primitive::<Int32Type, _, _>([
//! Some(vec![Some(1), None, Some(3)]),
//! None,
//! Some(vec![])
//! ]);
//! ```
//!
//! Additionally [`ArrayBuilder`](builder::ArrayBuilder) implementations can be
//! used to construct arrays with a push-based interface
//!
//! ```
//! # use arrow_array::Int16Array;
//! #
//! // Create a new builder with a capacity of 100
//! let mut builder = Int16Array::builder(100);
//!
//! // Append a single primitive value
//! builder.append_value(1);
//! // Append a null value
//! builder.append_null();
//! // Append a slice of primitive values
//! builder.append_slice(&[2, 3, 4]);
//!
//! // Build the array
//! let array = builder.finish();
//!
//! assert_eq!(5, array.len());
//! assert_eq!(2, array.value(2));
//! assert_eq!(&array.values()[3..5], &[3, 4])
//! ```
//!
//! # Low-level API
//!
//! Internally, arrays consist of one or more shared memory regions backed by a [`Buffer`],
//! the number and meaning of which depend on the array’s data type, as documented in
//! the [Arrow specification].
//!
//! For example, the type [`Int16Array`] represents an array of 16-bit integers and consists of:
//!
//! * An optional [`NullBuffer`] identifying any null values
//! * A contiguous [`ScalarBuffer<i16>`] of values
//!
//! Similarly, the type [`StringArray`] represents an array of UTF-8 strings and consists of:
//!
//! * An optional [`NullBuffer`] identifying any null values
//! * An offsets [`OffsetBuffer<i32>`] identifying valid UTF-8 sequences within the values buffer
//! * A values [`Buffer`] of UTF-8 encoded string data
//!
//! Array constructors such as [`PrimitiveArray::try_new`] provide the ability to cheaply
//! construct an array from these parts, with functions such as [`PrimitiveArray::into_parts`]
//! providing the reverse operation.
//!
//! ```
//! # use arrow_array::{Array, Int32Array, StringArray};
//! # use arrow_buffer::OffsetBuffer;
//! #
//! // Create a Int32Array from Vec without copying
//! let array = Int32Array::new(vec![1, 2, 3].into(), None);
//! assert_eq!(array.values(), &[1, 2, 3]);
//! assert_eq!(array.null_count(), 0);
//!
//! // Create a StringArray from parts
//! let offsets = OffsetBuffer::new(vec![0, 5, 10].into());
//! let array = StringArray::new(offsets, b"helloworld".into(), None);
//! let values: Vec<_> = array.iter().map(|x| x.unwrap()).collect();
//! assert_eq!(values, &["hello", "world"]);
//! ```
//!
//! As [`Buffer`], and its derivatives, can be created from [`Vec`] without copying, this provides
//! an efficient way to not only interoperate with other Rust code, but also implement kernels
//! optimised for the arrow data layout - e.g. by handling buffers instead of values.
//!
//! # Zero-Copy Slicing
//!
//! Given an [`Array`] of arbitrary length, it is possible to create an owned slice of this
//! data. Internally this just increments some ref-counts, and so is incredibly cheap
//!
//! ```rust
//! # use arrow_array::Int32Array;
//! let array = Int32Array::from_iter([1, 2, 3]);
//!
//! // Slice with offset 1 and length 2
//! let sliced = array.slice(1, 2);
//! assert_eq!(sliced.values(), &[2, 3]);
//! ```
//!
//! # Downcasting an Array
//!
//! Arrays are often passed around as a dynamically typed [`&dyn Array`] or [`ArrayRef`].
//! For example, [`RecordBatch`](`crate::RecordBatch`) stores columns as [`ArrayRef`].
//!
//! Whilst these arrays can be passed directly to the [`compute`], [`csv`], [`json`], etc... APIs,
//! it is often the case that you wish to interact with the concrete arrays directly.
//!
//! This requires downcasting to the concrete type of the array:
//!
//! ```
//! # use arrow_array::{Array, Float32Array, Int32Array};
//!
//! // Safely downcast an `Array` to an `Int32Array` and compute the sum
//! // using native i32 values
//! fn sum_int32(array: &dyn Array) -> i32 {
//! let integers: &Int32Array = array.as_any().downcast_ref().unwrap();
//! integers.iter().map(|val| val.unwrap_or_default()).sum()
//! }
//!
//! // Safely downcasts the array to a `Float32Array` and returns a &[f32] view of the data
//! // Note: the values for positions corresponding to nulls will be arbitrary (but still valid f32)
//! fn as_f32_slice(array: &dyn Array) -> &[f32] {
//! array.as_any().downcast_ref::<Float32Array>().unwrap().values()
//! }
//! ```
//!
//! The [`cast::AsArray`] extension trait can make this more ergonomic
//!
//! ```
//! # use arrow_array::Array;
//! # use arrow_array::cast::{AsArray, as_primitive_array};
//! # use arrow_array::types::Float32Type;
//!
//! fn as_f32_slice(array: &dyn Array) -> &[f32] {
//! array.as_primitive::<Float32Type>().values()
//! }
//! ```
//!
//! [`ScalarBuffer<T>`]: arrow_buffer::ScalarBuffer
//! [`ScalarBuffer<i16>`]: arrow_buffer::ScalarBuffer
//! [`OffsetBuffer<i32>`]: arrow_buffer::OffsetBuffer
//! [`NullBuffer`]: arrow_buffer::NullBuffer
//! [Arrow specification]: https://arrow.apache.org/docs/format/Columnar.html
//! [`&dyn Array`]: Array
//! [`NullBuffer`]: arrow_buffer::NullBuffer
//! [`Buffer`]: arrow_buffer::Buffer
//! [`compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
//! [`json`]: https://docs.rs/arrow/latest/arrow/json/index.html
//! [`csv`]: https://docs.rs/arrow/latest/arrow/csv/index.html
#![deny(rustdoc::broken_intra_doc_links)]
#![warn(missing_docs)]
pub mod array;
pub use array::*;
mod record_batch;
pub use record_batch::{
RecordBatch, RecordBatchIterator, RecordBatchOptions, RecordBatchReader,
RecordBatchWriter,
};
mod arithmetic;
pub use arithmetic::ArrowNativeTypeOp;
mod numeric;
pub use numeric::*;
pub mod builder;
pub mod cast;
mod delta;
pub mod iterator;
pub mod run_iterator;
pub mod temporal_conversions;
pub mod timezone;
mod trusted_len;
pub mod types;
#[cfg(test)]
mod tests {
use crate::builder::*;
#[test]
fn test_buffer_builder_availability() {
let _builder = Int8BufferBuilder::new(10);
let _builder = Int16BufferBuilder::new(10);
let _builder = Int32BufferBuilder::new(10);
let _builder = Int64BufferBuilder::new(10);
let _builder = UInt16BufferBuilder::new(10);
let _builder = UInt32BufferBuilder::new(10);
let _builder = Float32BufferBuilder::new(10);
let _builder = Float64BufferBuilder::new(10);
let _builder = TimestampSecondBufferBuilder::new(10);
let _builder = TimestampMillisecondBufferBuilder::new(10);
let _builder = TimestampMicrosecondBufferBuilder::new(10);
let _builder = TimestampNanosecondBufferBuilder::new(10);
let _builder = Date32BufferBuilder::new(10);
let _builder = Date64BufferBuilder::new(10);
let _builder = Time32SecondBufferBuilder::new(10);
let _builder = Time32MillisecondBufferBuilder::new(10);
let _builder = Time64MicrosecondBufferBuilder::new(10);
let _builder = Time64NanosecondBufferBuilder::new(10);
let _builder = IntervalYearMonthBufferBuilder::new(10);
let _builder = IntervalDayTimeBufferBuilder::new(10);
let _builder = IntervalMonthDayNanoBufferBuilder::new(10);
let _builder = DurationSecondBufferBuilder::new(10);
let _builder = DurationMillisecondBufferBuilder::new(10);
let _builder = DurationMicrosecondBufferBuilder::new(10);
let _builder = DurationNanosecondBufferBuilder::new(10);
}
}