1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::sync::Arc;
use arrow_buffer::{ArrowNativeType, NullBuffer, RunEndBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::{ArrowError, DataType, Field};
use crate::{
builder::StringRunBuilder,
make_array,
run_iterator::RunArrayIter,
types::{Int16Type, Int32Type, Int64Type, RunEndIndexType},
Array, ArrayAccessor, ArrayRef, PrimitiveArray,
};
/// An array of [run-end encoded values](https://arrow.apache.org/docs/format/Columnar.html#run-end-encoded-layout)
///
/// This encoding is variation on [run-length encoding (RLE)](https://en.wikipedia.org/wiki/Run-length_encoding)
/// and is good for representing data containing same values repeated consecutively.
///
/// [`RunArray`] contains `run_ends` array and `values` array of same length.
/// The `run_ends` array stores the indexes at which the run ends. The `values` array
/// stores the value of each run. Below example illustrates how a logical array is represented in
/// [`RunArray`]
///
///
/// ```text
/// ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┐
/// ┌─────────────────┐ ┌─────────┐ ┌─────────────────┐
/// │ │ A │ │ 2 │ │ │ A │
/// ├─────────────────┤ ├─────────┤ ├─────────────────┤
/// │ │ D │ │ 3 │ │ │ A │ run length of 'A' = runs_ends[0] - 0 = 2
/// ├─────────────────┤ ├─────────┤ ├─────────────────┤
/// │ │ B │ │ 6 │ │ │ D │ run length of 'D' = run_ends[1] - run_ends[0] = 1
/// └─────────────────┘ └─────────┘ ├─────────────────┤
/// │ values run_ends │ │ B │
/// ├─────────────────┤
/// └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘ │ B │
/// ├─────────────────┤
/// RunArray │ B │ run length of 'B' = run_ends[2] - run_ends[1] = 3
/// length = 3 └─────────────────┘
///
/// Logical array
/// Contents
/// ```
pub struct RunArray<R: RunEndIndexType> {
data_type: DataType,
run_ends: RunEndBuffer<R::Native>,
values: ArrayRef,
}
impl<R: RunEndIndexType> Clone for RunArray<R> {
fn clone(&self) -> Self {
Self {
data_type: self.data_type.clone(),
run_ends: self.run_ends.clone(),
values: self.values.clone(),
}
}
}
impl<R: RunEndIndexType> RunArray<R> {
/// Calculates the logical length of the array encoded
/// by the given run_ends array.
pub fn logical_len(run_ends: &PrimitiveArray<R>) -> usize {
let len = run_ends.len();
if len == 0 {
return 0;
}
run_ends.value(len - 1).as_usize()
}
/// Attempts to create RunArray using given run_ends (index where a run ends)
/// and the values (value of the run). Returns an error if the given data is not compatible
/// with RunEndEncoded specification.
pub fn try_new(
run_ends: &PrimitiveArray<R>,
values: &dyn Array,
) -> Result<Self, ArrowError> {
let run_ends_type = run_ends.data_type().clone();
let values_type = values.data_type().clone();
let ree_array_type = DataType::RunEndEncoded(
Arc::new(Field::new("run_ends", run_ends_type, false)),
Arc::new(Field::new("values", values_type, true)),
);
let len = RunArray::logical_len(run_ends);
let builder = ArrayDataBuilder::new(ree_array_type)
.len(len)
.add_child_data(run_ends.to_data())
.add_child_data(values.to_data());
// `build_unchecked` is used to avoid recursive validation of child arrays.
let array_data = unsafe { builder.build_unchecked() };
// Safety: `validate_data` checks below
// 1. The given array data has exactly two child arrays.
// 2. The first child array (run_ends) has valid data type.
// 3. run_ends array does not have null values
// 4. run_ends array has non-zero and strictly increasing values.
// 5. The length of run_ends array and values array are the same.
array_data.validate_data()?;
Ok(array_data.into())
}
/// Returns a reference to [`RunEndBuffer`]
pub fn run_ends(&self) -> &RunEndBuffer<R::Native> {
&self.run_ends
}
/// Returns a reference to values array
///
/// Note: any slicing of this [`RunArray`] array is not applied to the returned array
/// and must be handled separately
pub fn values(&self) -> &ArrayRef {
&self.values
}
/// Returns the physical index at which the array slice starts.
pub fn get_start_physical_index(&self) -> usize {
self.run_ends.get_start_physical_index()
}
/// Returns the physical index at which the array slice ends.
pub fn get_end_physical_index(&self) -> usize {
self.run_ends.get_end_physical_index()
}
/// Downcast this [`RunArray`] to a [`TypedRunArray`]
///
/// ```
/// use arrow_array::{Array, ArrayAccessor, RunArray, StringArray, types::Int32Type};
///
/// let orig = [Some("a"), Some("b"), None];
/// let run_array = RunArray::<Int32Type>::from_iter(orig);
/// let typed = run_array.downcast::<StringArray>().unwrap();
/// assert_eq!(typed.value(0), "a");
/// assert_eq!(typed.value(1), "b");
/// assert!(typed.values().is_null(2));
/// ```
///
pub fn downcast<V: 'static>(&self) -> Option<TypedRunArray<'_, R, V>> {
let values = self.values.as_any().downcast_ref()?;
Some(TypedRunArray {
run_array: self,
values,
})
}
/// Returns index to the physical array for the given index to the logical array.
/// This function adjusts the input logical index based on `ArrayData::offset`
/// Performs a binary search on the run_ends array for the input index.
///
/// The result is arbitrary if `logical_index >= self.len()`
pub fn get_physical_index(&self, logical_index: usize) -> usize {
self.run_ends.get_physical_index(logical_index)
}
/// Returns the physical indices of the input logical indices. Returns error if any of the logical
/// index cannot be converted to physical index. The logical indices are sorted and iterated along
/// with run_ends array to find matching physical index. The approach used here was chosen over
/// finding physical index for each logical index using binary search using the function
/// `get_physical_index`. Running benchmarks on both approaches showed that the approach used here
/// scaled well for larger inputs.
/// See <https://github.com/apache/arrow-rs/pull/3622#issuecomment-1407753727> for more details.
#[inline]
pub fn get_physical_indices<I>(
&self,
logical_indices: &[I],
) -> Result<Vec<usize>, ArrowError>
where
I: ArrowNativeType,
{
let len = self.run_ends().len();
let offset = self.run_ends().offset();
let indices_len = logical_indices.len();
if indices_len == 0 {
return Ok(vec![]);
}
// `ordered_indices` store index into `logical_indices` and can be used
// to iterate `logical_indices` in sorted order.
let mut ordered_indices: Vec<usize> = (0..indices_len).collect();
// Instead of sorting `logical_indices` directly, sort the `ordered_indices`
// whose values are index of `logical_indices`
ordered_indices.sort_unstable_by(|lhs, rhs| {
logical_indices[*lhs]
.partial_cmp(&logical_indices[*rhs])
.unwrap()
});
// Return early if all the logical indices cannot be converted to physical indices.
let largest_logical_index =
logical_indices[*ordered_indices.last().unwrap()].as_usize();
if largest_logical_index >= len {
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot convert all logical indices to physical indices. The logical index cannot be converted is {largest_logical_index}.",
)));
}
// Skip some physical indices based on offset.
let skip_value = self.get_start_physical_index();
let mut physical_indices = vec![0; indices_len];
let mut ordered_index = 0_usize;
for (physical_index, run_end) in
self.run_ends.values().iter().enumerate().skip(skip_value)
{
// Get the run end index (relative to offset) of current physical index
let run_end_value = run_end.as_usize() - offset;
// All the `logical_indices` that are less than current run end index
// belongs to current physical index.
while ordered_index < indices_len
&& logical_indices[ordered_indices[ordered_index]].as_usize()
< run_end_value
{
physical_indices[ordered_indices[ordered_index]] = physical_index;
ordered_index += 1;
}
}
// If there are input values >= run_ends.last_value then we'll not be able to convert
// all logical indices to physical indices.
if ordered_index < logical_indices.len() {
let logical_index =
logical_indices[ordered_indices[ordered_index]].as_usize();
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot convert all logical indices to physical indices. The logical index cannot be converted is {logical_index}.",
)));
}
Ok(physical_indices)
}
/// Returns a zero-copy slice of this array with the indicated offset and length.
pub fn slice(&self, offset: usize, length: usize) -> Self {
Self {
data_type: self.data_type.clone(),
run_ends: self.run_ends.slice(offset, length),
values: self.values.clone(),
}
}
}
impl<R: RunEndIndexType> From<ArrayData> for RunArray<R> {
// The method assumes the caller already validated the data using `ArrayData::validate_data()`
fn from(data: ArrayData) -> Self {
match data.data_type() {
DataType::RunEndEncoded(_, _) => {}
_ => {
panic!("Invalid data type for RunArray. The data type should be DataType::RunEndEncoded");
}
}
// Safety
// ArrayData is valid
let child = &data.child_data()[0];
assert_eq!(child.data_type(), &R::DATA_TYPE, "Incorrect run ends type");
let run_ends = unsafe {
let scalar = child.buffers()[0].clone().into();
RunEndBuffer::new_unchecked(scalar, data.offset(), data.len())
};
let values = make_array(data.child_data()[1].clone());
Self {
data_type: data.data_type().clone(),
run_ends,
values,
}
}
}
impl<R: RunEndIndexType> From<RunArray<R>> for ArrayData {
fn from(array: RunArray<R>) -> Self {
let len = array.run_ends.len();
let offset = array.run_ends.offset();
let run_ends = ArrayDataBuilder::new(R::DATA_TYPE)
.len(array.run_ends.values().len())
.buffers(vec![array.run_ends.into_inner().into_inner()]);
let run_ends = unsafe { run_ends.build_unchecked() };
let builder = ArrayDataBuilder::new(array.data_type)
.len(len)
.offset(offset)
.child_data(vec![run_ends, array.values.to_data()]);
unsafe { builder.build_unchecked() }
}
}
impl<T: RunEndIndexType> Array for RunArray<T> {
fn as_any(&self) -> &dyn Any {
self
}
fn to_data(&self) -> ArrayData {
self.clone().into()
}
fn into_data(self) -> ArrayData {
self.into()
}
fn data_type(&self) -> &DataType {
&self.data_type
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
Arc::new(self.slice(offset, length))
}
fn len(&self) -> usize {
self.run_ends.len()
}
fn is_empty(&self) -> bool {
self.run_ends.is_empty()
}
fn offset(&self) -> usize {
self.run_ends.offset()
}
fn nulls(&self) -> Option<&NullBuffer> {
None
}
fn get_buffer_memory_size(&self) -> usize {
self.run_ends.inner().inner().capacity() + self.values.get_buffer_memory_size()
}
fn get_array_memory_size(&self) -> usize {
std::mem::size_of::<Self>()
+ self.run_ends.inner().inner().capacity()
+ self.values.get_array_memory_size()
}
}
impl<R: RunEndIndexType> std::fmt::Debug for RunArray<R> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(
f,
"RunArray {{run_ends: {:?}, values: {:?}}}",
self.run_ends.values(),
self.values
)
}
}
/// Constructs a `RunArray` from an iterator of optional strings.
///
/// # Example:
/// ```
/// use arrow_array::{RunArray, PrimitiveArray, StringArray, types::Int16Type};
///
/// let test = vec!["a", "a", "b", "c", "c"];
/// let array: RunArray<Int16Type> = test
/// .iter()
/// .map(|&x| if x == "b" { None } else { Some(x) })
/// .collect();
/// assert_eq!(
/// "RunArray {run_ends: [2, 3, 5], values: StringArray\n[\n \"a\",\n null,\n \"c\",\n]}\n",
/// format!("{:?}", array)
/// );
/// ```
impl<'a, T: RunEndIndexType> FromIterator<Option<&'a str>> for RunArray<T> {
fn from_iter<I: IntoIterator<Item = Option<&'a str>>>(iter: I) -> Self {
let it = iter.into_iter();
let (lower, _) = it.size_hint();
let mut builder = StringRunBuilder::with_capacity(lower, 256);
it.for_each(|i| {
builder.append_option(i);
});
builder.finish()
}
}
/// Constructs a `RunArray` from an iterator of strings.
///
/// # Example:
///
/// ```
/// use arrow_array::{RunArray, PrimitiveArray, StringArray, types::Int16Type};
///
/// let test = vec!["a", "a", "b", "c"];
/// let array: RunArray<Int16Type> = test.into_iter().collect();
/// assert_eq!(
/// "RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n \"a\",\n \"b\",\n \"c\",\n]}\n",
/// format!("{:?}", array)
/// );
/// ```
impl<'a, T: RunEndIndexType> FromIterator<&'a str> for RunArray<T> {
fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> Self {
let it = iter.into_iter();
let (lower, _) = it.size_hint();
let mut builder = StringRunBuilder::with_capacity(lower, 256);
it.for_each(|i| {
builder.append_value(i);
});
builder.finish()
}
}
///
/// A [`RunArray`] with `i16` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int16RunArray, Int16Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int16RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int16RunArray = RunArray<Int16Type>;
///
/// A [`RunArray`] with `i32` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int32RunArray, Int32Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int32RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int32RunArray = RunArray<Int32Type>;
///
/// A [`RunArray`] with `i64` run ends
///
/// # Example: Using `collect`
/// ```
/// # use arrow_array::{Array, Int64RunArray, Int64Array, StringArray};
/// # use std::sync::Arc;
///
/// let array: Int64RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
/// let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
/// assert_eq!(array.run_ends().values(), &[2, 3, 5]);
/// assert_eq!(array.values(), &values);
/// ```
pub type Int64RunArray = RunArray<Int64Type>;
/// A [`RunArray`] typed typed on its child values array
///
/// Implements [`ArrayAccessor`] and [`IntoIterator`] allowing fast access to its elements
///
/// ```
/// use arrow_array::{RunArray, StringArray, types::Int32Type};
///
/// let orig = ["a", "b", "a", "b"];
/// let ree_array = RunArray::<Int32Type>::from_iter(orig);
///
/// // `TypedRunArray` allows you to access the values directly
/// let typed = ree_array.downcast::<StringArray>().unwrap();
///
/// for (maybe_val, orig) in typed.into_iter().zip(orig) {
/// assert_eq!(maybe_val.unwrap(), orig)
/// }
/// ```
pub struct TypedRunArray<'a, R: RunEndIndexType, V> {
/// The run array
run_array: &'a RunArray<R>,
/// The values of the run_array
values: &'a V,
}
// Manually implement `Clone` to avoid `V: Clone` type constraint
impl<'a, R: RunEndIndexType, V> Clone for TypedRunArray<'a, R, V> {
fn clone(&self) -> Self {
Self {
run_array: self.run_array,
values: self.values,
}
}
}
impl<'a, R: RunEndIndexType, V> Copy for TypedRunArray<'a, R, V> {}
impl<'a, R: RunEndIndexType, V> std::fmt::Debug for TypedRunArray<'a, R, V> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(f, "TypedRunArray({:?})", self.run_array)
}
}
impl<'a, R: RunEndIndexType, V> TypedRunArray<'a, R, V> {
/// Returns the run_ends of this [`TypedRunArray`]
pub fn run_ends(&self) -> &'a RunEndBuffer<R::Native> {
self.run_array.run_ends()
}
/// Returns the values of this [`TypedRunArray`]
pub fn values(&self) -> &'a V {
self.values
}
/// Returns the run array of this [`TypedRunArray`]
pub fn run_array(&self) -> &'a RunArray<R> {
self.run_array
}
}
impl<'a, R: RunEndIndexType, V: Sync> Array for TypedRunArray<'a, R, V> {
fn as_any(&self) -> &dyn Any {
self.run_array
}
fn to_data(&self) -> ArrayData {
self.run_array.to_data()
}
fn into_data(self) -> ArrayData {
self.run_array.into_data()
}
fn data_type(&self) -> &DataType {
self.run_array.data_type()
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
Arc::new(self.run_array.slice(offset, length))
}
fn len(&self) -> usize {
self.run_array.len()
}
fn is_empty(&self) -> bool {
self.run_array.is_empty()
}
fn offset(&self) -> usize {
self.run_array.offset()
}
fn nulls(&self) -> Option<&NullBuffer> {
self.run_array.nulls()
}
fn get_buffer_memory_size(&self) -> usize {
self.run_array.get_buffer_memory_size()
}
fn get_array_memory_size(&self) -> usize {
self.run_array.get_array_memory_size()
}
}
// Array accessor converts the index of logical array to the index of the physical array
// using binary search. The time complexity is O(log N) where N is number of runs.
impl<'a, R, V> ArrayAccessor for TypedRunArray<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
type Item = <&'a V as ArrayAccessor>::Item;
fn value(&self, logical_index: usize) -> Self::Item {
assert!(
logical_index < self.len(),
"Trying to access an element at index {} from a TypedRunArray of length {}",
logical_index,
self.len()
);
unsafe { self.value_unchecked(logical_index) }
}
unsafe fn value_unchecked(&self, logical_index: usize) -> Self::Item {
let physical_index = self.run_array.get_physical_index(logical_index);
self.values().value_unchecked(physical_index)
}
}
impl<'a, R, V> IntoIterator for TypedRunArray<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
type Item = Option<<&'a V as ArrayAccessor>::Item>;
type IntoIter = RunArrayIter<'a, R, V>;
fn into_iter(self) -> Self::IntoIter {
RunArrayIter::new(self)
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use rand::seq::SliceRandom;
use rand::thread_rng;
use rand::Rng;
use super::*;
use crate::builder::PrimitiveRunBuilder;
use crate::cast::AsArray;
use crate::types::{Int16Type, Int32Type, Int8Type, UInt32Type};
use crate::{Array, Int32Array, StringArray};
fn build_input_array(size: usize) -> Vec<Option<i32>> {
// The input array is created by shuffling and repeating
// the seed values random number of times.
let mut seed: Vec<Option<i32>> = vec![
None,
None,
None,
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
Some(6),
Some(7),
Some(8),
Some(9),
];
let mut result: Vec<Option<i32>> = Vec::with_capacity(size);
let mut ix = 0;
let mut rng = thread_rng();
// run length can go up to 8. Cap the max run length for smaller arrays to size / 2.
let max_run_length = 8_usize.min(1_usize.max(size / 2));
while result.len() < size {
// shuffle the seed array if all the values are iterated.
if ix == 0 {
seed.shuffle(&mut rng);
}
// repeat the items between 1 and 8 times. Cap the length for smaller sized arrays
let num =
max_run_length.min(rand::thread_rng().gen_range(1..=max_run_length));
for _ in 0..num {
result.push(seed[ix]);
}
ix += 1;
if ix == seed.len() {
ix = 0
}
}
result.resize(size, None);
result
}
// Asserts that `logical_array[logical_indices[*]] == physical_array[physical_indices[*]]`
fn compare_logical_and_physical_indices(
logical_indices: &[u32],
logical_array: &[Option<i32>],
physical_indices: &[usize],
physical_array: &PrimitiveArray<Int32Type>,
) {
assert_eq!(logical_indices.len(), physical_indices.len());
// check value in logical index in the logical_array matches physical index in physical_array
logical_indices
.iter()
.map(|f| f.as_usize())
.zip(physical_indices.iter())
.for_each(|(logical_ix, physical_ix)| {
let expected = logical_array[logical_ix];
match expected {
Some(val) => {
assert!(physical_array.is_valid(*physical_ix));
let actual = physical_array.value(*physical_ix);
assert_eq!(val, actual);
}
None => {
assert!(physical_array.is_null(*physical_ix))
}
};
});
}
#[test]
fn test_run_array() {
// Construct a value array
let value_data = PrimitiveArray::<Int8Type>::from_iter_values([
10_i8, 11, 12, 13, 14, 15, 16, 17,
]);
// Construct a run_ends array:
let run_ends_values = [4_i16, 6, 7, 9, 13, 18, 20, 22];
let run_ends_data = PrimitiveArray::<Int16Type>::from_iter_values(
run_ends_values.iter().copied(),
);
// Construct a run ends encoded array from the above two
let ree_array =
RunArray::<Int16Type>::try_new(&run_ends_data, &value_data).unwrap();
assert_eq!(ree_array.len(), 22);
assert_eq!(ree_array.null_count(), 0);
let values = ree_array.values();
assert_eq!(value_data.into_data(), values.to_data());
assert_eq!(&DataType::Int8, values.data_type());
let run_ends = ree_array.run_ends();
assert_eq!(run_ends.values(), &run_ends_values);
}
#[test]
fn test_run_array_fmt_debug() {
let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(3);
builder.append_value(12345678);
builder.append_null();
builder.append_value(22345678);
let array = builder.finish();
assert_eq!(
"RunArray {run_ends: [1, 2, 3], values: PrimitiveArray<UInt32>\n[\n 12345678,\n null,\n 22345678,\n]}\n",
format!("{array:?}")
);
let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(20);
for _ in 0..20 {
builder.append_value(1);
}
let array = builder.finish();
assert_eq!(array.len(), 20);
assert_eq!(array.null_count(), 0);
assert_eq!(
"RunArray {run_ends: [20], values: PrimitiveArray<UInt32>\n[\n 1,\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_from_iter() {
let test = vec!["a", "a", "b", "c"];
let array: RunArray<Int16Type> = test
.iter()
.map(|&x| if x == "b" { None } else { Some(x) })
.collect();
assert_eq!(
"RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n \"a\",\n null,\n \"c\",\n]}\n",
format!("{array:?}")
);
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
let array: RunArray<Int16Type> = test.into_iter().collect();
assert_eq!(
"RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n \"a\",\n \"b\",\n \"c\",\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_run_ends_as_primitive_array() {
let test = vec!["a", "b", "c", "a"];
let array: RunArray<Int16Type> = test.into_iter().collect();
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
let run_ends = array.run_ends();
assert_eq!(&[1, 2, 3, 4], run_ends.values());
}
#[test]
fn test_run_array_as_primitive_array_with_null() {
let test = vec![Some("a"), None, Some("b"), None, None, Some("a")];
let array: RunArray<Int32Type> = test.into_iter().collect();
assert_eq!(array.len(), 6);
assert_eq!(array.null_count(), 0);
let run_ends = array.run_ends();
assert_eq!(&[1, 2, 3, 5, 6], run_ends.values());
let values_data = array.values();
assert_eq!(2, values_data.null_count());
assert_eq!(5, values_data.len());
}
#[test]
fn test_run_array_all_nulls() {
let test = vec![None, None, None];
let array: RunArray<Int32Type> = test.into_iter().collect();
assert_eq!(array.len(), 3);
assert_eq!(array.null_count(), 0);
let run_ends = array.run_ends();
assert_eq!(3, run_ends.len());
assert_eq!(&[3], run_ends.values());
let values_data = array.values();
assert_eq!(1, values_data.null_count());
}
#[test]
fn test_run_array_try_new() {
let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array =
[Some(1), Some(2), Some(3), Some(4)].into_iter().collect();
let array = RunArray::<Int32Type>::try_new(&run_ends, &values).unwrap();
assert_eq!(array.values().data_type(), &DataType::Utf8);
assert_eq!(array.null_count(), 0);
assert_eq!(array.len(), 4);
assert_eq!(array.values().null_count(), 1);
assert_eq!(
"RunArray {run_ends: [1, 2, 3, 4], values: StringArray\n[\n \"foo\",\n \"bar\",\n null,\n \"baz\",\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_int16_type_definition() {
let array: Int16RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
assert_eq!(array.run_ends().values(), &[2, 3, 5]);
assert_eq!(array.values(), &values);
}
#[test]
fn test_run_array_empty_string() {
let array: Int16RunArray = vec!["a", "a", "", "", "c"].into_iter().collect();
let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "", "c"]));
assert_eq!(array.run_ends().values(), &[2, 4, 5]);
assert_eq!(array.values(), &values);
}
#[test]
fn test_run_array_length_mismatch() {
let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), Some(2), Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The run_ends array length should be the same as values array length. Run_ends array length is 3, values array length is 4".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_with_null() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), None, Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("Found null values in run_ends array. The run_ends array should not have null values.".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_with_zeroes() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(0), Some(1), Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly positive. Found value 0 at index 0 that does not match the criteria.".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_non_increasing() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), Some(4), Some(4)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly increasing. Found value 4 at index 2 with previous value 4 that does not match the criteria.".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
#[should_panic(expected = "Incorrect run ends type")]
fn test_run_array_run_ends_data_type_mismatch() {
let a = RunArray::<Int32Type>::from_iter(["32"]);
let _ = RunArray::<Int64Type>::from(a.into_data());
}
#[test]
fn test_ree_array_accessor() {
let input_array = build_input_array(256);
// Encode the input_array to ree_array
let mut builder =
PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
builder.extend(input_array.iter().copied());
let run_array = builder.finish();
let typed = run_array.downcast::<PrimitiveArray<Int32Type>>().unwrap();
// Access every index and check if the value in the input array matches returned value.
for (i, inp_val) in input_array.iter().enumerate() {
if let Some(val) = inp_val {
let actual = typed.value(i);
assert_eq!(*val, actual)
} else {
let physical_ix = run_array.get_physical_index(i);
assert!(typed.values().is_null(physical_ix));
};
}
}
#[test]
#[cfg_attr(miri, ignore)] // Takes too long
fn test_get_physical_indices() {
// Test for logical lengths starting from 10 to 250 increasing by 10
for logical_len in (0..250).step_by(10) {
let input_array = build_input_array(logical_len);
// create run array using input_array
let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
builder.extend(input_array.clone().into_iter());
let run_array = builder.finish();
let physical_values_array = run_array.values().as_primitive::<Int32Type>();
// create an array consisting of all the indices repeated twice and shuffled.
let mut logical_indices: Vec<u32> = (0_u32..(logical_len as u32)).collect();
// add same indices once more
logical_indices.append(&mut logical_indices.clone());
let mut rng = thread_rng();
logical_indices.shuffle(&mut rng);
let physical_indices =
run_array.get_physical_indices(&logical_indices).unwrap();
assert_eq!(logical_indices.len(), physical_indices.len());
// check value in logical index in the input_array matches physical index in typed_run_array
compare_logical_and_physical_indices(
&logical_indices,
&input_array,
&physical_indices,
physical_values_array,
);
}
}
#[test]
#[cfg_attr(miri, ignore)] // Takes too long
fn test_get_physical_indices_sliced() {
let total_len = 80;
let input_array = build_input_array(total_len);
// Encode the input_array to run array
let mut builder =
PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
builder.extend(input_array.iter().copied());
let run_array = builder.finish();
let physical_values_array = run_array.values().as_primitive::<Int32Type>();
// test for all slice lengths.
for slice_len in 1..=total_len {
// create an array consisting of all the indices repeated twice and shuffled.
let mut logical_indices: Vec<u32> = (0_u32..(slice_len as u32)).collect();
// add same indices once more
logical_indices.append(&mut logical_indices.clone());
let mut rng = thread_rng();
logical_indices.shuffle(&mut rng);
// test for offset = 0 and slice length = slice_len
// slice the input array using which the run array was built.
let sliced_input_array = &input_array[0..slice_len];
// slice the run array
let sliced_run_array: RunArray<Int16Type> =
run_array.slice(0, slice_len).into_data().into();
// Get physical indices.
let physical_indices = sliced_run_array
.get_physical_indices(&logical_indices)
.unwrap();
compare_logical_and_physical_indices(
&logical_indices,
sliced_input_array,
&physical_indices,
physical_values_array,
);
// test for offset = total_len - slice_len and slice length = slice_len
// slice the input array using which the run array was built.
let sliced_input_array = &input_array[total_len - slice_len..total_len];
// slice the run array
let sliced_run_array: RunArray<Int16Type> = run_array
.slice(total_len - slice_len, slice_len)
.into_data()
.into();
// Get physical indices
let physical_indices = sliced_run_array
.get_physical_indices(&logical_indices)
.unwrap();
compare_logical_and_physical_indices(
&logical_indices,
sliced_input_array,
&physical_indices,
physical_values_array,
);
}
}
}