arrow_array/array/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! The concrete array definitions
mod binary_array;
use crate::types::*;
use arrow_buffer::{ArrowNativeType, NullBuffer, OffsetBuffer, ScalarBuffer};
use arrow_data::ArrayData;
use arrow_schema::{DataType, IntervalUnit, TimeUnit};
use std::any::Any;
use std::sync::Arc;
pub use binary_array::*;
mod boolean_array;
pub use boolean_array::*;
mod byte_array;
pub use byte_array::*;
mod dictionary_array;
pub use dictionary_array::*;
mod fixed_size_binary_array;
pub use fixed_size_binary_array::*;
mod fixed_size_list_array;
pub use fixed_size_list_array::*;
mod list_array;
pub use list_array::*;
mod map_array;
pub use map_array::*;
mod null_array;
pub use null_array::*;
mod primitive_array;
pub use primitive_array::*;
mod string_array;
pub use string_array::*;
mod struct_array;
pub use struct_array::*;
mod union_array;
pub use union_array::*;
mod run_array;
pub use run_array::*;
mod byte_view_array;
pub use byte_view_array::*;
mod list_view_array;
pub use list_view_array::*;
use crate::iterator::ArrayIter;
/// An array in the [arrow columnar format](https://arrow.apache.org/docs/format/Columnar.html)
pub trait Array: std::fmt::Debug + Send + Sync {
/// Returns the array as [`Any`] so that it can be
/// downcasted to a specific implementation.
///
/// # Example:
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::{Int32Array, RecordBatch};
/// # use arrow_schema::{Schema, Field, DataType, ArrowError};
///
/// let id = Int32Array::from(vec![1, 2, 3, 4, 5]);
/// let batch = RecordBatch::try_new(
/// Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)])),
/// vec![Arc::new(id)]
/// ).unwrap();
///
/// let int32array = batch
/// .column(0)
/// .as_any()
/// .downcast_ref::<Int32Array>()
/// .expect("Failed to downcast");
/// ```
fn as_any(&self) -> &dyn Any;
/// Returns the underlying data of this array
fn to_data(&self) -> ArrayData;
/// Returns the underlying data of this array
///
/// Unlike [`Array::to_data`] this consumes self, allowing it avoid unnecessary clones
fn into_data(self) -> ArrayData;
/// Returns a reference to the [`DataType`] of this array.
///
/// # Example:
///
/// ```
/// use arrow_schema::DataType;
/// use arrow_array::{Array, Int32Array};
///
/// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(*array.data_type(), DataType::Int32);
/// ```
fn data_type(&self) -> &DataType;
/// Returns a zero-copy slice of this array with the indicated offset and length.
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
/// // Make slice over the values [2, 3, 4]
/// let array_slice = array.slice(1, 3);
///
/// assert_eq!(&array_slice, &Int32Array::from(vec![2, 3, 4]));
/// ```
fn slice(&self, offset: usize, length: usize) -> ArrayRef;
/// Returns the length (i.e., number of elements) of this array.
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(array.len(), 5);
/// ```
fn len(&self) -> usize;
/// Returns whether this array is empty.
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// let array = Int32Array::from(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(array.is_empty(), false);
/// ```
fn is_empty(&self) -> bool;
/// Returns the offset into the underlying data used by this array(-slice).
/// Note that the underlying data can be shared by many arrays.
/// This defaults to `0`.
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, BooleanArray};
///
/// let array = BooleanArray::from(vec![false, false, true, true]);
/// let array_slice = array.slice(1, 3);
///
/// assert_eq!(array.offset(), 0);
/// assert_eq!(array_slice.offset(), 1);
/// ```
fn offset(&self) -> usize;
/// Returns the null buffer of this array if any.
///
/// The null buffer contains the "physical" nulls of an array, that is how
/// the nulls are represented in the underlying arrow format.
///
/// The physical representation is efficient, but is sometimes non intuitive
/// for certain array types such as those with nullable child arrays like
/// [`DictionaryArray::values`], [`RunArray::values`] or [`UnionArray`], or without a
/// null buffer, such as [`NullArray`].
///
/// To determine if each element of such an array is "logically" null,
/// use the slower [`Array::logical_nulls`] to obtain a computed mask.
fn nulls(&self) -> Option<&NullBuffer>;
/// Returns a potentially computed [`NullBuffer`] that represents the logical
/// null values of this array, if any.
///
/// Logical nulls represent the values that are null in the array,
/// regardless of the underlying physical arrow representation.
///
/// For most array types, this is equivalent to the "physical" nulls
/// returned by [`Array::nulls`]. It is different for the following cases, because which
/// elements are null is not encoded in a single null buffer:
///
/// * [`DictionaryArray`] where [`DictionaryArray::values`] contains nulls
/// * [`RunArray`] where [`RunArray::values`] contains nulls
/// * [`NullArray`] where all indices are nulls
/// * [`UnionArray`] where the selected values contains nulls
///
/// In these cases a logical [`NullBuffer`] will be computed, encoding the
/// logical nullability of these arrays, beyond what is encoded in
/// [`Array::nulls`]
fn logical_nulls(&self) -> Option<NullBuffer> {
self.nulls().cloned()
}
/// Returns whether the element at `index` is null according to [`Array::nulls`]
///
/// Note: For performance reasons, this method returns nullability solely as determined by the
/// null buffer. This difference can lead to surprising results, for example, [`NullArray::is_null`] always
/// returns `false` as the array lacks a null buffer. Similarly [`DictionaryArray`], [`RunArray`] and [`UnionArray`] may
/// encode nullability in their children. See [`Self::logical_nulls`] for more information.
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array, NullArray};
///
/// let array = Int32Array::from(vec![Some(1), None]);
/// assert_eq!(array.is_null(0), false);
/// assert_eq!(array.is_null(1), true);
///
/// // NullArrays do not have a null buffer, and therefore always
/// // return false for is_null.
/// let array = NullArray::new(1);
/// assert_eq!(array.is_null(0), false);
/// ```
fn is_null(&self, index: usize) -> bool {
self.nulls().map(|n| n.is_null(index)).unwrap_or_default()
}
/// Returns whether the element at `index` is *not* null, the
/// opposite of [`Self::is_null`].
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// let array = Int32Array::from(vec![Some(1), None]);
///
/// assert_eq!(array.is_valid(0), true);
/// assert_eq!(array.is_valid(1), false);
/// ```
fn is_valid(&self, index: usize) -> bool {
!self.is_null(index)
}
/// Returns the total number of physical null values in this array.
///
/// Note: this method returns the physical null count, i.e. that encoded in [`Array::nulls`],
/// see [`Array::logical_nulls`] for logical nullability
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// // Construct an array with values [1, NULL, NULL]
/// let array = Int32Array::from(vec![Some(1), None, None]);
///
/// assert_eq!(array.null_count(), 2);
/// ```
fn null_count(&self) -> usize {
self.nulls().map(|n| n.null_count()).unwrap_or_default()
}
/// Returns the total number of logical null values in this array.
///
/// Note: this method returns the logical null count, i.e. that encoded in
/// [`Array::logical_nulls`]. In general this is equivalent to [`Array::null_count`] but may differ in the
/// presence of logical nullability, see [`Array::nulls`] and [`Array::logical_nulls`].
///
/// # Example:
///
/// ```
/// use arrow_array::{Array, Int32Array};
///
/// // Construct an array with values [1, NULL, NULL]
/// let array = Int32Array::from(vec![Some(1), None, None]);
///
/// assert_eq!(array.logical_null_count(), 2);
/// ```
fn logical_null_count(&self) -> usize {
self.logical_nulls()
.map(|n| n.null_count())
.unwrap_or_default()
}
/// Returns `false` if the array is guaranteed to not contain any logical nulls
///
/// This is generally equivalent to `Array::logical_null_count() != 0` unless determining
/// the logical nulls is expensive, in which case this method can return true even for an
/// array without nulls.
///
/// This is also generally equivalent to `Array::null_count() != 0` but may differ in the
/// presence of logical nullability, see [`Array::logical_null_count`] and [`Array::null_count`].
///
/// Implementations will return `true` unless they can cheaply prove no logical nulls
/// are present. For example a [`DictionaryArray`] with nullable values will still return true,
/// even if the nulls present in [`DictionaryArray::values`] are not referenced by any key,
/// and therefore would not appear in [`Array::logical_nulls`].
fn is_nullable(&self) -> bool {
// TODO this is not necessarily perfect default implementation, since null_count() and logical_null_count() are not always equivalent
self.null_count() != 0
}
/// Returns the total number of bytes of memory pointed to by this array.
/// The buffers store bytes in the Arrow memory format, and include the data as well as the validity map.
/// Note that this does not always correspond to the exact memory usage of an array,
/// since multiple arrays can share the same buffers or slices thereof.
fn get_buffer_memory_size(&self) -> usize;
/// Returns the total number of bytes of memory occupied physically by this array.
/// This value will always be greater than returned by `get_buffer_memory_size()` and
/// includes the overhead of the data structures that contain the pointers to the various buffers.
fn get_array_memory_size(&self) -> usize;
}
/// A reference-counted reference to a generic `Array`
pub type ArrayRef = Arc<dyn Array>;
/// Ergonomics: Allow use of an ArrayRef as an `&dyn Array`
impl Array for ArrayRef {
fn as_any(&self) -> &dyn Any {
self.as_ref().as_any()
}
fn to_data(&self) -> ArrayData {
self.as_ref().to_data()
}
fn into_data(self) -> ArrayData {
self.to_data()
}
fn data_type(&self) -> &DataType {
self.as_ref().data_type()
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
self.as_ref().slice(offset, length)
}
fn len(&self) -> usize {
self.as_ref().len()
}
fn is_empty(&self) -> bool {
self.as_ref().is_empty()
}
fn offset(&self) -> usize {
self.as_ref().offset()
}
fn nulls(&self) -> Option<&NullBuffer> {
self.as_ref().nulls()
}
fn logical_nulls(&self) -> Option<NullBuffer> {
self.as_ref().logical_nulls()
}
fn is_null(&self, index: usize) -> bool {
self.as_ref().is_null(index)
}
fn is_valid(&self, index: usize) -> bool {
self.as_ref().is_valid(index)
}
fn null_count(&self) -> usize {
self.as_ref().null_count()
}
fn logical_null_count(&self) -> usize {
self.as_ref().logical_null_count()
}
fn is_nullable(&self) -> bool {
self.as_ref().is_nullable()
}
fn get_buffer_memory_size(&self) -> usize {
self.as_ref().get_buffer_memory_size()
}
fn get_array_memory_size(&self) -> usize {
self.as_ref().get_array_memory_size()
}
}
impl<T: Array> Array for &T {
fn as_any(&self) -> &dyn Any {
T::as_any(self)
}
fn to_data(&self) -> ArrayData {
T::to_data(self)
}
fn into_data(self) -> ArrayData {
self.to_data()
}
fn data_type(&self) -> &DataType {
T::data_type(self)
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
T::slice(self, offset, length)
}
fn len(&self) -> usize {
T::len(self)
}
fn is_empty(&self) -> bool {
T::is_empty(self)
}
fn offset(&self) -> usize {
T::offset(self)
}
fn nulls(&self) -> Option<&NullBuffer> {
T::nulls(self)
}
fn logical_nulls(&self) -> Option<NullBuffer> {
T::logical_nulls(self)
}
fn is_null(&self, index: usize) -> bool {
T::is_null(self, index)
}
fn is_valid(&self, index: usize) -> bool {
T::is_valid(self, index)
}
fn null_count(&self) -> usize {
T::null_count(self)
}
fn logical_null_count(&self) -> usize {
T::logical_null_count(self)
}
fn is_nullable(&self) -> bool {
T::is_nullable(self)
}
fn get_buffer_memory_size(&self) -> usize {
T::get_buffer_memory_size(self)
}
fn get_array_memory_size(&self) -> usize {
T::get_array_memory_size(self)
}
}
/// A generic trait for accessing the values of an [`Array`]
///
/// This trait helps write specialized implementations of algorithms for
/// different array types. Specialized implementations allow the compiler
/// to optimize the code for the specific array type, which can lead to
/// significant performance improvements.
///
/// # Example
/// For example, to write three different implementations of a string length function
/// for [`StringArray`], [`LargeStringArray`], and [`StringViewArray`], you can write
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::{ArrayAccessor, ArrayRef, ArrowPrimitiveType, OffsetSizeTrait, PrimitiveArray};
/// # use arrow_buffer::ArrowNativeType;
/// # use arrow_array::cast::AsArray;
/// # use arrow_array::iterator::ArrayIter;
/// # use arrow_array::types::{Int32Type, Int64Type};
/// # use arrow_schema::{ArrowError, DataType};
/// /// This function takes a dynamically typed `ArrayRef` and calls
/// /// calls one of three specialized implementations
/// fn character_length(arg: ArrayRef) -> Result<ArrayRef, ArrowError> {
/// match arg.data_type() {
/// DataType::Utf8 => {
/// // downcast the ArrayRef to a StringArray and call the specialized implementation
/// let string_array = arg.as_string::<i32>();
/// character_length_general::<Int32Type, _>(string_array)
/// }
/// DataType::LargeUtf8 => {
/// character_length_general::<Int64Type, _>(arg.as_string::<i64>())
/// }
/// DataType::Utf8View => {
/// character_length_general::<Int32Type, _>(arg.as_string_view())
/// }
/// _ => Err(ArrowError::InvalidArgumentError("Unsupported data type".to_string())),
/// }
/// }
///
/// /// A generic implementation of the character_length function
/// /// This function uses the `ArrayAccessor` trait to access the values of the array
/// /// so the compiler can generated specialized implementations for different array types
/// ///
/// /// Returns a new array with the length of each string in the input array
/// /// * Int32Array for Utf8 and Utf8View arrays (lengths are 32-bit integers)
/// /// * Int64Array for LargeUtf8 arrays (lengths are 64-bit integers)
/// ///
/// /// This is generic on the type of the primitive array (different string arrays have
/// /// different lengths) and the type of the array accessor (different string arrays
/// /// have different ways to access the values)
/// fn character_length_general<'a, T: ArrowPrimitiveType, V: ArrayAccessor<Item = &'a str>>(
/// array: V,
/// ) -> Result<ArrayRef, ArrowError>
/// where
/// T::Native: OffsetSizeTrait,
/// {
/// let iter = ArrayIter::new(array);
/// // Create a Int32Array / Int64Array with the length of each string
/// let result = iter
/// .map(|string| {
/// string.map(|string: &str| {
/// T::Native::from_usize(string.chars().count())
/// .expect("should not fail as string.chars will always return integer")
/// })
/// })
/// .collect::<PrimitiveArray<T>>();
///
/// /// Return the result as a new ArrayRef (dynamically typed)
/// Ok(Arc::new(result) as ArrayRef)
/// }
/// ```
///
/// # Validity
///
/// An [`ArrayAccessor`] must always return a well-defined value for an index
/// that is within the bounds `0..Array::len`, including for null indexes where
/// [`Array::is_null`] is true.
///
/// The value at null indexes is unspecified, and implementations must not rely
/// on a specific value such as [`Default::default`] being returned, however, it
/// must not be undefined
pub trait ArrayAccessor: Array {
/// The Arrow type of the element being accessed.
type Item: Send + Sync;
/// Returns the element at index `i`
/// # Panics
/// Panics if the value is outside the bounds of the array
fn value(&self, index: usize) -> Self::Item;
/// Returns the element at index `i`
/// # Safety
/// Caller is responsible for ensuring that the index is within the bounds of the array
unsafe fn value_unchecked(&self, index: usize) -> Self::Item;
}
/// A trait for Arrow String Arrays, currently three types are supported:
/// - `StringArray`
/// - `LargeStringArray`
/// - `StringViewArray`
///
/// This trait helps to abstract over the different types of string arrays
/// so that we don't need to duplicate the implementation for each type.
pub trait StringArrayType<'a>: ArrayAccessor<Item = &'a str> + Sized {
/// Returns true if all data within this string array is ASCII
fn is_ascii(&self) -> bool;
/// Constructs a new iterator
fn iter(&self) -> ArrayIter<Self>;
}
impl<'a, O: OffsetSizeTrait> StringArrayType<'a> for &'a GenericStringArray<O> {
fn is_ascii(&self) -> bool {
GenericStringArray::<O>::is_ascii(self)
}
fn iter(&self) -> ArrayIter<Self> {
GenericStringArray::<O>::iter(self)
}
}
impl<'a> StringArrayType<'a> for &'a StringViewArray {
fn is_ascii(&self) -> bool {
StringViewArray::is_ascii(self)
}
fn iter(&self) -> ArrayIter<Self> {
StringViewArray::iter(self)
}
}
impl PartialEq for dyn Array + '_ {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<T: Array> PartialEq<T> for dyn Array + '_ {
fn eq(&self, other: &T) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for NullArray {
fn eq(&self, other: &NullArray) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<T: ArrowPrimitiveType> PartialEq for PrimitiveArray<T> {
fn eq(&self, other: &PrimitiveArray<T>) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<K: ArrowDictionaryKeyType> PartialEq for DictionaryArray<K> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for BooleanArray {
fn eq(&self, other: &BooleanArray) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericStringArray<OffsetSize> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericBinaryArray<OffsetSize> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for FixedSizeBinaryArray {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericListArray<OffsetSize> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<OffsetSize: OffsetSizeTrait> PartialEq for GenericListViewArray<OffsetSize> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for MapArray {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for FixedSizeListArray {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl PartialEq for StructArray {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
impl<T: ByteViewType + ?Sized> PartialEq for GenericByteViewArray<T> {
fn eq(&self, other: &Self) -> bool {
self.to_data().eq(&other.to_data())
}
}
/// Constructs an array using the input `data`.
/// Returns a reference-counted `Array` instance.
pub fn make_array(data: ArrayData) -> ArrayRef {
match data.data_type() {
DataType::Boolean => Arc::new(BooleanArray::from(data)) as ArrayRef,
DataType::Int8 => Arc::new(Int8Array::from(data)) as ArrayRef,
DataType::Int16 => Arc::new(Int16Array::from(data)) as ArrayRef,
DataType::Int32 => Arc::new(Int32Array::from(data)) as ArrayRef,
DataType::Int64 => Arc::new(Int64Array::from(data)) as ArrayRef,
DataType::UInt8 => Arc::new(UInt8Array::from(data)) as ArrayRef,
DataType::UInt16 => Arc::new(UInt16Array::from(data)) as ArrayRef,
DataType::UInt32 => Arc::new(UInt32Array::from(data)) as ArrayRef,
DataType::UInt64 => Arc::new(UInt64Array::from(data)) as ArrayRef,
DataType::Float16 => Arc::new(Float16Array::from(data)) as ArrayRef,
DataType::Float32 => Arc::new(Float32Array::from(data)) as ArrayRef,
DataType::Float64 => Arc::new(Float64Array::from(data)) as ArrayRef,
DataType::Date32 => Arc::new(Date32Array::from(data)) as ArrayRef,
DataType::Date64 => Arc::new(Date64Array::from(data)) as ArrayRef,
DataType::Time32(TimeUnit::Second) => Arc::new(Time32SecondArray::from(data)) as ArrayRef,
DataType::Time32(TimeUnit::Millisecond) => {
Arc::new(Time32MillisecondArray::from(data)) as ArrayRef
}
DataType::Time64(TimeUnit::Microsecond) => {
Arc::new(Time64MicrosecondArray::from(data)) as ArrayRef
}
DataType::Time64(TimeUnit::Nanosecond) => {
Arc::new(Time64NanosecondArray::from(data)) as ArrayRef
}
DataType::Timestamp(TimeUnit::Second, _) => {
Arc::new(TimestampSecondArray::from(data)) as ArrayRef
}
DataType::Timestamp(TimeUnit::Millisecond, _) => {
Arc::new(TimestampMillisecondArray::from(data)) as ArrayRef
}
DataType::Timestamp(TimeUnit::Microsecond, _) => {
Arc::new(TimestampMicrosecondArray::from(data)) as ArrayRef
}
DataType::Timestamp(TimeUnit::Nanosecond, _) => {
Arc::new(TimestampNanosecondArray::from(data)) as ArrayRef
}
DataType::Interval(IntervalUnit::YearMonth) => {
Arc::new(IntervalYearMonthArray::from(data)) as ArrayRef
}
DataType::Interval(IntervalUnit::DayTime) => {
Arc::new(IntervalDayTimeArray::from(data)) as ArrayRef
}
DataType::Interval(IntervalUnit::MonthDayNano) => {
Arc::new(IntervalMonthDayNanoArray::from(data)) as ArrayRef
}
DataType::Duration(TimeUnit::Second) => {
Arc::new(DurationSecondArray::from(data)) as ArrayRef
}
DataType::Duration(TimeUnit::Millisecond) => {
Arc::new(DurationMillisecondArray::from(data)) as ArrayRef
}
DataType::Duration(TimeUnit::Microsecond) => {
Arc::new(DurationMicrosecondArray::from(data)) as ArrayRef
}
DataType::Duration(TimeUnit::Nanosecond) => {
Arc::new(DurationNanosecondArray::from(data)) as ArrayRef
}
DataType::Binary => Arc::new(BinaryArray::from(data)) as ArrayRef,
DataType::LargeBinary => Arc::new(LargeBinaryArray::from(data)) as ArrayRef,
DataType::FixedSizeBinary(_) => Arc::new(FixedSizeBinaryArray::from(data)) as ArrayRef,
DataType::BinaryView => Arc::new(BinaryViewArray::from(data)) as ArrayRef,
DataType::Utf8 => Arc::new(StringArray::from(data)) as ArrayRef,
DataType::LargeUtf8 => Arc::new(LargeStringArray::from(data)) as ArrayRef,
DataType::Utf8View => Arc::new(StringViewArray::from(data)) as ArrayRef,
DataType::List(_) => Arc::new(ListArray::from(data)) as ArrayRef,
DataType::LargeList(_) => Arc::new(LargeListArray::from(data)) as ArrayRef,
DataType::ListView(_) => Arc::new(ListViewArray::from(data)) as ArrayRef,
DataType::LargeListView(_) => Arc::new(LargeListViewArray::from(data)) as ArrayRef,
DataType::Struct(_) => Arc::new(StructArray::from(data)) as ArrayRef,
DataType::Map(_, _) => Arc::new(MapArray::from(data)) as ArrayRef,
DataType::Union(_, _) => Arc::new(UnionArray::from(data)) as ArrayRef,
DataType::FixedSizeList(_, _) => Arc::new(FixedSizeListArray::from(data)) as ArrayRef,
DataType::Dictionary(ref key_type, _) => match key_type.as_ref() {
DataType::Int8 => Arc::new(DictionaryArray::<Int8Type>::from(data)) as ArrayRef,
DataType::Int16 => Arc::new(DictionaryArray::<Int16Type>::from(data)) as ArrayRef,
DataType::Int32 => Arc::new(DictionaryArray::<Int32Type>::from(data)) as ArrayRef,
DataType::Int64 => Arc::new(DictionaryArray::<Int64Type>::from(data)) as ArrayRef,
DataType::UInt8 => Arc::new(DictionaryArray::<UInt8Type>::from(data)) as ArrayRef,
DataType::UInt16 => Arc::new(DictionaryArray::<UInt16Type>::from(data)) as ArrayRef,
DataType::UInt32 => Arc::new(DictionaryArray::<UInt32Type>::from(data)) as ArrayRef,
DataType::UInt64 => Arc::new(DictionaryArray::<UInt64Type>::from(data)) as ArrayRef,
dt => panic!("Unexpected dictionary key type {dt:?}"),
},
DataType::RunEndEncoded(ref run_ends_type, _) => match run_ends_type.data_type() {
DataType::Int16 => Arc::new(RunArray::<Int16Type>::from(data)) as ArrayRef,
DataType::Int32 => Arc::new(RunArray::<Int32Type>::from(data)) as ArrayRef,
DataType::Int64 => Arc::new(RunArray::<Int64Type>::from(data)) as ArrayRef,
dt => panic!("Unexpected data type for run_ends array {dt:?}"),
},
DataType::Null => Arc::new(NullArray::from(data)) as ArrayRef,
DataType::Decimal128(_, _) => Arc::new(Decimal128Array::from(data)) as ArrayRef,
DataType::Decimal256(_, _) => Arc::new(Decimal256Array::from(data)) as ArrayRef,
dt => panic!("Unexpected data type {dt:?}"),
}
}
/// Creates a new empty array
///
/// ```
/// use std::sync::Arc;
/// use arrow_schema::DataType;
/// use arrow_array::{ArrayRef, Int32Array, new_empty_array};
///
/// let empty_array = new_empty_array(&DataType::Int32);
/// let array: ArrayRef = Arc::new(Int32Array::from(vec![] as Vec<i32>));
///
/// assert_eq!(&array, &empty_array);
/// ```
pub fn new_empty_array(data_type: &DataType) -> ArrayRef {
let data = ArrayData::new_empty(data_type);
make_array(data)
}
/// Creates a new array of `data_type` of length `length` filled
/// entirely of `NULL` values
///
/// ```
/// use std::sync::Arc;
/// use arrow_schema::DataType;
/// use arrow_array::{ArrayRef, Int32Array, new_null_array};
///
/// let null_array = new_null_array(&DataType::Int32, 3);
/// let array: ArrayRef = Arc::new(Int32Array::from(vec![None, None, None]));
///
/// assert_eq!(&array, &null_array);
/// ```
pub fn new_null_array(data_type: &DataType, length: usize) -> ArrayRef {
make_array(ArrayData::new_null(data_type, length))
}
/// Helper function that gets offset from an [`ArrayData`]
///
/// # Safety
///
/// - ArrayData must contain a valid [`OffsetBuffer`] as its first buffer
unsafe fn get_offsets<O: ArrowNativeType>(data: &ArrayData) -> OffsetBuffer<O> {
match data.is_empty() && data.buffers()[0].is_empty() {
true => OffsetBuffer::new_empty(),
false => {
let buffer =
ScalarBuffer::new(data.buffers()[0].clone(), data.offset(), data.len() + 1);
// Safety:
// ArrayData is valid
unsafe { OffsetBuffer::new_unchecked(buffer) }
}
}
}
/// Helper function for printing potentially long arrays.
fn print_long_array<A, F>(array: &A, f: &mut std::fmt::Formatter, print_item: F) -> std::fmt::Result
where
A: Array,
F: Fn(&A, usize, &mut std::fmt::Formatter) -> std::fmt::Result,
{
let head = std::cmp::min(10, array.len());
for i in 0..head {
if array.is_null(i) {
writeln!(f, " null,")?;
} else {
write!(f, " ")?;
print_item(array, i, f)?;
writeln!(f, ",")?;
}
}
if array.len() > 10 {
if array.len() > 20 {
writeln!(f, " ...{} elements...,", array.len() - 20)?;
}
let tail = std::cmp::max(head, array.len() - 10);
for i in tail..array.len() {
if array.is_null(i) {
writeln!(f, " null,")?;
} else {
write!(f, " ")?;
print_item(array, i, f)?;
writeln!(f, ",")?;
}
}
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cast::{as_union_array, downcast_array};
use crate::downcast_run_array;
use arrow_buffer::MutableBuffer;
use arrow_schema::{Field, Fields, UnionFields, UnionMode};
#[test]
fn test_empty_primitive() {
let array = new_empty_array(&DataType::Int32);
let a = array.as_any().downcast_ref::<Int32Array>().unwrap();
assert_eq!(a.len(), 0);
let expected: &[i32] = &[];
assert_eq!(a.values(), expected);
}
#[test]
fn test_empty_variable_sized() {
let array = new_empty_array(&DataType::Utf8);
let a = array.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(a.len(), 0);
assert_eq!(a.value_offsets()[0], 0i32);
}
#[test]
fn test_empty_list_primitive() {
let data_type = DataType::List(Arc::new(Field::new("item", DataType::Int32, false)));
let array = new_empty_array(&data_type);
let a = array.as_any().downcast_ref::<ListArray>().unwrap();
assert_eq!(a.len(), 0);
assert_eq!(a.value_offsets()[0], 0i32);
}
#[test]
fn test_null_boolean() {
let array = new_null_array(&DataType::Boolean, 9);
let a = array.as_any().downcast_ref::<BooleanArray>().unwrap();
assert_eq!(a.len(), 9);
for i in 0..9 {
assert!(a.is_null(i));
}
}
#[test]
fn test_null_primitive() {
let array = new_null_array(&DataType::Int32, 9);
let a = array.as_any().downcast_ref::<Int32Array>().unwrap();
assert_eq!(a.len(), 9);
for i in 0..9 {
assert!(a.is_null(i));
}
}
#[test]
fn test_null_struct() {
// It is possible to create a null struct containing a non-nullable child
// see https://github.com/apache/arrow-rs/pull/3244 for details
let struct_type = DataType::Struct(vec![Field::new("data", DataType::Int64, false)].into());
let array = new_null_array(&struct_type, 9);
let a = array.as_any().downcast_ref::<StructArray>().unwrap();
assert_eq!(a.len(), 9);
assert_eq!(a.column(0).len(), 9);
for i in 0..9 {
assert!(a.is_null(i));
}
// Make sure we can slice the resulting array.
a.slice(0, 5);
}
#[test]
fn test_null_variable_sized() {
let array = new_null_array(&DataType::Utf8, 9);
let a = array.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(a.len(), 9);
assert_eq!(a.value_offsets()[9], 0i32);
for i in 0..9 {
assert!(a.is_null(i));
}
}
#[test]
fn test_null_list_primitive() {
let data_type = DataType::List(Arc::new(Field::new("item", DataType::Int32, true)));
let array = new_null_array(&data_type, 9);
let a = array.as_any().downcast_ref::<ListArray>().unwrap();
assert_eq!(a.len(), 9);
assert_eq!(a.value_offsets()[9], 0i32);
for i in 0..9 {
assert!(a.is_null(i));
}
}
#[test]
fn test_null_map() {
let data_type = DataType::Map(
Arc::new(Field::new(
"entry",
DataType::Struct(Fields::from(vec![
Field::new("key", DataType::Utf8, false),
Field::new("value", DataType::Int32, true),
])),
false,
)),
false,
);
let array = new_null_array(&data_type, 9);
let a = array.as_any().downcast_ref::<MapArray>().unwrap();
assert_eq!(a.len(), 9);
assert_eq!(a.value_offsets()[9], 0i32);
for i in 0..9 {
assert!(a.is_null(i));
}
}
#[test]
fn test_null_dictionary() {
let values =
vec![None, None, None, None, None, None, None, None, None] as Vec<Option<&str>>;
let array: DictionaryArray<Int8Type> = values.into_iter().collect();
let array = Arc::new(array) as ArrayRef;
let null_array = new_null_array(array.data_type(), 9);
assert_eq!(&array, &null_array);
assert_eq!(
array.to_data().buffers()[0].len(),
null_array.to_data().buffers()[0].len()
);
}
#[test]
fn test_null_union() {
for mode in [UnionMode::Sparse, UnionMode::Dense] {
let data_type = DataType::Union(
UnionFields::new(
vec![2, 1],
vec![
Field::new("foo", DataType::Int32, true),
Field::new("bar", DataType::Int64, true),
],
),
mode,
);
let array = new_null_array(&data_type, 4);
let array = as_union_array(array.as_ref());
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 4);
for i in 0..4 {
let a = array.value(i);
assert_eq!(a.len(), 1);
assert_eq!(a.null_count(), 1);
assert_eq!(a.logical_null_count(), 1);
assert!(a.is_null(0))
}
array.to_data().validate_full().unwrap();
}
}
#[test]
#[allow(unused_parens)]
fn test_null_runs() {
for r in [DataType::Int16, DataType::Int32, DataType::Int64] {
let data_type = DataType::RunEndEncoded(
Arc::new(Field::new("run_ends", r, false)),
Arc::new(Field::new("values", DataType::Utf8, true)),
);
let array = new_null_array(&data_type, 4);
let array = array.as_ref();
downcast_run_array! {
array => {
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 4);
assert_eq!(array.values().len(), 1);
assert_eq!(array.values().null_count(), 1);
assert_eq!(array.run_ends().len(), 4);
assert_eq!(array.run_ends().values(), &[4]);
let idx = array.get_physical_indices(&[0, 1, 2, 3]).unwrap();
assert_eq!(idx, &[0,0,0,0]);
}
d => unreachable!("{d}")
}
}
}
#[test]
fn test_null_fixed_size_binary() {
for size in [1, 2, 7] {
let array = new_null_array(&DataType::FixedSizeBinary(size), 6);
let array = array
.as_ref()
.as_any()
.downcast_ref::<FixedSizeBinaryArray>()
.unwrap();
assert_eq!(array.len(), 6);
assert_eq!(array.null_count(), 6);
assert_eq!(array.logical_null_count(), 6);
array.iter().for_each(|x| assert!(x.is_none()));
}
}
#[test]
fn test_memory_size_null() {
let null_arr = NullArray::new(32);
assert_eq!(0, null_arr.get_buffer_memory_size());
assert_eq!(
std::mem::size_of::<usize>(),
null_arr.get_array_memory_size()
);
}
#[test]
fn test_memory_size_primitive() {
let arr = PrimitiveArray::<Int64Type>::from_iter_values(0..128);
let empty = PrimitiveArray::<Int64Type>::from(ArrayData::new_empty(arr.data_type()));
// subtract empty array to avoid magic numbers for the size of additional fields
assert_eq!(
arr.get_array_memory_size() - empty.get_array_memory_size(),
128 * std::mem::size_of::<i64>()
);
}
#[test]
fn test_memory_size_primitive_sliced() {
let arr = PrimitiveArray::<Int64Type>::from_iter_values(0..128);
let slice1 = arr.slice(0, 64);
let slice2 = arr.slice(64, 64);
// both slices report the full buffer memory usage, even though the buffers are shared
assert_eq!(slice1.get_array_memory_size(), arr.get_array_memory_size());
assert_eq!(slice2.get_array_memory_size(), arr.get_array_memory_size());
}
#[test]
fn test_memory_size_primitive_nullable() {
let arr: PrimitiveArray<Int64Type> = (0..128)
.map(|i| if i % 20 == 0 { Some(i) } else { None })
.collect();
let empty_with_bitmap = PrimitiveArray::<Int64Type>::from(
ArrayData::builder(arr.data_type().clone())
.add_buffer(MutableBuffer::new(0).into())
.null_bit_buffer(Some(MutableBuffer::new_null(0).into()))
.build()
.unwrap(),
);
// expected size is the size of the PrimitiveArray struct,
// which includes the optional validity buffer
// plus one buffer on the heap
assert_eq!(
std::mem::size_of::<PrimitiveArray<Int64Type>>(),
empty_with_bitmap.get_array_memory_size()
);
// subtract empty array to avoid magic numbers for the size of additional fields
// the size of the validity bitmap is rounded up to 64 bytes
assert_eq!(
arr.get_array_memory_size() - empty_with_bitmap.get_array_memory_size(),
128 * std::mem::size_of::<i64>() + 64
);
}
#[test]
fn test_memory_size_dictionary() {
let values = PrimitiveArray::<Int64Type>::from_iter_values(0..16);
let keys = PrimitiveArray::<Int16Type>::from_iter_values(
(0..256).map(|i| (i % values.len()) as i16),
);
let dict_data_type = DataType::Dictionary(
Box::new(keys.data_type().clone()),
Box::new(values.data_type().clone()),
);
let dict_data = keys
.into_data()
.into_builder()
.data_type(dict_data_type)
.child_data(vec![values.into_data()])
.build()
.unwrap();
let empty_data = ArrayData::new_empty(&DataType::Dictionary(
Box::new(DataType::Int16),
Box::new(DataType::Int64),
));
let arr = DictionaryArray::<Int16Type>::from(dict_data);
let empty = DictionaryArray::<Int16Type>::from(empty_data);
let expected_keys_size = 256 * std::mem::size_of::<i16>();
assert_eq!(
arr.keys().get_array_memory_size() - empty.keys().get_array_memory_size(),
expected_keys_size
);
let expected_values_size = 16 * std::mem::size_of::<i64>();
assert_eq!(
arr.values().get_array_memory_size() - empty.values().get_array_memory_size(),
expected_values_size
);
let expected_size = expected_keys_size + expected_values_size;
assert_eq!(
arr.get_array_memory_size() - empty.get_array_memory_size(),
expected_size
);
}
/// Test function that takes an &dyn Array
fn compute_my_thing(arr: &dyn Array) -> bool {
!arr.is_empty()
}
#[test]
fn test_array_ref_as_array() {
let arr: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();
// works well!
assert!(compute_my_thing(&arr));
// Should also work when wrapped as an ArrayRef
let arr: ArrayRef = Arc::new(arr);
assert!(compute_my_thing(&arr));
assert!(compute_my_thing(arr.as_ref()));
}
#[test]
fn test_downcast_array() {
let array: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();
let boxed: ArrayRef = Arc::new(array);
let array: Int32Array = downcast_array(&boxed);
let expected: Int32Array = vec![1, 2, 3].into_iter().map(Some).collect();
assert_eq!(array, expected);
}
}