arrow_array/array/
fixed_size_binary_array.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::array::print_long_array;
use crate::iterator::FixedSizeBinaryIter;
use crate::{Array, ArrayAccessor, ArrayRef, FixedSizeListArray, Scalar};
use arrow_buffer::buffer::NullBuffer;
use arrow_buffer::{bit_util, ArrowNativeType, BooleanBuffer, Buffer, MutableBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::{ArrowError, DataType};
use std::any::Any;
use std::sync::Arc;

/// An array of [fixed size binary arrays](https://arrow.apache.org/docs/format/Columnar.html#fixed-size-primitive-layout)
///
/// # Examples
///
/// Create an array from an iterable argument of byte slices.
///
/// ```
///    use arrow_array::{Array, FixedSizeBinaryArray};
///    let input_arg = vec![ vec![1, 2], vec![3, 4], vec![5, 6] ];
///    let arr = FixedSizeBinaryArray::try_from_iter(input_arg.into_iter()).unwrap();
///
///    assert_eq!(3, arr.len());
///
/// ```
/// Create an array from an iterable argument of sparse byte slices.
/// Sparsity means that the input argument can contain `None` items.
/// ```
///    use arrow_array::{Array, FixedSizeBinaryArray};
///    let input_arg = vec![ None, Some(vec![7, 8]), Some(vec![9, 10]), None, Some(vec![13, 14]) ];
///    let arr = FixedSizeBinaryArray::try_from_sparse_iter_with_size(input_arg.into_iter(), 2).unwrap();
///    assert_eq!(5, arr.len())
///
/// ```
///
#[derive(Clone)]
pub struct FixedSizeBinaryArray {
    data_type: DataType, // Must be DataType::FixedSizeBinary(value_length)
    value_data: Buffer,
    nulls: Option<NullBuffer>,
    len: usize,
    value_length: i32,
}

impl FixedSizeBinaryArray {
    /// Create a new [`FixedSizeBinaryArray`] with `size` element size, panicking on failure
    ///
    /// # Panics
    ///
    /// Panics if [`Self::try_new`] returns an error
    pub fn new(size: i32, values: Buffer, nulls: Option<NullBuffer>) -> Self {
        Self::try_new(size, values, nulls).unwrap()
    }

    /// Create a new [`Scalar`] from `value`
    pub fn new_scalar(value: impl AsRef<[u8]>) -> Scalar<Self> {
        let v = value.as_ref();
        Scalar::new(Self::new(v.len() as _, Buffer::from(v), None))
    }

    /// Create a new [`FixedSizeBinaryArray`] from the provided parts, returning an error on failure
    ///
    /// # Errors
    ///
    /// * `size < 0`
    /// * `values.len() / size != nulls.len()`
    pub fn try_new(
        size: i32,
        values: Buffer,
        nulls: Option<NullBuffer>,
    ) -> Result<Self, ArrowError> {
        let data_type = DataType::FixedSizeBinary(size);
        let s = size.to_usize().ok_or_else(|| {
            ArrowError::InvalidArgumentError(format!("Size cannot be negative, got {}", size))
        })?;

        let len = values.len() / s;
        if let Some(n) = nulls.as_ref() {
            if n.len() != len {
                return Err(ArrowError::InvalidArgumentError(format!(
                    "Incorrect length of null buffer for FixedSizeBinaryArray, expected {} got {}",
                    len,
                    n.len(),
                )));
            }
        }

        Ok(Self {
            data_type,
            value_data: values,
            value_length: size,
            nulls,
            len,
        })
    }

    /// Create a new [`FixedSizeBinaryArray`] of length `len` where all values are null
    ///
    /// # Panics
    ///
    /// Panics if
    ///
    /// * `size < 0`
    /// * `size * len` would overflow `usize`
    pub fn new_null(size: i32, len: usize) -> Self {
        let capacity = size.to_usize().unwrap().checked_mul(len).unwrap();
        Self {
            data_type: DataType::FixedSizeBinary(size),
            value_data: MutableBuffer::new(capacity).into(),
            nulls: Some(NullBuffer::new_null(len)),
            value_length: size,
            len,
        }
    }

    /// Deconstruct this array into its constituent parts
    pub fn into_parts(self) -> (i32, Buffer, Option<NullBuffer>) {
        (self.value_length, self.value_data, self.nulls)
    }

    /// Returns the element at index `i` as a byte slice.
    /// # Panics
    /// Panics if index `i` is out of bounds.
    pub fn value(&self, i: usize) -> &[u8] {
        assert!(
            i < self.len(),
            "Trying to access an element at index {} from a FixedSizeBinaryArray of length {}",
            i,
            self.len()
        );
        let offset = i + self.offset();
        unsafe {
            let pos = self.value_offset_at(offset);
            std::slice::from_raw_parts(
                self.value_data.as_ptr().offset(pos as isize),
                (self.value_offset_at(offset + 1) - pos) as usize,
            )
        }
    }

    /// Returns the element at index `i` as a byte slice.
    /// # Safety
    /// Caller is responsible for ensuring that the index is within the bounds of the array
    pub unsafe fn value_unchecked(&self, i: usize) -> &[u8] {
        let offset = i + self.offset();
        let pos = self.value_offset_at(offset);
        std::slice::from_raw_parts(
            self.value_data.as_ptr().offset(pos as isize),
            (self.value_offset_at(offset + 1) - pos) as usize,
        )
    }

    /// Returns the offset for the element at index `i`.
    ///
    /// Note this doesn't do any bound checking, for performance reason.
    #[inline]
    pub fn value_offset(&self, i: usize) -> i32 {
        self.value_offset_at(self.offset() + i)
    }

    /// Returns the length for an element.
    ///
    /// All elements have the same length as the array is a fixed size.
    #[inline]
    pub fn value_length(&self) -> i32 {
        self.value_length
    }

    /// Returns the values of this array.
    ///
    /// Unlike [`Self::value_data`] this returns the [`Buffer`]
    /// allowing for zero-copy cloning.
    #[inline]
    pub fn values(&self) -> &Buffer {
        &self.value_data
    }

    /// Returns the raw value data.
    pub fn value_data(&self) -> &[u8] {
        self.value_data.as_slice()
    }

    /// Returns a zero-copy slice of this array with the indicated offset and length.
    pub fn slice(&self, offset: usize, len: usize) -> Self {
        assert!(
            offset.saturating_add(len) <= self.len,
            "the length + offset of the sliced FixedSizeBinaryArray cannot exceed the existing length"
        );

        let size = self.value_length as usize;

        Self {
            data_type: self.data_type.clone(),
            nulls: self.nulls.as_ref().map(|n| n.slice(offset, len)),
            value_length: self.value_length,
            value_data: self.value_data.slice_with_length(offset * size, len * size),
            len,
        }
    }

    /// Create an array from an iterable argument of sparse byte slices.
    /// Sparsity means that items returned by the iterator are optional, i.e input argument can
    /// contain `None` items.
    ///
    /// # Examples
    ///
    /// ```
    /// use arrow_array::FixedSizeBinaryArray;
    /// let input_arg = vec![
    ///     None,
    ///     Some(vec![7, 8]),
    ///     Some(vec![9, 10]),
    ///     None,
    ///     Some(vec![13, 14]),
    ///     None,
    /// ];
    /// let array = FixedSizeBinaryArray::try_from_sparse_iter(input_arg.into_iter()).unwrap();
    /// ```
    ///
    /// # Errors
    ///
    /// Returns error if argument has length zero, or sizes of nested slices don't match.
    #[deprecated(
        note = "This function will fail if the iterator produces only None values; prefer `try_from_sparse_iter_with_size`"
    )]
    pub fn try_from_sparse_iter<T, U>(mut iter: T) -> Result<Self, ArrowError>
    where
        T: Iterator<Item = Option<U>>,
        U: AsRef<[u8]>,
    {
        let mut len = 0;
        let mut size = None;
        let mut byte = 0;

        let iter_size_hint = iter.size_hint().0;
        let mut null_buf = MutableBuffer::new(bit_util::ceil(iter_size_hint, 8));
        let mut buffer = MutableBuffer::new(0);

        let mut prepend = 0;
        iter.try_for_each(|item| -> Result<(), ArrowError> {
            // extend null bitmask by one byte per each 8 items
            if byte == 0 {
                null_buf.push(0u8);
                byte = 8;
            }
            byte -= 1;

            if let Some(slice) = item {
                let slice = slice.as_ref();
                if let Some(size) = size {
                    if size != slice.len() {
                        return Err(ArrowError::InvalidArgumentError(format!(
                            "Nested array size mismatch: one is {}, and the other is {}",
                            size,
                            slice.len()
                        )));
                    }
                } else {
                    let len = slice.len();
                    size = Some(len);
                    // Now that we know how large each element is we can reserve
                    // sufficient capacity in the underlying mutable buffer for
                    // the data.
                    buffer.reserve(iter_size_hint * len);
                    buffer.extend_zeros(slice.len() * prepend);
                }
                bit_util::set_bit(null_buf.as_slice_mut(), len);
                buffer.extend_from_slice(slice);
            } else if let Some(size) = size {
                buffer.extend_zeros(size);
            } else {
                prepend += 1;
            }

            len += 1;

            Ok(())
        })?;

        if len == 0 {
            return Err(ArrowError::InvalidArgumentError(
                "Input iterable argument has no data".to_owned(),
            ));
        }

        let null_buf = BooleanBuffer::new(null_buf.into(), 0, len);
        let nulls = Some(NullBuffer::new(null_buf)).filter(|n| n.null_count() > 0);

        let size = size.unwrap_or(0) as i32;
        Ok(Self {
            data_type: DataType::FixedSizeBinary(size),
            value_data: buffer.into(),
            nulls,
            value_length: size,
            len,
        })
    }

    /// Create an array from an iterable argument of sparse byte slices.
    /// Sparsity means that items returned by the iterator are optional, i.e input argument can
    /// contain `None` items. In cases where the iterator returns only `None` values, this
    /// also takes a size parameter to ensure that the a valid FixedSizeBinaryArray is still
    /// created.
    ///
    /// # Examples
    ///
    /// ```
    /// use arrow_array::FixedSizeBinaryArray;
    /// let input_arg = vec![
    ///     None,
    ///     Some(vec![7, 8]),
    ///     Some(vec![9, 10]),
    ///     None,
    ///     Some(vec![13, 14]),
    ///     None,
    /// ];
    /// let array = FixedSizeBinaryArray::try_from_sparse_iter_with_size(input_arg.into_iter(), 2).unwrap();
    /// ```
    ///
    /// # Errors
    ///
    /// Returns error if argument has length zero, or sizes of nested slices don't match.
    pub fn try_from_sparse_iter_with_size<T, U>(mut iter: T, size: i32) -> Result<Self, ArrowError>
    where
        T: Iterator<Item = Option<U>>,
        U: AsRef<[u8]>,
    {
        let mut len = 0;
        let mut byte = 0;

        let iter_size_hint = iter.size_hint().0;
        let mut null_buf = MutableBuffer::new(bit_util::ceil(iter_size_hint, 8));
        let mut buffer = MutableBuffer::new(iter_size_hint * (size as usize));

        iter.try_for_each(|item| -> Result<(), ArrowError> {
            // extend null bitmask by one byte per each 8 items
            if byte == 0 {
                null_buf.push(0u8);
                byte = 8;
            }
            byte -= 1;

            if let Some(slice) = item {
                let slice = slice.as_ref();
                if size as usize != slice.len() {
                    return Err(ArrowError::InvalidArgumentError(format!(
                        "Nested array size mismatch: one is {}, and the other is {}",
                        size,
                        slice.len()
                    )));
                }

                bit_util::set_bit(null_buf.as_slice_mut(), len);
                buffer.extend_from_slice(slice);
            } else {
                buffer.extend_zeros(size as usize);
            }

            len += 1;

            Ok(())
        })?;

        let null_buf = BooleanBuffer::new(null_buf.into(), 0, len);
        let nulls = Some(NullBuffer::new(null_buf)).filter(|n| n.null_count() > 0);

        Ok(Self {
            data_type: DataType::FixedSizeBinary(size),
            value_data: buffer.into(),
            nulls,
            len,
            value_length: size,
        })
    }

    /// Create an array from an iterable argument of byte slices.
    ///
    /// # Examples
    ///
    /// ```
    /// use arrow_array::FixedSizeBinaryArray;
    /// let input_arg = vec![
    ///     vec![1, 2],
    ///     vec![3, 4],
    ///     vec![5, 6],
    /// ];
    /// let array = FixedSizeBinaryArray::try_from_iter(input_arg.into_iter()).unwrap();
    /// ```
    ///
    /// # Errors
    ///
    /// Returns error if argument has length zero, or sizes of nested slices don't match.
    pub fn try_from_iter<T, U>(mut iter: T) -> Result<Self, ArrowError>
    where
        T: Iterator<Item = U>,
        U: AsRef<[u8]>,
    {
        let mut len = 0;
        let mut size = None;
        let iter_size_hint = iter.size_hint().0;
        let mut buffer = MutableBuffer::new(0);

        iter.try_for_each(|item| -> Result<(), ArrowError> {
            let slice = item.as_ref();
            if let Some(size) = size {
                if size != slice.len() {
                    return Err(ArrowError::InvalidArgumentError(format!(
                        "Nested array size mismatch: one is {}, and the other is {}",
                        size,
                        slice.len()
                    )));
                }
            } else {
                let len = slice.len();
                size = Some(len);
                buffer.reserve(iter_size_hint * len);
            }

            buffer.extend_from_slice(slice);

            len += 1;

            Ok(())
        })?;

        if len == 0 {
            return Err(ArrowError::InvalidArgumentError(
                "Input iterable argument has no data".to_owned(),
            ));
        }

        let size = size.unwrap_or(0).try_into().unwrap();
        Ok(Self {
            data_type: DataType::FixedSizeBinary(size),
            value_data: buffer.into(),
            nulls: None,
            value_length: size,
            len,
        })
    }

    #[inline]
    fn value_offset_at(&self, i: usize) -> i32 {
        self.value_length * i as i32
    }

    /// constructs a new iterator
    pub fn iter(&self) -> FixedSizeBinaryIter<'_> {
        FixedSizeBinaryIter::new(self)
    }
}

impl From<ArrayData> for FixedSizeBinaryArray {
    fn from(data: ArrayData) -> Self {
        assert_eq!(
            data.buffers().len(),
            1,
            "FixedSizeBinaryArray data should contain 1 buffer only (values)"
        );
        let value_length = match data.data_type() {
            DataType::FixedSizeBinary(len) => *len,
            _ => panic!("Expected data type to be FixedSizeBinary"),
        };

        let size = value_length as usize;
        let value_data =
            data.buffers()[0].slice_with_length(data.offset() * size, data.len() * size);

        Self {
            data_type: data.data_type().clone(),
            nulls: data.nulls().cloned(),
            len: data.len(),
            value_data,
            value_length,
        }
    }
}

impl From<FixedSizeBinaryArray> for ArrayData {
    fn from(array: FixedSizeBinaryArray) -> Self {
        let builder = ArrayDataBuilder::new(array.data_type)
            .len(array.len)
            .buffers(vec![array.value_data])
            .nulls(array.nulls);

        unsafe { builder.build_unchecked() }
    }
}

/// Creates a `FixedSizeBinaryArray` from `FixedSizeList<u8>` array
impl From<FixedSizeListArray> for FixedSizeBinaryArray {
    fn from(v: FixedSizeListArray) -> Self {
        let value_len = v.value_length();
        let v = v.into_data();
        assert_eq!(
            v.child_data().len(),
            1,
            "FixedSizeBinaryArray can only be created from list array of u8 values \
             (i.e. FixedSizeList<PrimitiveArray<u8>>)."
        );
        let child_data = &v.child_data()[0];

        assert_eq!(
            child_data.child_data().len(),
            0,
            "FixedSizeBinaryArray can only be created from list array of u8 values \
             (i.e. FixedSizeList<PrimitiveArray<u8>>)."
        );
        assert_eq!(
            child_data.data_type(),
            &DataType::UInt8,
            "FixedSizeBinaryArray can only be created from FixedSizeList<u8> arrays, mismatched data types."
        );
        assert_eq!(
            child_data.null_count(),
            0,
            "The child array cannot contain null values."
        );

        let builder = ArrayData::builder(DataType::FixedSizeBinary(value_len))
            .len(v.len())
            .offset(v.offset())
            .add_buffer(child_data.buffers()[0].slice(child_data.offset()))
            .nulls(v.nulls().cloned());

        let data = unsafe { builder.build_unchecked() };
        Self::from(data)
    }
}

impl From<Vec<Option<&[u8]>>> for FixedSizeBinaryArray {
    fn from(v: Vec<Option<&[u8]>>) -> Self {
        #[allow(deprecated)]
        Self::try_from_sparse_iter(v.into_iter()).unwrap()
    }
}

impl From<Vec<&[u8]>> for FixedSizeBinaryArray {
    fn from(v: Vec<&[u8]>) -> Self {
        Self::try_from_iter(v.into_iter()).unwrap()
    }
}

impl<const N: usize> From<Vec<&[u8; N]>> for FixedSizeBinaryArray {
    fn from(v: Vec<&[u8; N]>) -> Self {
        Self::try_from_iter(v.into_iter()).unwrap()
    }
}

impl std::fmt::Debug for FixedSizeBinaryArray {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "FixedSizeBinaryArray<{}>\n[\n", self.value_length())?;
        print_long_array(self, f, |array, index, f| {
            std::fmt::Debug::fmt(&array.value(index), f)
        })?;
        write!(f, "]")
    }
}

impl Array for FixedSizeBinaryArray {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn to_data(&self) -> ArrayData {
        self.clone().into()
    }

    fn into_data(self) -> ArrayData {
        self.into()
    }

    fn data_type(&self) -> &DataType {
        &self.data_type
    }

    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
        Arc::new(self.slice(offset, length))
    }

    fn len(&self) -> usize {
        self.len
    }

    fn is_empty(&self) -> bool {
        self.len == 0
    }

    fn offset(&self) -> usize {
        0
    }

    fn nulls(&self) -> Option<&NullBuffer> {
        self.nulls.as_ref()
    }

    fn logical_null_count(&self) -> usize {
        // More efficient that the default implementation
        self.null_count()
    }

    fn get_buffer_memory_size(&self) -> usize {
        let mut sum = self.value_data.capacity();
        if let Some(n) = &self.nulls {
            sum += n.buffer().capacity();
        }
        sum
    }

    fn get_array_memory_size(&self) -> usize {
        std::mem::size_of::<Self>() + self.get_buffer_memory_size()
    }
}

impl<'a> ArrayAccessor for &'a FixedSizeBinaryArray {
    type Item = &'a [u8];

    fn value(&self, index: usize) -> Self::Item {
        FixedSizeBinaryArray::value(self, index)
    }

    unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
        FixedSizeBinaryArray::value_unchecked(self, index)
    }
}

impl<'a> IntoIterator for &'a FixedSizeBinaryArray {
    type Item = Option<&'a [u8]>;
    type IntoIter = FixedSizeBinaryIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        FixedSizeBinaryIter::<'a>::new(self)
    }
}

#[cfg(test)]
mod tests {
    use crate::RecordBatch;
    use arrow_schema::{Field, Schema};

    use super::*;

    #[test]
    fn test_fixed_size_binary_array() {
        let values: [u8; 15] = *b"hellotherearrow";

        let array_data = ArrayData::builder(DataType::FixedSizeBinary(5))
            .len(3)
            .add_buffer(Buffer::from(&values[..]))
            .build()
            .unwrap();
        let fixed_size_binary_array = FixedSizeBinaryArray::from(array_data);
        assert_eq!(3, fixed_size_binary_array.len());
        assert_eq!(0, fixed_size_binary_array.null_count());
        assert_eq!(
            [b'h', b'e', b'l', b'l', b'o'],
            fixed_size_binary_array.value(0)
        );
        assert_eq!(
            [b't', b'h', b'e', b'r', b'e'],
            fixed_size_binary_array.value(1)
        );
        assert_eq!(
            [b'a', b'r', b'r', b'o', b'w'],
            fixed_size_binary_array.value(2)
        );
        assert_eq!(5, fixed_size_binary_array.value_length());
        assert_eq!(10, fixed_size_binary_array.value_offset(2));
        for i in 0..3 {
            assert!(fixed_size_binary_array.is_valid(i));
            assert!(!fixed_size_binary_array.is_null(i));
        }

        // Test binary array with offset
        let array_data = ArrayData::builder(DataType::FixedSizeBinary(5))
            .len(2)
            .offset(1)
            .add_buffer(Buffer::from(&values[..]))
            .build()
            .unwrap();
        let fixed_size_binary_array = FixedSizeBinaryArray::from(array_data);
        assert_eq!(
            [b't', b'h', b'e', b'r', b'e'],
            fixed_size_binary_array.value(0)
        );
        assert_eq!(
            [b'a', b'r', b'r', b'o', b'w'],
            fixed_size_binary_array.value(1)
        );
        assert_eq!(2, fixed_size_binary_array.len());
        assert_eq!(0, fixed_size_binary_array.value_offset(0));
        assert_eq!(5, fixed_size_binary_array.value_length());
        assert_eq!(5, fixed_size_binary_array.value_offset(1));
    }

    #[test]
    fn test_fixed_size_binary_array_from_fixed_size_list_array() {
        let values = [0_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
        let values_data = ArrayData::builder(DataType::UInt8)
            .len(12)
            .offset(2)
            .add_buffer(Buffer::from_slice_ref(values))
            .build()
            .unwrap();
        // [null, [10, 11, 12, 13]]
        let array_data = unsafe {
            ArrayData::builder(DataType::FixedSizeList(
                Arc::new(Field::new("item", DataType::UInt8, false)),
                4,
            ))
            .len(2)
            .offset(1)
            .add_child_data(values_data)
            .null_bit_buffer(Some(Buffer::from_slice_ref([0b101])))
            .build_unchecked()
        };
        let list_array = FixedSizeListArray::from(array_data);
        let binary_array = FixedSizeBinaryArray::from(list_array);

        assert_eq!(2, binary_array.len());
        assert_eq!(1, binary_array.null_count());
        assert!(binary_array.is_null(0));
        assert!(binary_array.is_valid(1));
        assert_eq!(&[10, 11, 12, 13], binary_array.value(1));
    }

    #[test]
    #[should_panic(
        expected = "FixedSizeBinaryArray can only be created from FixedSizeList<u8> arrays"
    )]
    // Different error messages, so skip for now
    // https://github.com/apache/arrow-rs/issues/1545
    #[cfg(not(feature = "force_validate"))]
    fn test_fixed_size_binary_array_from_incorrect_fixed_size_list_array() {
        let values: [u32; 12] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
        let values_data = ArrayData::builder(DataType::UInt32)
            .len(12)
            .add_buffer(Buffer::from_slice_ref(values))
            .build()
            .unwrap();

        let array_data = unsafe {
            ArrayData::builder(DataType::FixedSizeList(
                Arc::new(Field::new("item", DataType::Binary, false)),
                4,
            ))
            .len(3)
            .add_child_data(values_data)
            .build_unchecked()
        };
        let list_array = FixedSizeListArray::from(array_data);
        drop(FixedSizeBinaryArray::from(list_array));
    }

    #[test]
    #[should_panic(expected = "The child array cannot contain null values.")]
    fn test_fixed_size_binary_array_from_fixed_size_list_array_with_child_nulls_failed() {
        let values = [0_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
        let values_data = ArrayData::builder(DataType::UInt8)
            .len(12)
            .add_buffer(Buffer::from_slice_ref(values))
            .null_bit_buffer(Some(Buffer::from_slice_ref([0b101010101010])))
            .build()
            .unwrap();

        let array_data = unsafe {
            ArrayData::builder(DataType::FixedSizeList(
                Arc::new(Field::new("item", DataType::UInt8, false)),
                4,
            ))
            .len(3)
            .add_child_data(values_data)
            .build_unchecked()
        };
        let list_array = FixedSizeListArray::from(array_data);
        drop(FixedSizeBinaryArray::from(list_array));
    }

    #[test]
    fn test_fixed_size_binary_array_fmt_debug() {
        let values: [u8; 15] = *b"hellotherearrow";

        let array_data = ArrayData::builder(DataType::FixedSizeBinary(5))
            .len(3)
            .add_buffer(Buffer::from(&values[..]))
            .build()
            .unwrap();
        let arr = FixedSizeBinaryArray::from(array_data);
        assert_eq!(
            "FixedSizeBinaryArray<5>\n[\n  [104, 101, 108, 108, 111],\n  [116, 104, 101, 114, 101],\n  [97, 114, 114, 111, 119],\n]",
            format!("{arr:?}")
        );
    }

    #[test]
    fn test_fixed_size_binary_array_from_iter() {
        let input_arg = vec![vec![1, 2], vec![3, 4], vec![5, 6]];
        let arr = FixedSizeBinaryArray::try_from_iter(input_arg.into_iter()).unwrap();

        assert_eq!(2, arr.value_length());
        assert_eq!(3, arr.len())
    }

    #[test]
    fn test_all_none_fixed_size_binary_array_from_sparse_iter() {
        let none_option: Option<[u8; 32]> = None;
        let input_arg = vec![none_option, none_option, none_option];
        #[allow(deprecated)]
        let arr = FixedSizeBinaryArray::try_from_sparse_iter(input_arg.into_iter()).unwrap();
        assert_eq!(0, arr.value_length());
        assert_eq!(3, arr.len())
    }

    #[test]
    fn test_fixed_size_binary_array_from_sparse_iter() {
        let input_arg = vec![
            None,
            Some(vec![7, 8]),
            Some(vec![9, 10]),
            None,
            Some(vec![13, 14]),
        ];
        #[allow(deprecated)]
        let arr = FixedSizeBinaryArray::try_from_sparse_iter(input_arg.iter().cloned()).unwrap();
        assert_eq!(2, arr.value_length());
        assert_eq!(5, arr.len());

        let arr =
            FixedSizeBinaryArray::try_from_sparse_iter_with_size(input_arg.into_iter(), 2).unwrap();
        assert_eq!(2, arr.value_length());
        assert_eq!(5, arr.len());
    }

    #[test]
    fn test_fixed_size_binary_array_from_sparse_iter_with_size_all_none() {
        let input_arg = vec![None, None, None, None, None] as Vec<Option<Vec<u8>>>;

        let arr = FixedSizeBinaryArray::try_from_sparse_iter_with_size(input_arg.into_iter(), 16)
            .unwrap();
        assert_eq!(16, arr.value_length());
        assert_eq!(5, arr.len())
    }

    #[test]
    fn test_fixed_size_binary_array_from_vec() {
        let values = vec!["one".as_bytes(), b"two", b"six", b"ten"];
        let array = FixedSizeBinaryArray::from(values);
        assert_eq!(array.len(), 4);
        assert_eq!(array.null_count(), 0);
        assert_eq!(array.logical_null_count(), 0);
        assert_eq!(array.value(0), b"one");
        assert_eq!(array.value(1), b"two");
        assert_eq!(array.value(2), b"six");
        assert_eq!(array.value(3), b"ten");
        assert!(!array.is_null(0));
        assert!(!array.is_null(1));
        assert!(!array.is_null(2));
        assert!(!array.is_null(3));
    }

    #[test]
    #[should_panic(expected = "Nested array size mismatch: one is 3, and the other is 5")]
    fn test_fixed_size_binary_array_from_vec_incorrect_length() {
        let values = vec!["one".as_bytes(), b"two", b"three", b"four"];
        let _ = FixedSizeBinaryArray::from(values);
    }

    #[test]
    fn test_fixed_size_binary_array_from_opt_vec() {
        let values = vec![
            Some("one".as_bytes()),
            Some(b"two"),
            None,
            Some(b"six"),
            Some(b"ten"),
        ];
        let array = FixedSizeBinaryArray::from(values);
        assert_eq!(array.len(), 5);
        assert_eq!(array.value(0), b"one");
        assert_eq!(array.value(1), b"two");
        assert_eq!(array.value(3), b"six");
        assert_eq!(array.value(4), b"ten");
        assert!(!array.is_null(0));
        assert!(!array.is_null(1));
        assert!(array.is_null(2));
        assert!(!array.is_null(3));
        assert!(!array.is_null(4));
    }

    #[test]
    #[should_panic(expected = "Nested array size mismatch: one is 3, and the other is 5")]
    fn test_fixed_size_binary_array_from_opt_vec_incorrect_length() {
        let values = vec![
            Some("one".as_bytes()),
            Some(b"two"),
            None,
            Some(b"three"),
            Some(b"four"),
        ];
        let _ = FixedSizeBinaryArray::from(values);
    }

    #[test]
    fn fixed_size_binary_array_all_null() {
        let data = vec![None] as Vec<Option<String>>;
        let array =
            FixedSizeBinaryArray::try_from_sparse_iter_with_size(data.into_iter(), 0).unwrap();
        array
            .into_data()
            .validate_full()
            .expect("All null array has valid array data");
    }

    #[test]
    // Test for https://github.com/apache/arrow-rs/issues/1390
    fn fixed_size_binary_array_all_null_in_batch_with_schema() {
        let schema = Schema::new(vec![Field::new("a", DataType::FixedSizeBinary(2), true)]);

        let none_option: Option<[u8; 2]> = None;
        let item = FixedSizeBinaryArray::try_from_sparse_iter_with_size(
            vec![none_option, none_option, none_option].into_iter(),
            2,
        )
        .unwrap();

        // Should not panic
        RecordBatch::try_new(Arc::new(schema), vec![Arc::new(item)]).unwrap();
    }

    #[test]
    #[should_panic(
        expected = "Trying to access an element at index 4 from a FixedSizeBinaryArray of length 3"
    )]
    fn test_fixed_size_binary_array_get_value_index_out_of_bound() {
        let values = vec![Some("one".as_bytes()), Some(b"two"), None];
        let array = FixedSizeBinaryArray::from(values);

        array.value(4);
    }

    #[test]
    fn test_constructors() {
        let buffer = Buffer::from_vec(vec![0_u8; 10]);
        let a = FixedSizeBinaryArray::new(2, buffer.clone(), None);
        assert_eq!(a.len(), 5);

        let nulls = NullBuffer::new_null(5);
        FixedSizeBinaryArray::new(2, buffer.clone(), Some(nulls));

        let a = FixedSizeBinaryArray::new(3, buffer.clone(), None);
        assert_eq!(a.len(), 3);

        let nulls = NullBuffer::new_null(3);
        FixedSizeBinaryArray::new(3, buffer.clone(), Some(nulls));

        let err = FixedSizeBinaryArray::try_new(-1, buffer.clone(), None).unwrap_err();

        assert_eq!(
            err.to_string(),
            "Invalid argument error: Size cannot be negative, got -1"
        );

        let nulls = NullBuffer::new_null(3);
        let err = FixedSizeBinaryArray::try_new(2, buffer, Some(nulls)).unwrap_err();
        assert_eq!(err.to_string(), "Invalid argument error: Incorrect length of null buffer for FixedSizeBinaryArray, expected 5 got 3");
    }
}