1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::types::*;
use crate::ArrowPrimitiveType;
#[cfg(feature = "simd")]
use packed_simd::*;
#[cfg(feature = "simd")]
use std::ops::{Add, BitAnd, BitAndAssign, BitOr, BitOrAssign, Div, Mul, Not, Rem, Sub};

/// A subtype of primitive type that represents numeric values.
///
/// SIMD operations are defined in this trait if available on the target system.
#[cfg(feature = "simd")]
pub trait ArrowNumericType: ArrowPrimitiveType
where
    Self::Simd: Add<Output = Self::Simd>
        + Sub<Output = Self::Simd>
        + Mul<Output = Self::Simd>
        + Div<Output = Self::Simd>
        + Rem<Output = Self::Simd>
        + Copy,
    Self::SimdMask: BitAnd<Output = Self::SimdMask>
        + BitOr<Output = Self::SimdMask>
        + BitAndAssign
        + BitOrAssign
        + Not<Output = Self::SimdMask>
        + Copy,
{
    /// Defines the SIMD type that should be used for this numeric type
    type Simd;

    /// Defines the SIMD Mask type that should be used for this numeric type
    type SimdMask;

    /// The number of SIMD lanes available
    fn lanes() -> usize;

    /// Initializes a SIMD register to a constant value
    fn init(value: Self::Native) -> Self::Simd;

    /// Loads a slice into a SIMD register
    fn load(slice: &[Self::Native]) -> Self::Simd;

    /// Creates a new SIMD mask for this SIMD type filling it with `value`
    fn mask_init(value: bool) -> Self::SimdMask;

    /// Creates a new SIMD mask for this SIMD type from the lower-most bits of the given `mask`.
    /// The number of bits used corresponds to the number of lanes of this type
    fn mask_from_u64(mask: u64) -> Self::SimdMask;

    /// Creates a bitmask from the given SIMD mask.
    /// Each bit corresponds to one vector lane, starting with the least-significant bit.
    fn mask_to_u64(mask: &Self::SimdMask) -> u64;

    /// Gets the value of a single lane in a SIMD mask
    fn mask_get(mask: &Self::SimdMask, idx: usize) -> bool;

    /// Sets the value of a single lane of a SIMD mask
    fn mask_set(mask: Self::SimdMask, idx: usize, value: bool) -> Self::SimdMask;

    /// Selects elements of `a` and `b` using `mask`
    fn mask_select(mask: Self::SimdMask, a: Self::Simd, b: Self::Simd) -> Self::Simd;

    /// Returns `true` if any of the lanes in the mask are `true`
    fn mask_any(mask: Self::SimdMask) -> bool;

    /// Performs a SIMD binary operation
    fn bin_op<F: Fn(Self::Simd, Self::Simd) -> Self::Simd>(
        left: Self::Simd,
        right: Self::Simd,
        op: F,
    ) -> Self::Simd;

    /// SIMD version of equal
    fn eq(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// SIMD version of not equal
    fn ne(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// SIMD version of less than
    fn lt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// SIMD version of less than or equal to
    fn le(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// SIMD version of greater than
    fn gt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// SIMD version of greater than or equal to
    fn ge(left: Self::Simd, right: Self::Simd) -> Self::SimdMask;

    /// Writes a SIMD result back to a slice
    fn write(simd_result: Self::Simd, slice: &mut [Self::Native]);

    /// Performs a SIMD unary operation
    fn unary_op<F: Fn(Self::Simd) -> Self::Simd>(a: Self::Simd, op: F) -> Self::Simd;
}

/// A subtype of primitive type that represents numeric values.
#[cfg(not(feature = "simd"))]
pub trait ArrowNumericType: ArrowPrimitiveType {}

macro_rules! make_numeric_type {
    ($impl_ty:ty, $native_ty:ty, $simd_ty:ident, $simd_mask_ty:ident) => {
        #[cfg(feature = "simd")]
        impl ArrowNumericType for $impl_ty {
            type Simd = $simd_ty;

            type SimdMask = $simd_mask_ty;

            #[inline]
            fn lanes() -> usize {
                Self::Simd::lanes()
            }

            #[inline]
            fn init(value: Self::Native) -> Self::Simd {
                Self::Simd::splat(value)
            }

            #[inline]
            fn load(slice: &[Self::Native]) -> Self::Simd {
                unsafe { Self::Simd::from_slice_unaligned_unchecked(slice) }
            }

            #[inline]
            fn mask_init(value: bool) -> Self::SimdMask {
                Self::SimdMask::splat(value)
            }

            #[inline]
            fn mask_from_u64(mask: u64) -> Self::SimdMask {
                // this match will get removed by the compiler since the number of lanes is known at
                // compile-time for each concrete numeric type
                match Self::lanes() {
                    4 => {
                        // the bit position in each lane indicates the index of that lane
                        let vecidx = i128x4::new(1, 2, 4, 8);

                        // broadcast the lowermost 8 bits of mask to each lane
                        let vecmask = i128x4::splat((mask & 0x0F) as i128);
                        // compute whether the bit corresponding to each lanes index is set
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        // transmute is necessary because the different match arms return different
                        // mask types, at runtime only one of those expressions will exist per type,
                        // with the type being equal to `SimdMask`.
                        unsafe { std::mem::transmute(vecmask) }
                    }
                    8 => {
                        // the bit position in each lane indicates the index of that lane
                        let vecidx = i64x8::new(1, 2, 4, 8, 16, 32, 64, 128);

                        // broadcast the lowermost 8 bits of mask to each lane
                        let vecmask = i64x8::splat((mask & 0xFF) as i64);
                        // compute whether the bit corresponding to each lanes index is set
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        // transmute is necessary because the different match arms return different
                        // mask types, at runtime only one of those expressions will exist per type,
                        // with the type being equal to `SimdMask`.
                        unsafe { std::mem::transmute(vecmask) }
                    }
                    16 => {
                        // same general logic as for 8 lanes, extended to 16 bits
                        let vecidx = i32x16::new(
                            1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
                            32768,
                        );

                        let vecmask = i32x16::splat((mask & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        unsafe { std::mem::transmute(vecmask) }
                    }
                    32 => {
                        // compute two separate m32x16 vector masks from  from the lower-most 32 bits of `mask`
                        // and then combine them into one m16x32 vector mask by writing and reading a temporary
                        let tmp = &mut [0_i16; 32];

                        let vecidx = i32x16::new(
                            1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
                            32768,
                        );

                        let vecmask = i32x16::splat((mask & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i16x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[0..16]);

                        let vecmask = i32x16::splat(((mask >> 16) & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i16x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[16..32]);

                        unsafe { std::mem::transmute(i16x32::from_slice_unaligned(tmp)) }
                    }
                    64 => {
                        // compute four m32x16 vector masks from  from all 64 bits of `mask`
                        // and convert them into one m8x64 vector mask by writing and reading a temporary
                        let tmp = &mut [0_i8; 64];

                        let vecidx = i32x16::new(
                            1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,
                            32768,
                        );

                        let vecmask = i32x16::splat((mask & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i8x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[0..16]);

                        let vecmask = i32x16::splat(((mask >> 16) & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i8x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[16..32]);

                        let vecmask = i32x16::splat(((mask >> 32) & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i8x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[32..48]);

                        let vecmask = i32x16::splat(((mask >> 48) & 0xFFFF) as i32);
                        let vecmask = (vecidx & vecmask).eq(vecidx);

                        i8x16::from_cast(vecmask).write_to_slice_unaligned(&mut tmp[48..64]);

                        unsafe { std::mem::transmute(i8x64::from_slice_unaligned(tmp)) }
                    }
                    _ => panic!("Invalid number of vector lanes"),
                }
            }

            #[inline]
            fn mask_to_u64(mask: &Self::SimdMask) -> u64 {
                mask.bitmask() as u64
            }

            #[inline]
            fn mask_get(mask: &Self::SimdMask, idx: usize) -> bool {
                unsafe { mask.extract_unchecked(idx) }
            }

            #[inline]
            fn mask_set(mask: Self::SimdMask, idx: usize, value: bool) -> Self::SimdMask {
                unsafe { mask.replace_unchecked(idx, value) }
            }

            /// Selects elements of `a` and `b` using `mask`
            #[inline]
            fn mask_select(mask: Self::SimdMask, a: Self::Simd, b: Self::Simd) -> Self::Simd {
                mask.select(a, b)
            }

            #[inline]
            fn mask_any(mask: Self::SimdMask) -> bool {
                mask.any()
            }

            #[inline]
            fn bin_op<F: Fn(Self::Simd, Self::Simd) -> Self::Simd>(
                left: Self::Simd,
                right: Self::Simd,
                op: F,
            ) -> Self::Simd {
                op(left, right)
            }

            #[inline]
            fn eq(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.eq(right)
            }

            #[inline]
            fn ne(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.ne(right)
            }

            #[inline]
            fn lt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.lt(right)
            }

            #[inline]
            fn le(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.le(right)
            }

            #[inline]
            fn gt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.gt(right)
            }

            #[inline]
            fn ge(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
                left.ge(right)
            }

            #[inline]
            fn write(simd_result: Self::Simd, slice: &mut [Self::Native]) {
                unsafe { simd_result.write_to_slice_unaligned_unchecked(slice) };
            }

            #[inline]
            fn unary_op<F: Fn(Self::Simd) -> Self::Simd>(a: Self::Simd, op: F) -> Self::Simd {
                op(a)
            }
        }

        #[cfg(not(feature = "simd"))]
        impl ArrowNumericType for $impl_ty {}
    };
}

make_numeric_type!(Int8Type, i8, i8x64, m8x64);
make_numeric_type!(Int16Type, i16, i16x32, m16x32);
make_numeric_type!(Int32Type, i32, i32x16, m32x16);
make_numeric_type!(Int64Type, i64, i64x8, m64x8);
make_numeric_type!(UInt8Type, u8, u8x64, m8x64);
make_numeric_type!(UInt16Type, u16, u16x32, m16x32);
make_numeric_type!(UInt32Type, u32, u32x16, m32x16);
make_numeric_type!(UInt64Type, u64, u64x8, m64x8);
make_numeric_type!(Float32Type, f32, f32x16, m32x16);
make_numeric_type!(Float64Type, f64, f64x8, m64x8);

make_numeric_type!(TimestampSecondType, i64, i64x8, m64x8);
make_numeric_type!(TimestampMillisecondType, i64, i64x8, m64x8);
make_numeric_type!(TimestampMicrosecondType, i64, i64x8, m64x8);
make_numeric_type!(TimestampNanosecondType, i64, i64x8, m64x8);
make_numeric_type!(Date32Type, i32, i32x16, m32x16);
make_numeric_type!(Date64Type, i64, i64x8, m64x8);
make_numeric_type!(Time32SecondType, i32, i32x16, m32x16);
make_numeric_type!(Time32MillisecondType, i32, i32x16, m32x16);
make_numeric_type!(Time64MicrosecondType, i64, i64x8, m64x8);
make_numeric_type!(Time64NanosecondType, i64, i64x8, m64x8);
make_numeric_type!(IntervalYearMonthType, i32, i32x16, m32x16);
make_numeric_type!(IntervalDayTimeType, i64, i64x8, m64x8);
make_numeric_type!(IntervalMonthDayNanoType, i128, i128x4, m128x4);
make_numeric_type!(DurationSecondType, i64, i64x8, m64x8);
make_numeric_type!(DurationMillisecondType, i64, i64x8, m64x8);
make_numeric_type!(DurationMicrosecondType, i64, i64x8, m64x8);
make_numeric_type!(DurationNanosecondType, i64, i64x8, m64x8);
make_numeric_type!(Decimal128Type, i128, i128x4, m128x4);

#[cfg(not(feature = "simd"))]
impl ArrowNumericType for Float16Type {}

#[cfg(feature = "simd")]
impl ArrowNumericType for Float16Type {
    type Simd = <Float32Type as ArrowNumericType>::Simd;
    type SimdMask = <Float32Type as ArrowNumericType>::SimdMask;

    fn lanes() -> usize {
        Float32Type::lanes()
    }

    fn init(value: Self::Native) -> Self::Simd {
        Float32Type::init(value.to_f32())
    }

    fn load(slice: &[Self::Native]) -> Self::Simd {
        let mut s = [0_f32; Self::Simd::lanes()];
        s.iter_mut().zip(slice).for_each(|(o, a)| *o = a.to_f32());
        Float32Type::load(&s)
    }

    fn mask_init(value: bool) -> Self::SimdMask {
        Float32Type::mask_init(value)
    }

    fn mask_from_u64(mask: u64) -> Self::SimdMask {
        Float32Type::mask_from_u64(mask)
    }

    fn mask_to_u64(mask: &Self::SimdMask) -> u64 {
        Float32Type::mask_to_u64(mask)
    }

    fn mask_get(mask: &Self::SimdMask, idx: usize) -> bool {
        Float32Type::mask_get(mask, idx)
    }

    fn mask_set(mask: Self::SimdMask, idx: usize, value: bool) -> Self::SimdMask {
        Float32Type::mask_set(mask, idx, value)
    }

    fn mask_select(mask: Self::SimdMask, a: Self::Simd, b: Self::Simd) -> Self::Simd {
        Float32Type::mask_select(mask, a, b)
    }

    fn mask_any(mask: Self::SimdMask) -> bool {
        Float32Type::mask_any(mask)
    }

    fn bin_op<F: Fn(Self::Simd, Self::Simd) -> Self::Simd>(
        left: Self::Simd,
        right: Self::Simd,
        op: F,
    ) -> Self::Simd {
        op(left, right)
    }

    fn eq(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::eq(left, right)
    }

    fn ne(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::ne(left, right)
    }

    fn lt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::lt(left, right)
    }

    fn le(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::le(left, right)
    }

    fn gt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::gt(left, right)
    }

    fn ge(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        Float32Type::ge(left, right)
    }

    fn write(simd_result: Self::Simd, slice: &mut [Self::Native]) {
        let mut s = [0_f32; Self::Simd::lanes()];
        Float32Type::write(simd_result, &mut s);
        slice
            .iter_mut()
            .zip(s)
            .for_each(|(o, i)| *o = half::f16::from_f32(i))
    }

    fn unary_op<F: Fn(Self::Simd) -> Self::Simd>(a: Self::Simd, op: F) -> Self::Simd {
        Float32Type::unary_op(a, op)
    }
}

#[cfg(not(feature = "simd"))]
impl ArrowNumericType for Decimal256Type {}

#[cfg(feature = "simd")]
impl ArrowNumericType for Decimal256Type {
    type Simd = arrow_buffer::i256;
    type SimdMask = bool;

    fn lanes() -> usize {
        1
    }

    fn init(value: Self::Native) -> Self::Simd {
        value
    }

    fn load(slice: &[Self::Native]) -> Self::Simd {
        slice[0]
    }

    fn mask_init(value: bool) -> Self::SimdMask {
        value
    }

    fn mask_from_u64(mask: u64) -> Self::SimdMask {
        mask != 0
    }

    fn mask_to_u64(mask: &Self::SimdMask) -> u64 {
        *mask as u64
    }

    fn mask_get(mask: &Self::SimdMask, _idx: usize) -> bool {
        *mask
    }

    fn mask_set(_mask: Self::SimdMask, _idx: usize, value: bool) -> Self::SimdMask {
        value
    }

    fn mask_select(mask: Self::SimdMask, a: Self::Simd, b: Self::Simd) -> Self::Simd {
        match mask {
            true => a,
            false => b,
        }
    }

    fn mask_any(mask: Self::SimdMask) -> bool {
        mask
    }

    fn bin_op<F: Fn(Self::Simd, Self::Simd) -> Self::Simd>(
        left: Self::Simd,
        right: Self::Simd,
        op: F,
    ) -> Self::Simd {
        op(left, right)
    }

    fn eq(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.eq(&right)
    }

    fn ne(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.ne(&right)
    }

    fn lt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.lt(&right)
    }

    fn le(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.le(&right)
    }

    fn gt(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.gt(&right)
    }

    fn ge(left: Self::Simd, right: Self::Simd) -> Self::SimdMask {
        left.ge(&right)
    }

    fn write(simd_result: Self::Simd, slice: &mut [Self::Native]) {
        slice[0] = simd_result
    }

    fn unary_op<F: Fn(Self::Simd) -> Self::Simd>(a: Self::Simd, op: F) -> Self::Simd {
        op(a)
    }
}

#[cfg(all(test, feature = "simd"))]
mod tests {
    use super::*;
    use FromCast;

    /// calculate the expected mask by iterating over all bits
    macro_rules! expected_mask {
        ($T:ty, $MASK:expr) => {{
            let mask = $MASK;
            // simd width of all types is currently 64 bytes -> 512 bits
            let lanes = 64 / std::mem::size_of::<$T>();
            // translate each set bit into a value of all ones (-1) of the correct type
            (0..lanes)
                .map(|i| (if (mask & (1 << i)) != 0 { -1 } else { 0 }))
                .collect::<Vec<$T>>()
        }};
    }

    #[test]
    fn test_mask_i128() {
        let mask = 0b1101;
        let actual = IntervalMonthDayNanoType::mask_from_u64(mask);
        let expected = expected_mask!(i128, mask);
        let expected = m128x4::from_cast(i128x4::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_f64() {
        let mask = 0b10101010;
        let actual = Float64Type::mask_from_u64(mask);
        let expected = expected_mask!(i64, mask);
        let expected = m64x8::from_cast(i64x8::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_u64() {
        let mask = 0b01010101;
        let actual = Int64Type::mask_from_u64(mask);
        let expected = expected_mask!(i64, mask);
        let expected = m64x8::from_cast(i64x8::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_f32() {
        let mask = 0b10101010_10101010;
        let actual = Float32Type::mask_from_u64(mask);
        let expected = expected_mask!(i32, mask);
        let expected = m32x16::from_cast(i32x16::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_i32() {
        let mask = 0b01010101_01010101;
        let actual = Int32Type::mask_from_u64(mask);
        let expected = expected_mask!(i32, mask);
        let expected = m32x16::from_cast(i32x16::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_u16() {
        let mask = 0b01010101_01010101_10101010_10101010;
        let actual = UInt16Type::mask_from_u64(mask);
        let expected = expected_mask!(i16, mask);
        dbg!(&expected);
        let expected = m16x32::from_cast(i16x32::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }

    #[test]
    fn test_mask_i8() {
        let mask = 0b01010101_01010101_10101010_10101010_01010101_01010101_10101010_10101010;
        let actual = Int8Type::mask_from_u64(mask);
        let expected = expected_mask!(i8, mask);
        let expected = m8x64::from_cast(i8x64::from_slice_unaligned(expected.as_slice()));

        assert_eq!(expected, actual);
    }
}