use std::any::Any;
use std::sync::Arc;
use arrow_buffer::{ArrowNativeType, BooleanBufferBuilder, NullBuffer, RunEndBuffer};
use arrow_data::{ArrayData, ArrayDataBuilder};
use arrow_schema::{ArrowError, DataType, Field};
use crate::{
builder::StringRunBuilder,
make_array,
run_iterator::RunArrayIter,
types::{Int16Type, Int32Type, Int64Type, RunEndIndexType},
Array, ArrayAccessor, ArrayRef, PrimitiveArray,
};
pub struct RunArray<R: RunEndIndexType> {
data_type: DataType,
run_ends: RunEndBuffer<R::Native>,
values: ArrayRef,
}
impl<R: RunEndIndexType> Clone for RunArray<R> {
fn clone(&self) -> Self {
Self {
data_type: self.data_type.clone(),
run_ends: self.run_ends.clone(),
values: self.values.clone(),
}
}
}
impl<R: RunEndIndexType> RunArray<R> {
pub fn logical_len(run_ends: &PrimitiveArray<R>) -> usize {
let len = run_ends.len();
if len == 0 {
return 0;
}
run_ends.value(len - 1).as_usize()
}
pub fn try_new(run_ends: &PrimitiveArray<R>, values: &dyn Array) -> Result<Self, ArrowError> {
let run_ends_type = run_ends.data_type().clone();
let values_type = values.data_type().clone();
let ree_array_type = DataType::RunEndEncoded(
Arc::new(Field::new("run_ends", run_ends_type, false)),
Arc::new(Field::new("values", values_type, true)),
);
let len = RunArray::logical_len(run_ends);
let builder = ArrayDataBuilder::new(ree_array_type)
.len(len)
.add_child_data(run_ends.to_data())
.add_child_data(values.to_data());
let array_data = unsafe { builder.build_unchecked() };
array_data.validate_data()?;
Ok(array_data.into())
}
pub fn run_ends(&self) -> &RunEndBuffer<R::Native> {
&self.run_ends
}
pub fn values(&self) -> &ArrayRef {
&self.values
}
pub fn get_start_physical_index(&self) -> usize {
self.run_ends.get_start_physical_index()
}
pub fn get_end_physical_index(&self) -> usize {
self.run_ends.get_end_physical_index()
}
pub fn downcast<V: 'static>(&self) -> Option<TypedRunArray<'_, R, V>> {
let values = self.values.as_any().downcast_ref()?;
Some(TypedRunArray {
run_array: self,
values,
})
}
pub fn get_physical_index(&self, logical_index: usize) -> usize {
self.run_ends.get_physical_index(logical_index)
}
#[inline]
pub fn get_physical_indices<I>(&self, logical_indices: &[I]) -> Result<Vec<usize>, ArrowError>
where
I: ArrowNativeType,
{
let len = self.run_ends().len();
let offset = self.run_ends().offset();
let indices_len = logical_indices.len();
if indices_len == 0 {
return Ok(vec![]);
}
let mut ordered_indices: Vec<usize> = (0..indices_len).collect();
ordered_indices.sort_unstable_by(|lhs, rhs| {
logical_indices[*lhs]
.partial_cmp(&logical_indices[*rhs])
.unwrap()
});
let largest_logical_index = logical_indices[*ordered_indices.last().unwrap()].as_usize();
if largest_logical_index >= len {
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot convert all logical indices to physical indices. The logical index cannot be converted is {largest_logical_index}.",
)));
}
let skip_value = self.get_start_physical_index();
let mut physical_indices = vec![0; indices_len];
let mut ordered_index = 0_usize;
for (physical_index, run_end) in self.run_ends.values().iter().enumerate().skip(skip_value)
{
let run_end_value = run_end.as_usize() - offset;
while ordered_index < indices_len
&& logical_indices[ordered_indices[ordered_index]].as_usize() < run_end_value
{
physical_indices[ordered_indices[ordered_index]] = physical_index;
ordered_index += 1;
}
}
if ordered_index < logical_indices.len() {
let logical_index = logical_indices[ordered_indices[ordered_index]].as_usize();
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot convert all logical indices to physical indices. The logical index cannot be converted is {logical_index}.",
)));
}
Ok(physical_indices)
}
pub fn slice(&self, offset: usize, length: usize) -> Self {
Self {
data_type: self.data_type.clone(),
run_ends: self.run_ends.slice(offset, length),
values: self.values.clone(),
}
}
}
impl<R: RunEndIndexType> From<ArrayData> for RunArray<R> {
fn from(data: ArrayData) -> Self {
match data.data_type() {
DataType::RunEndEncoded(_, _) => {}
_ => {
panic!("Invalid data type for RunArray. The data type should be DataType::RunEndEncoded");
}
}
let child = &data.child_data()[0];
assert_eq!(child.data_type(), &R::DATA_TYPE, "Incorrect run ends type");
let run_ends = unsafe {
let scalar = child.buffers()[0].clone().into();
RunEndBuffer::new_unchecked(scalar, data.offset(), data.len())
};
let values = make_array(data.child_data()[1].clone());
Self {
data_type: data.data_type().clone(),
run_ends,
values,
}
}
}
impl<R: RunEndIndexType> From<RunArray<R>> for ArrayData {
fn from(array: RunArray<R>) -> Self {
let len = array.run_ends.len();
let offset = array.run_ends.offset();
let run_ends = ArrayDataBuilder::new(R::DATA_TYPE)
.len(array.run_ends.values().len())
.buffers(vec![array.run_ends.into_inner().into_inner()]);
let run_ends = unsafe { run_ends.build_unchecked() };
let builder = ArrayDataBuilder::new(array.data_type)
.len(len)
.offset(offset)
.child_data(vec![run_ends, array.values.to_data()]);
unsafe { builder.build_unchecked() }
}
}
impl<T: RunEndIndexType> Array for RunArray<T> {
fn as_any(&self) -> &dyn Any {
self
}
fn to_data(&self) -> ArrayData {
self.clone().into()
}
fn into_data(self) -> ArrayData {
self.into()
}
fn data_type(&self) -> &DataType {
&self.data_type
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
Arc::new(self.slice(offset, length))
}
fn len(&self) -> usize {
self.run_ends.len()
}
fn is_empty(&self) -> bool {
self.run_ends.is_empty()
}
fn offset(&self) -> usize {
self.run_ends.offset()
}
fn nulls(&self) -> Option<&NullBuffer> {
None
}
fn logical_nulls(&self) -> Option<NullBuffer> {
let len = self.len();
let nulls = self.values.logical_nulls()?;
let mut out = BooleanBufferBuilder::new(len);
let offset = self.run_ends.offset();
let mut valid_start = 0;
let mut last_end = 0;
for (idx, end) in self.run_ends.values().iter().enumerate() {
let end = end.as_usize();
if end < offset {
continue;
}
let end = (end - offset).min(len);
if nulls.is_null(idx) {
if valid_start < last_end {
out.append_n(last_end - valid_start, true);
}
out.append_n(end - last_end, false);
valid_start = end;
}
last_end = end;
if end == len {
break;
}
}
if valid_start < len {
out.append_n(len - valid_start, true)
}
assert_eq!(out.len(), len);
Some(out.finish().into())
}
fn is_nullable(&self) -> bool {
!self.is_empty() && self.values.is_nullable()
}
fn get_buffer_memory_size(&self) -> usize {
self.run_ends.inner().inner().capacity() + self.values.get_buffer_memory_size()
}
fn get_array_memory_size(&self) -> usize {
std::mem::size_of::<Self>()
+ self.run_ends.inner().inner().capacity()
+ self.values.get_array_memory_size()
}
}
impl<R: RunEndIndexType> std::fmt::Debug for RunArray<R> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(
f,
"RunArray {{run_ends: {:?}, values: {:?}}}",
self.run_ends.values(),
self.values
)
}
}
impl<'a, T: RunEndIndexType> FromIterator<Option<&'a str>> for RunArray<T> {
fn from_iter<I: IntoIterator<Item = Option<&'a str>>>(iter: I) -> Self {
let it = iter.into_iter();
let (lower, _) = it.size_hint();
let mut builder = StringRunBuilder::with_capacity(lower, 256);
it.for_each(|i| {
builder.append_option(i);
});
builder.finish()
}
}
impl<'a, T: RunEndIndexType> FromIterator<&'a str> for RunArray<T> {
fn from_iter<I: IntoIterator<Item = &'a str>>(iter: I) -> Self {
let it = iter.into_iter();
let (lower, _) = it.size_hint();
let mut builder = StringRunBuilder::with_capacity(lower, 256);
it.for_each(|i| {
builder.append_value(i);
});
builder.finish()
}
}
pub type Int16RunArray = RunArray<Int16Type>;
pub type Int32RunArray = RunArray<Int32Type>;
pub type Int64RunArray = RunArray<Int64Type>;
pub struct TypedRunArray<'a, R: RunEndIndexType, V> {
run_array: &'a RunArray<R>,
values: &'a V,
}
impl<R: RunEndIndexType, V> Clone for TypedRunArray<'_, R, V> {
fn clone(&self) -> Self {
*self
}
}
impl<R: RunEndIndexType, V> Copy for TypedRunArray<'_, R, V> {}
impl<R: RunEndIndexType, V> std::fmt::Debug for TypedRunArray<'_, R, V> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
writeln!(f, "TypedRunArray({:?})", self.run_array)
}
}
impl<'a, R: RunEndIndexType, V> TypedRunArray<'a, R, V> {
pub fn run_ends(&self) -> &'a RunEndBuffer<R::Native> {
self.run_array.run_ends()
}
pub fn values(&self) -> &'a V {
self.values
}
pub fn run_array(&self) -> &'a RunArray<R> {
self.run_array
}
}
impl<R: RunEndIndexType, V: Sync> Array for TypedRunArray<'_, R, V> {
fn as_any(&self) -> &dyn Any {
self.run_array
}
fn to_data(&self) -> ArrayData {
self.run_array.to_data()
}
fn into_data(self) -> ArrayData {
self.run_array.into_data()
}
fn data_type(&self) -> &DataType {
self.run_array.data_type()
}
fn slice(&self, offset: usize, length: usize) -> ArrayRef {
Arc::new(self.run_array.slice(offset, length))
}
fn len(&self) -> usize {
self.run_array.len()
}
fn is_empty(&self) -> bool {
self.run_array.is_empty()
}
fn offset(&self) -> usize {
self.run_array.offset()
}
fn nulls(&self) -> Option<&NullBuffer> {
self.run_array.nulls()
}
fn logical_nulls(&self) -> Option<NullBuffer> {
self.run_array.logical_nulls()
}
fn logical_null_count(&self) -> usize {
self.run_array.logical_null_count()
}
fn is_nullable(&self) -> bool {
self.run_array.is_nullable()
}
fn get_buffer_memory_size(&self) -> usize {
self.run_array.get_buffer_memory_size()
}
fn get_array_memory_size(&self) -> usize {
self.run_array.get_array_memory_size()
}
}
impl<'a, R, V> ArrayAccessor for TypedRunArray<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
type Item = <&'a V as ArrayAccessor>::Item;
fn value(&self, logical_index: usize) -> Self::Item {
assert!(
logical_index < self.len(),
"Trying to access an element at index {} from a TypedRunArray of length {}",
logical_index,
self.len()
);
unsafe { self.value_unchecked(logical_index) }
}
unsafe fn value_unchecked(&self, logical_index: usize) -> Self::Item {
let physical_index = self.run_array.get_physical_index(logical_index);
self.values().value_unchecked(physical_index)
}
}
impl<'a, R, V> IntoIterator for TypedRunArray<'a, R, V>
where
R: RunEndIndexType,
V: Sync + Send,
&'a V: ArrayAccessor,
<&'a V as ArrayAccessor>::Item: Default,
{
type Item = Option<<&'a V as ArrayAccessor>::Item>;
type IntoIter = RunArrayIter<'a, R, V>;
fn into_iter(self) -> Self::IntoIter {
RunArrayIter::new(self)
}
}
#[cfg(test)]
mod tests {
use rand::seq::SliceRandom;
use rand::thread_rng;
use rand::Rng;
use super::*;
use crate::builder::PrimitiveRunBuilder;
use crate::cast::AsArray;
use crate::types::{Int8Type, UInt32Type};
use crate::{Int32Array, StringArray};
fn build_input_array(size: usize) -> Vec<Option<i32>> {
let mut seed: Vec<Option<i32>> = vec![
None,
None,
None,
Some(1),
Some(2),
Some(3),
Some(4),
Some(5),
Some(6),
Some(7),
Some(8),
Some(9),
];
let mut result: Vec<Option<i32>> = Vec::with_capacity(size);
let mut ix = 0;
let mut rng = thread_rng();
let max_run_length = 8_usize.min(1_usize.max(size / 2));
while result.len() < size {
if ix == 0 {
seed.shuffle(&mut rng);
}
let num = max_run_length.min(rand::thread_rng().gen_range(1..=max_run_length));
for _ in 0..num {
result.push(seed[ix]);
}
ix += 1;
if ix == seed.len() {
ix = 0
}
}
result.resize(size, None);
result
}
fn compare_logical_and_physical_indices(
logical_indices: &[u32],
logical_array: &[Option<i32>],
physical_indices: &[usize],
physical_array: &PrimitiveArray<Int32Type>,
) {
assert_eq!(logical_indices.len(), physical_indices.len());
logical_indices
.iter()
.map(|f| f.as_usize())
.zip(physical_indices.iter())
.for_each(|(logical_ix, physical_ix)| {
let expected = logical_array[logical_ix];
match expected {
Some(val) => {
assert!(physical_array.is_valid(*physical_ix));
let actual = physical_array.value(*physical_ix);
assert_eq!(val, actual);
}
None => {
assert!(physical_array.is_null(*physical_ix))
}
};
});
}
#[test]
fn test_run_array() {
let value_data =
PrimitiveArray::<Int8Type>::from_iter_values([10_i8, 11, 12, 13, 14, 15, 16, 17]);
let run_ends_values = [4_i16, 6, 7, 9, 13, 18, 20, 22];
let run_ends_data =
PrimitiveArray::<Int16Type>::from_iter_values(run_ends_values.iter().copied());
let ree_array = RunArray::<Int16Type>::try_new(&run_ends_data, &value_data).unwrap();
assert_eq!(ree_array.len(), 22);
assert_eq!(ree_array.null_count(), 0);
let values = ree_array.values();
assert_eq!(value_data.into_data(), values.to_data());
assert_eq!(&DataType::Int8, values.data_type());
let run_ends = ree_array.run_ends();
assert_eq!(run_ends.values(), &run_ends_values);
}
#[test]
fn test_run_array_fmt_debug() {
let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(3);
builder.append_value(12345678);
builder.append_null();
builder.append_value(22345678);
let array = builder.finish();
assert_eq!(
"RunArray {run_ends: [1, 2, 3], values: PrimitiveArray<UInt32>\n[\n 12345678,\n null,\n 22345678,\n]}\n",
format!("{array:?}")
);
let mut builder = PrimitiveRunBuilder::<Int16Type, UInt32Type>::with_capacity(20);
for _ in 0..20 {
builder.append_value(1);
}
let array = builder.finish();
assert_eq!(array.len(), 20);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 0);
assert_eq!(
"RunArray {run_ends: [20], values: PrimitiveArray<UInt32>\n[\n 1,\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_from_iter() {
let test = vec!["a", "a", "b", "c"];
let array: RunArray<Int16Type> = test
.iter()
.map(|&x| if x == "b" { None } else { Some(x) })
.collect();
assert_eq!(
"RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n \"a\",\n null,\n \"c\",\n]}\n",
format!("{array:?}")
);
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 1);
let array: RunArray<Int16Type> = test.into_iter().collect();
assert_eq!(
"RunArray {run_ends: [2, 3, 4], values: StringArray\n[\n \"a\",\n \"b\",\n \"c\",\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_run_ends_as_primitive_array() {
let test = vec!["a", "b", "c", "a"];
let array: RunArray<Int16Type> = test.into_iter().collect();
assert_eq!(array.len(), 4);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 0);
let run_ends = array.run_ends();
assert_eq!(&[1, 2, 3, 4], run_ends.values());
}
#[test]
fn test_run_array_as_primitive_array_with_null() {
let test = vec![Some("a"), None, Some("b"), None, None, Some("a")];
let array: RunArray<Int32Type> = test.into_iter().collect();
assert_eq!(array.len(), 6);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 3);
let run_ends = array.run_ends();
assert_eq!(&[1, 2, 3, 5, 6], run_ends.values());
let values_data = array.values();
assert_eq!(2, values_data.null_count());
assert_eq!(5, values_data.len());
}
#[test]
fn test_run_array_all_nulls() {
let test = vec![None, None, None];
let array: RunArray<Int32Type> = test.into_iter().collect();
assert_eq!(array.len(), 3);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 3);
let run_ends = array.run_ends();
assert_eq!(3, run_ends.len());
assert_eq!(&[3], run_ends.values());
let values_data = array.values();
assert_eq!(1, values_data.null_count());
}
#[test]
fn test_run_array_try_new() {
let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), Some(2), Some(3), Some(4)].into_iter().collect();
let array = RunArray::<Int32Type>::try_new(&run_ends, &values).unwrap();
assert_eq!(array.values().data_type(), &DataType::Utf8);
assert_eq!(array.null_count(), 0);
assert_eq!(array.logical_null_count(), 1);
assert_eq!(array.len(), 4);
assert_eq!(array.values().null_count(), 1);
assert_eq!(
"RunArray {run_ends: [1, 2, 3, 4], values: StringArray\n[\n \"foo\",\n \"bar\",\n null,\n \"baz\",\n]}\n",
format!("{array:?}")
);
}
#[test]
fn test_run_array_int16_type_definition() {
let array: Int16RunArray = vec!["a", "a", "b", "c", "c"].into_iter().collect();
let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "b", "c"]));
assert_eq!(array.run_ends().values(), &[2, 3, 5]);
assert_eq!(array.values(), &values);
}
#[test]
fn test_run_array_empty_string() {
let array: Int16RunArray = vec!["a", "a", "", "", "c"].into_iter().collect();
let values: Arc<dyn Array> = Arc::new(StringArray::from(vec!["a", "", "c"]));
assert_eq!(array.run_ends().values(), &[2, 4, 5]);
assert_eq!(array.values(), &values);
}
#[test]
fn test_run_array_length_mismatch() {
let values: StringArray = [Some("foo"), Some("bar"), None, Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), Some(2), Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The run_ends array length should be the same as values array length. Run_ends array length is 3, values array length is 4".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_with_null() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), None, Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError(
"Found null values in run_ends array. The run_ends array should not have null values."
.to_string(),
);
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_with_zeroes() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(0), Some(1), Some(3)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly positive. Found value 0 at index 0 that does not match the criteria.".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
fn test_run_array_run_ends_non_increasing() {
let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
.into_iter()
.collect();
let run_ends: Int32Array = [Some(1), Some(4), Some(4)].into_iter().collect();
let actual = RunArray::<Int32Type>::try_new(&run_ends, &values);
let expected = ArrowError::InvalidArgumentError("The values in run_ends array should be strictly increasing. Found value 4 at index 2 with previous value 4 that does not match the criteria.".to_string());
assert_eq!(expected.to_string(), actual.err().unwrap().to_string());
}
#[test]
#[should_panic(expected = "Incorrect run ends type")]
fn test_run_array_run_ends_data_type_mismatch() {
let a = RunArray::<Int32Type>::from_iter(["32"]);
let _ = RunArray::<Int64Type>::from(a.into_data());
}
#[test]
fn test_ree_array_accessor() {
let input_array = build_input_array(256);
let mut builder =
PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
builder.extend(input_array.iter().copied());
let run_array = builder.finish();
let typed = run_array.downcast::<PrimitiveArray<Int32Type>>().unwrap();
for (i, inp_val) in input_array.iter().enumerate() {
if let Some(val) = inp_val {
let actual = typed.value(i);
assert_eq!(*val, actual)
} else {
let physical_ix = run_array.get_physical_index(i);
assert!(typed.values().is_null(physical_ix));
};
}
}
#[test]
#[cfg_attr(miri, ignore)] fn test_get_physical_indices() {
for logical_len in (0..250).step_by(10) {
let input_array = build_input_array(logical_len);
let mut builder = PrimitiveRunBuilder::<Int32Type, Int32Type>::new();
builder.extend(input_array.clone().into_iter());
let run_array = builder.finish();
let physical_values_array = run_array.values().as_primitive::<Int32Type>();
let mut logical_indices: Vec<u32> = (0_u32..(logical_len as u32)).collect();
logical_indices.append(&mut logical_indices.clone());
let mut rng = thread_rng();
logical_indices.shuffle(&mut rng);
let physical_indices = run_array.get_physical_indices(&logical_indices).unwrap();
assert_eq!(logical_indices.len(), physical_indices.len());
compare_logical_and_physical_indices(
&logical_indices,
&input_array,
&physical_indices,
physical_values_array,
);
}
}
#[test]
#[cfg_attr(miri, ignore)] fn test_get_physical_indices_sliced() {
let total_len = 80;
let input_array = build_input_array(total_len);
let mut builder =
PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
builder.extend(input_array.iter().copied());
let run_array = builder.finish();
let physical_values_array = run_array.values().as_primitive::<Int32Type>();
for slice_len in 1..=total_len {
let mut logical_indices: Vec<u32> = (0_u32..(slice_len as u32)).collect();
logical_indices.append(&mut logical_indices.clone());
let mut rng = thread_rng();
logical_indices.shuffle(&mut rng);
let sliced_input_array = &input_array[0..slice_len];
let sliced_run_array: RunArray<Int16Type> =
run_array.slice(0, slice_len).into_data().into();
let physical_indices = sliced_run_array
.get_physical_indices(&logical_indices)
.unwrap();
compare_logical_and_physical_indices(
&logical_indices,
sliced_input_array,
&physical_indices,
physical_values_array,
);
let sliced_input_array = &input_array[total_len - slice_len..total_len];
let sliced_run_array: RunArray<Int16Type> = run_array
.slice(total_len - slice_len, slice_len)
.into_data()
.into();
let physical_indices = sliced_run_array
.get_physical_indices(&logical_indices)
.unwrap();
compare_logical_and_physical_indices(
&logical_indices,
sliced_input_array,
&physical_indices,
physical_values_array,
);
}
}
#[test]
fn test_logical_nulls() {
let run = Int32Array::from(vec![3, 6, 9, 12]);
let values = Int32Array::from(vec![Some(0), None, Some(1), None]);
let array = RunArray::try_new(&run, &values).unwrap();
let expected = [
true, true, true, false, false, false, true, true, true, false, false, false,
];
let n = array.logical_nulls().unwrap();
assert_eq!(n.null_count(), 6);
let slices = [(0, 12), (0, 2), (2, 5), (3, 0), (3, 3), (3, 4), (4, 8)];
for (offset, length) in slices {
let a = array.slice(offset, length);
let n = a.logical_nulls().unwrap();
let n = n.into_iter().collect::<Vec<_>>();
assert_eq!(&n, &expected[offset..offset + length], "{offset} {length}");
}
}
}