arrow_array/array/
byte_view_array.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use crate::array::print_long_array;
19use crate::builder::{ArrayBuilder, GenericByteViewBuilder};
20use crate::iterator::ArrayIter;
21use crate::types::bytes::ByteArrayNativeType;
22use crate::types::{BinaryViewType, ByteViewType, StringViewType};
23use crate::{Array, ArrayAccessor, ArrayRef, GenericByteArray, OffsetSizeTrait, Scalar};
24use arrow_buffer::{ArrowNativeType, Buffer, NullBuffer, ScalarBuffer};
25use arrow_data::{ArrayData, ArrayDataBuilder, ByteView};
26use arrow_schema::{ArrowError, DataType};
27use core::str;
28use num::ToPrimitive;
29use std::any::Any;
30use std::fmt::Debug;
31use std::marker::PhantomData;
32use std::sync::Arc;
33
34use super::ByteArrayType;
35
36/// [Variable-size Binary View Layout]: An array of variable length bytes views.
37///
38/// This array type is used to store variable length byte data (e.g. Strings, Binary)
39/// and has efficient operations such as `take`, `filter`, and comparison.
40///
41/// [Variable-size Binary View Layout]: https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
42///
43/// This is different from [`GenericByteArray`], which also stores variable
44/// length byte data, as it represents strings with an offset and length. `take`
45/// and `filter` like operations are implemented by manipulating the "views"
46/// (`u128`) without modifying the bytes. Each view also stores an inlined
47/// prefix which speed up comparisons.
48///
49/// # See Also
50///
51/// * [`StringViewArray`] for storing utf8 encoded string data
52/// * [`BinaryViewArray`] for storing bytes
53/// * [`ByteView`] to interpret `u128`s layout of the views.
54///
55/// [`ByteView`]: arrow_data::ByteView
56///
57/// # Layout: "views" and buffers
58///
59/// A `GenericByteViewArray` stores variable length byte strings. An array of
60/// `N` elements is stored as `N` fixed length "views" and a variable number
61/// of variable length "buffers".
62///
63/// Each view is a `u128` value whose layout is different depending on the
64/// length of the string stored at that location:
65///
66/// ```text
67///                         ┌──────┬────────────────────────┐
68///                         │length│      string value      │
69///    Strings (len <= 12)  │      │    (padded with 0)     │
70///                         └──────┴────────────────────────┘
71///                          0    31                      127
72///
73///                         ┌───────┬───────┬───────┬───────┐
74///                         │length │prefix │  buf  │offset │
75///    Strings (len > 12)   │       │       │ index │       │
76///                         └───────┴───────┴───────┴───────┘
77///                          0    31       63      95    127
78/// ```
79///
80/// * Strings with length <= 12 are stored directly in the view. See
81///   [`Self::inline_value`] to access the inlined prefix from a short view.
82///
83/// * Strings with length > 12: The first four bytes are stored inline in the
84///   view and the entire string is stored in one of the buffers. See [`ByteView`]
85///   to access the fields of the these views.
86///
87/// As with other arrays, the optimized kernels in [`arrow_compute`] are likely
88/// the easiest and fastest way to work with this data. However, it is possible
89/// to access the views and buffers directly for more control.
90///
91/// For example
92///
93/// ```rust
94/// # use arrow_array::StringViewArray;
95/// # use arrow_array::Array;
96/// use arrow_data::ByteView;
97/// let array = StringViewArray::from(vec![
98///   "hello",
99///   "this string is longer than 12 bytes",
100///   "this string is also longer than 12 bytes"
101/// ]);
102///
103/// // ** Examine the first view (short string) **
104/// assert!(array.is_valid(0)); // Check for nulls
105/// let short_view: u128 = array.views()[0]; // "hello"
106/// // get length of the string
107/// let len = short_view as u32;
108/// assert_eq!(len, 5); // strings less than 12 bytes are stored in the view
109/// // SAFETY: `view` is a valid view
110/// let value = unsafe {
111///   StringViewArray::inline_value(&short_view, len as usize)
112/// };
113/// assert_eq!(value, b"hello");
114///
115/// // ** Examine the third view (long string) **
116/// assert!(array.is_valid(12)); // Check for nulls
117/// let long_view: u128 = array.views()[2]; // "this string is also longer than 12 bytes"
118/// let len = long_view as u32;
119/// assert_eq!(len, 40); // strings longer than 12 bytes are stored in the buffer
120/// let view = ByteView::from(long_view); // use ByteView to access the fields
121/// assert_eq!(view.length, 40);
122/// assert_eq!(view.buffer_index, 0);
123/// assert_eq!(view.offset, 35); // data starts after the first long string
124/// // Views for long strings store a 4 byte prefix
125/// let prefix = view.prefix.to_le_bytes();
126/// assert_eq!(&prefix, b"this");
127/// let value = array.value(2); // get the string value (see `value` implementation for how to access the bytes directly)
128/// assert_eq!(value, "this string is also longer than 12 bytes");
129/// ```
130///
131/// [`arrow_compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
132///
133/// Unlike [`GenericByteArray`], there are no constraints on the offsets other
134/// than they must point into a valid buffer. However, they can be out of order,
135/// non continuous and overlapping.
136///
137/// For example, in the following diagram, the strings "FishWasInTownToday" and
138/// "CrumpleFacedFish" are both longer than 12 bytes and thus are stored in a
139/// separate buffer while the string "LavaMonster" is stored inlined in the
140/// view. In this case, the same bytes for "Fish" are used to store both strings.
141///
142/// [`ByteView`]: arrow_data::ByteView
143///
144/// ```text
145///                                                                            ┌───┐
146///                         ┌──────┬──────┬──────┬──────┐               offset │...│
147/// "FishWasInTownTodayYay" │  21  │ Fish │  0   │ 115  │─ ─              103  │Mr.│
148///                         └──────┴──────┴──────┴──────┘   │      ┌ ─ ─ ─ ─ ▶ │Cru│
149///                         ┌──────┬──────┬──────┬──────┐                      │mpl│
150/// "CrumpleFacedFish"      │  16  │ Crum │  0   │ 103  │─ ─│─ ─ ─ ┘           │eFa│
151///                         └──────┴──────┴──────┴──────┘                      │ced│
152///                         ┌──────┬────────────────────┐   └ ─ ─ ─ ─ ─ ─ ─ ─ ▶│Fis│
153/// "LavaMonster"           │  11  │   LavaMonster\0    │                      │hWa│
154///                         └──────┴────────────────────┘               offset │sIn│
155///                                                                       115  │Tow│
156///                                                                            │nTo│
157///                                                                            │day│
158///                                  u128 "views"                              │Yay│
159///                                                                   buffer 0 │...│
160///                                                                            └───┘
161/// ```
162pub struct GenericByteViewArray<T: ByteViewType + ?Sized> {
163    data_type: DataType,
164    views: ScalarBuffer<u128>,
165    buffers: Vec<Buffer>,
166    phantom: PhantomData<T>,
167    nulls: Option<NullBuffer>,
168}
169
170impl<T: ByteViewType + ?Sized> Clone for GenericByteViewArray<T> {
171    fn clone(&self) -> Self {
172        Self {
173            data_type: T::DATA_TYPE,
174            views: self.views.clone(),
175            buffers: self.buffers.clone(),
176            nulls: self.nulls.clone(),
177            phantom: Default::default(),
178        }
179    }
180}
181
182impl<T: ByteViewType + ?Sized> GenericByteViewArray<T> {
183    /// Create a new [`GenericByteViewArray`] from the provided parts, panicking on failure
184    ///
185    /// # Panics
186    ///
187    /// Panics if [`GenericByteViewArray::try_new`] returns an error
188    pub fn new(views: ScalarBuffer<u128>, buffers: Vec<Buffer>, nulls: Option<NullBuffer>) -> Self {
189        Self::try_new(views, buffers, nulls).unwrap()
190    }
191
192    /// Create a new [`GenericByteViewArray`] from the provided parts, returning an error on failure
193    ///
194    /// # Errors
195    ///
196    /// * `views.len() != nulls.len()`
197    /// * [ByteViewType::validate] fails
198    pub fn try_new(
199        views: ScalarBuffer<u128>,
200        buffers: Vec<Buffer>,
201        nulls: Option<NullBuffer>,
202    ) -> Result<Self, ArrowError> {
203        T::validate(&views, &buffers)?;
204
205        if let Some(n) = nulls.as_ref() {
206            if n.len() != views.len() {
207                return Err(ArrowError::InvalidArgumentError(format!(
208                    "Incorrect length of null buffer for {}ViewArray, expected {} got {}",
209                    T::PREFIX,
210                    views.len(),
211                    n.len(),
212                )));
213            }
214        }
215
216        Ok(Self {
217            data_type: T::DATA_TYPE,
218            views,
219            buffers,
220            nulls,
221            phantom: Default::default(),
222        })
223    }
224
225    /// Create a new [`GenericByteViewArray`] from the provided parts, without validation
226    ///
227    /// # Safety
228    ///
229    /// Safe if [`Self::try_new`] would not error
230    pub unsafe fn new_unchecked(
231        views: ScalarBuffer<u128>,
232        buffers: Vec<Buffer>,
233        nulls: Option<NullBuffer>,
234    ) -> Self {
235        Self {
236            data_type: T::DATA_TYPE,
237            phantom: Default::default(),
238            views,
239            buffers,
240            nulls,
241        }
242    }
243
244    /// Create a new [`GenericByteViewArray`] of length `len` where all values are null
245    pub fn new_null(len: usize) -> Self {
246        Self {
247            data_type: T::DATA_TYPE,
248            views: vec![0; len].into(),
249            buffers: vec![],
250            nulls: Some(NullBuffer::new_null(len)),
251            phantom: Default::default(),
252        }
253    }
254
255    /// Create a new [`Scalar`] from `value`
256    pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
257        Scalar::new(Self::from_iter_values(std::iter::once(value)))
258    }
259
260    /// Creates a [`GenericByteViewArray`] based on an iterator of values without nulls
261    pub fn from_iter_values<Ptr, I>(iter: I) -> Self
262    where
263        Ptr: AsRef<T::Native>,
264        I: IntoIterator<Item = Ptr>,
265    {
266        let iter = iter.into_iter();
267        let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
268        for v in iter {
269            builder.append_value(v);
270        }
271        builder.finish()
272    }
273
274    /// Deconstruct this array into its constituent parts
275    pub fn into_parts(self) -> (ScalarBuffer<u128>, Vec<Buffer>, Option<NullBuffer>) {
276        (self.views, self.buffers, self.nulls)
277    }
278
279    /// Returns the views buffer
280    #[inline]
281    pub fn views(&self) -> &ScalarBuffer<u128> {
282        &self.views
283    }
284
285    /// Returns the buffers storing string data
286    #[inline]
287    pub fn data_buffers(&self) -> &[Buffer] {
288        &self.buffers
289    }
290
291    /// Returns the element at index `i`
292    /// # Panics
293    /// Panics if index `i` is out of bounds.
294    pub fn value(&self, i: usize) -> &T::Native {
295        assert!(
296            i < self.len(),
297            "Trying to access an element at index {} from a {}ViewArray of length {}",
298            i,
299            T::PREFIX,
300            self.len()
301        );
302
303        unsafe { self.value_unchecked(i) }
304    }
305
306    /// Returns the element at index `i` without bounds checking
307    ///
308    /// # Safety
309    ///
310    /// Caller is responsible for ensuring that the index is within the bounds
311    /// of the array
312    pub unsafe fn value_unchecked(&self, idx: usize) -> &T::Native {
313        let v = self.views.get_unchecked(idx);
314        let len = *v as u32;
315        let b = if len <= 12 {
316            Self::inline_value(v, len as usize)
317        } else {
318            let view = ByteView::from(*v);
319            let data = self.buffers.get_unchecked(view.buffer_index as usize);
320            let offset = view.offset as usize;
321            data.get_unchecked(offset..offset + len as usize)
322        };
323        T::Native::from_bytes_unchecked(b)
324    }
325
326    /// Returns the first `len` bytes the inline value of the view.
327    ///
328    /// # Safety
329    /// - The `view` must be a valid element from `Self::views()` that adheres to the view layout.
330    /// - The `len` must be the length of the inlined value. It should never be larger than 12.
331    #[inline(always)]
332    pub unsafe fn inline_value(view: &u128, len: usize) -> &[u8] {
333        debug_assert!(len <= 12);
334        std::slice::from_raw_parts((view as *const u128 as *const u8).wrapping_add(4), len)
335    }
336
337    /// Constructs a new iterator for iterating over the values of this array
338    pub fn iter(&self) -> ArrayIter<&Self> {
339        ArrayIter::new(self)
340    }
341
342    /// Returns an iterator over the bytes of this array, including null values
343    pub fn bytes_iter(&self) -> impl Iterator<Item = &[u8]> {
344        self.views.iter().map(move |v| {
345            let len = *v as u32;
346            if len <= 12 {
347                unsafe { Self::inline_value(v, len as usize) }
348            } else {
349                let view = ByteView::from(*v);
350                let data = &self.buffers[view.buffer_index as usize];
351                let offset = view.offset as usize;
352                unsafe { data.get_unchecked(offset..offset + len as usize) }
353            }
354        })
355    }
356
357    /// Returns an iterator over the first `prefix_len` bytes of each array
358    /// element, including null values.
359    ///
360    /// If `prefix_len` is larger than the element's length, the iterator will
361    /// return an empty slice (`&[]`).
362    pub fn prefix_bytes_iter(&self, prefix_len: usize) -> impl Iterator<Item = &[u8]> {
363        self.views().into_iter().map(move |v| {
364            let len = (*v as u32) as usize;
365
366            if len < prefix_len {
367                return &[] as &[u8];
368            }
369
370            if prefix_len <= 4 || len <= 12 {
371                unsafe { StringViewArray::inline_value(v, prefix_len) }
372            } else {
373                let view = ByteView::from(*v);
374                let data = unsafe {
375                    self.data_buffers()
376                        .get_unchecked(view.buffer_index as usize)
377                };
378                let offset = view.offset as usize;
379                unsafe { data.get_unchecked(offset..offset + prefix_len) }
380            }
381        })
382    }
383
384    /// Returns an iterator over the last `suffix_len` bytes of each array
385    /// element, including null values.
386    ///
387    /// Note that for [`StringViewArray`] the last bytes may start in the middle
388    /// of a UTF-8 codepoint, and thus may not be a valid `&str`.
389    ///
390    /// If `suffix_len` is larger than the element's length, the iterator will
391    /// return an empty slice (`&[]`).
392    pub fn suffix_bytes_iter(&self, suffix_len: usize) -> impl Iterator<Item = &[u8]> {
393        self.views().into_iter().map(move |v| {
394            let len = (*v as u32) as usize;
395
396            if len < suffix_len {
397                return &[] as &[u8];
398            }
399
400            if len <= 12 {
401                unsafe { &StringViewArray::inline_value(v, len)[len - suffix_len..] }
402            } else {
403                let view = ByteView::from(*v);
404                let data = unsafe {
405                    self.data_buffers()
406                        .get_unchecked(view.buffer_index as usize)
407                };
408                let offset = view.offset as usize;
409                unsafe { data.get_unchecked(offset + len - suffix_len..offset + len) }
410            }
411        })
412    }
413
414    /// Returns a zero-copy slice of this array with the indicated offset and length.
415    pub fn slice(&self, offset: usize, length: usize) -> Self {
416        Self {
417            data_type: T::DATA_TYPE,
418            views: self.views.slice(offset, length),
419            buffers: self.buffers.clone(),
420            nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
421            phantom: Default::default(),
422        }
423    }
424
425    /// Returns a "compacted" version of this array
426    ///
427    /// The original array will *not* be modified
428    ///
429    /// # Garbage Collection
430    ///
431    /// Before GC:
432    /// ```text
433    ///                                        ┌──────┐
434    ///                                        │......│
435    ///                                        │......│
436    /// ┌────────────────────┐       ┌ ─ ─ ─ ▶ │Data1 │   Large buffer
437    /// │       View 1       │─ ─ ─ ─          │......│  with data that
438    /// ├────────────────────┤                 │......│ is not referred
439    /// │       View 2       │─ ─ ─ ─ ─ ─ ─ ─▶ │Data2 │ to by View 1 or
440    /// └────────────────────┘                 │......│      View 2
441    ///                                        │......│
442    ///    2 views, refer to                   │......│
443    ///   small portions of a                  └──────┘
444    ///      large buffer
445    /// ```
446    ///
447    /// After GC:
448    ///
449    /// ```text
450    /// ┌────────────────────┐                 ┌─────┐    After gc, only
451    /// │       View 1       │─ ─ ─ ─ ─ ─ ─ ─▶ │Data1│     data that is
452    /// ├────────────────────┤       ┌ ─ ─ ─ ▶ │Data2│    pointed to by
453    /// │       View 2       │─ ─ ─ ─          └─────┘     the views is
454    /// └────────────────────┘                                 left
455    ///
456    ///
457    ///         2 views
458    /// ```
459    /// This method will compact the data buffers by recreating the view array and only include the data
460    /// that is pointed to by the views.
461    ///
462    /// Note that it will copy the array regardless of whether the original array is compact.
463    /// Use with caution as this can be an expensive operation, only use it when you are sure that the view
464    /// array is significantly smaller than when it is originally created, e.g., after filtering or slicing.
465    ///
466    /// Note: this function does not attempt to canonicalize / deduplicate values. For this
467    /// feature see  [`GenericByteViewBuilder::with_deduplicate_strings`].
468    pub fn gc(&self) -> Self {
469        let mut builder = GenericByteViewBuilder::<T>::with_capacity(self.len());
470
471        for v in self.iter() {
472            builder.append_option(v);
473        }
474
475        builder.finish()
476    }
477
478    /// Compare two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
479    ///
480    /// Comparing two ByteView types are non-trivial.
481    /// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
482    ///
483    /// ByteView types give us the following two advantages, and we need to be careful not to lose them:
484    /// (1) For string/byte smaller than 12 bytes, the entire data is inlined in the view.
485    ///     Meaning that reading one array element requires only one memory access
486    ///     (two memory access required for StringArray, one for offset buffer, the other for value buffer).
487    ///
488    /// (2) For string/byte larger than 12 bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
489    ///     thanks to the inlined 4 bytes.
490    ///     Consider equality check:
491    ///     If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
492    ///
493    /// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
494    /// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
495    ///   e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
496    ///
497    /// # Order check flow
498    /// (1) if both string are smaller than 12 bytes, we can directly compare the data inlined to the view.
499    /// (2) if any of the string is larger than 12 bytes, we need to compare the full string.
500    ///     (2.1) if the inlined 4 bytes are different, we can return the result immediately.
501    ///     (2.2) o.w., we need to compare the full string.
502    ///
503    /// # Safety
504    /// The left/right_idx must within range of each array
505    pub unsafe fn compare_unchecked(
506        left: &GenericByteViewArray<T>,
507        left_idx: usize,
508        right: &GenericByteViewArray<T>,
509        right_idx: usize,
510    ) -> std::cmp::Ordering {
511        let l_view = left.views().get_unchecked(left_idx);
512        let l_len = *l_view as u32;
513
514        let r_view = right.views().get_unchecked(right_idx);
515        let r_len = *r_view as u32;
516
517        if l_len <= 12 && r_len <= 12 {
518            let l_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, l_len as usize) };
519            let r_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, r_len as usize) };
520            return l_data.cmp(r_data);
521        }
522
523        // one of the string is larger than 12 bytes,
524        // we then try to compare the inlined data first
525        let l_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, 4) };
526        let r_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, 4) };
527        if r_inlined_data != l_inlined_data {
528            return l_inlined_data.cmp(r_inlined_data);
529        }
530
531        // unfortunately, we need to compare the full data
532        let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
533        let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
534
535        l_full_data.cmp(r_full_data)
536    }
537}
538
539impl<T: ByteViewType + ?Sized> Debug for GenericByteViewArray<T> {
540    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
541        write!(f, "{}ViewArray\n[\n", T::PREFIX)?;
542        print_long_array(self, f, |array, index, f| {
543            std::fmt::Debug::fmt(&array.value(index), f)
544        })?;
545        write!(f, "]")
546    }
547}
548
549impl<T: ByteViewType + ?Sized> Array for GenericByteViewArray<T> {
550    fn as_any(&self) -> &dyn Any {
551        self
552    }
553
554    fn to_data(&self) -> ArrayData {
555        self.clone().into()
556    }
557
558    fn into_data(self) -> ArrayData {
559        self.into()
560    }
561
562    fn data_type(&self) -> &DataType {
563        &self.data_type
564    }
565
566    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
567        Arc::new(self.slice(offset, length))
568    }
569
570    fn len(&self) -> usize {
571        self.views.len()
572    }
573
574    fn is_empty(&self) -> bool {
575        self.views.is_empty()
576    }
577
578    fn shrink_to_fit(&mut self) {
579        self.views.shrink_to_fit();
580        self.buffers.iter_mut().for_each(|b| b.shrink_to_fit());
581        self.buffers.shrink_to_fit();
582        if let Some(nulls) = &mut self.nulls {
583            nulls.shrink_to_fit();
584        }
585    }
586
587    fn offset(&self) -> usize {
588        0
589    }
590
591    fn nulls(&self) -> Option<&NullBuffer> {
592        self.nulls.as_ref()
593    }
594
595    fn logical_null_count(&self) -> usize {
596        // More efficient that the default implementation
597        self.null_count()
598    }
599
600    fn get_buffer_memory_size(&self) -> usize {
601        let mut sum = self.buffers.iter().map(|b| b.capacity()).sum::<usize>();
602        sum += self.views.inner().capacity();
603        if let Some(x) = &self.nulls {
604            sum += x.buffer().capacity()
605        }
606        sum
607    }
608
609    fn get_array_memory_size(&self) -> usize {
610        std::mem::size_of::<Self>() + self.get_buffer_memory_size()
611    }
612}
613
614impl<'a, T: ByteViewType + ?Sized> ArrayAccessor for &'a GenericByteViewArray<T> {
615    type Item = &'a T::Native;
616
617    fn value(&self, index: usize) -> Self::Item {
618        GenericByteViewArray::value(self, index)
619    }
620
621    unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
622        GenericByteViewArray::value_unchecked(self, index)
623    }
624}
625
626impl<'a, T: ByteViewType + ?Sized> IntoIterator for &'a GenericByteViewArray<T> {
627    type Item = Option<&'a T::Native>;
628    type IntoIter = ArrayIter<Self>;
629
630    fn into_iter(self) -> Self::IntoIter {
631        ArrayIter::new(self)
632    }
633}
634
635impl<T: ByteViewType + ?Sized> From<ArrayData> for GenericByteViewArray<T> {
636    fn from(value: ArrayData) -> Self {
637        let views = value.buffers()[0].clone();
638        let views = ScalarBuffer::new(views, value.offset(), value.len());
639        let buffers = value.buffers()[1..].to_vec();
640        Self {
641            data_type: T::DATA_TYPE,
642            views,
643            buffers,
644            nulls: value.nulls().cloned(),
645            phantom: Default::default(),
646        }
647    }
648}
649
650/// Efficiently convert a [`GenericByteArray`] to a [`GenericByteViewArray`]
651///
652/// For example this method can convert a [`StringArray`] to a
653/// [`StringViewArray`].
654///
655/// If the offsets are all less than u32::MAX, the new [`GenericByteViewArray`]
656/// is built without copying the underlying string data (views are created
657/// directly into the existing buffer)
658///
659/// [`StringArray`]: crate::StringArray
660impl<FROM, V> From<&GenericByteArray<FROM>> for GenericByteViewArray<V>
661where
662    FROM: ByteArrayType,
663    FROM::Offset: OffsetSizeTrait + ToPrimitive,
664    V: ByteViewType<Native = FROM::Native>,
665{
666    fn from(byte_array: &GenericByteArray<FROM>) -> Self {
667        let offsets = byte_array.offsets();
668
669        let can_reuse_buffer = match offsets.last() {
670            Some(offset) => offset.as_usize() < u32::MAX as usize,
671            None => true,
672        };
673
674        if can_reuse_buffer {
675            // build views directly pointing to the existing buffer
676            let len = byte_array.len();
677            let mut views_builder = GenericByteViewBuilder::<V>::with_capacity(len);
678            let str_values_buf = byte_array.values().clone();
679            let block = views_builder.append_block(str_values_buf);
680            for (i, w) in offsets.windows(2).enumerate() {
681                let offset = w[0].as_usize();
682                let end = w[1].as_usize();
683                let length = end - offset;
684
685                if byte_array.is_null(i) {
686                    views_builder.append_null();
687                } else {
688                    // Safety: the input was a valid array so it valid UTF8 (if string). And
689                    // all offsets were valid
690                    unsafe {
691                        views_builder.append_view_unchecked(block, offset as u32, length as u32)
692                    }
693                }
694            }
695            assert_eq!(views_builder.len(), len);
696            views_builder.finish()
697        } else {
698            // Otherwise, create a new buffer for large strings
699            // TODO: the original buffer could still be used
700            // by making multiple slices of u32::MAX length
701            GenericByteViewArray::<V>::from_iter(byte_array.iter())
702        }
703    }
704}
705
706impl<T: ByteViewType + ?Sized> From<GenericByteViewArray<T>> for ArrayData {
707    fn from(mut array: GenericByteViewArray<T>) -> Self {
708        let len = array.len();
709        array.buffers.insert(0, array.views.into_inner());
710        let builder = ArrayDataBuilder::new(T::DATA_TYPE)
711            .len(len)
712            .buffers(array.buffers)
713            .nulls(array.nulls);
714
715        unsafe { builder.build_unchecked() }
716    }
717}
718
719impl<'a, Ptr, T> FromIterator<&'a Option<Ptr>> for GenericByteViewArray<T>
720where
721    Ptr: AsRef<T::Native> + 'a,
722    T: ByteViewType + ?Sized,
723{
724    fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
725        iter.into_iter()
726            .map(|o| o.as_ref().map(|p| p.as_ref()))
727            .collect()
728    }
729}
730
731impl<Ptr, T: ByteViewType + ?Sized> FromIterator<Option<Ptr>> for GenericByteViewArray<T>
732where
733    Ptr: AsRef<T::Native>,
734{
735    fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
736        let iter = iter.into_iter();
737        let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
738        builder.extend(iter);
739        builder.finish()
740    }
741}
742
743/// A [`GenericByteViewArray`] of `[u8]`
744///
745/// See [`GenericByteViewArray`] for format and layout details.
746///
747/// # Example
748/// ```
749/// use arrow_array::BinaryViewArray;
750/// let array = BinaryViewArray::from_iter_values(vec![b"hello" as &[u8], b"world", b"lulu", b"large payload over 12 bytes"]);
751/// assert_eq!(array.value(0), b"hello");
752/// assert_eq!(array.value(3), b"large payload over 12 bytes");
753/// ```
754pub type BinaryViewArray = GenericByteViewArray<BinaryViewType>;
755
756impl BinaryViewArray {
757    /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
758    /// If items not utf8 data, validate will fail and error returned.
759    pub fn to_string_view(self) -> Result<StringViewArray, ArrowError> {
760        StringViewType::validate(self.views(), self.data_buffers())?;
761        unsafe { Ok(self.to_string_view_unchecked()) }
762    }
763
764    /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
765    /// # Safety
766    /// Caller is responsible for ensuring that items in array are utf8 data.
767    pub unsafe fn to_string_view_unchecked(self) -> StringViewArray {
768        StringViewArray::new_unchecked(self.views, self.buffers, self.nulls)
769    }
770}
771
772impl From<Vec<&[u8]>> for BinaryViewArray {
773    fn from(v: Vec<&[u8]>) -> Self {
774        Self::from_iter_values(v)
775    }
776}
777
778impl From<Vec<Option<&[u8]>>> for BinaryViewArray {
779    fn from(v: Vec<Option<&[u8]>>) -> Self {
780        v.into_iter().collect()
781    }
782}
783
784/// A [`GenericByteViewArray`] that stores utf8 data
785///
786/// See [`GenericByteViewArray`] for format and layout details.
787///
788/// # Example
789/// ```
790/// use arrow_array::StringViewArray;
791/// let array = StringViewArray::from_iter_values(vec!["hello", "world", "lulu", "large payload over 12 bytes"]);
792/// assert_eq!(array.value(0), "hello");
793/// assert_eq!(array.value(3), "large payload over 12 bytes");
794/// ```
795pub type StringViewArray = GenericByteViewArray<StringViewType>;
796
797impl StringViewArray {
798    /// Convert the [`StringViewArray`] to [`BinaryViewArray`]
799    pub fn to_binary_view(self) -> BinaryViewArray {
800        unsafe { BinaryViewArray::new_unchecked(self.views, self.buffers, self.nulls) }
801    }
802
803    /// Returns true if all data within this array is ASCII
804    pub fn is_ascii(&self) -> bool {
805        // Alternative (but incorrect): directly check the underlying buffers
806        // (1) Our string view might be sparse, i.e., a subset of the buffers,
807        //      so even if the buffer is not ascii, we can still be ascii.
808        // (2) It is quite difficult to know the range of each buffer (unlike StringArray)
809        // This means that this operation is quite expensive, shall we cache the result?
810        //  i.e. track `is_ascii` in the builder.
811        self.iter().all(|v| match v {
812            Some(v) => v.is_ascii(),
813            None => true,
814        })
815    }
816}
817
818impl From<Vec<&str>> for StringViewArray {
819    fn from(v: Vec<&str>) -> Self {
820        Self::from_iter_values(v)
821    }
822}
823
824impl From<Vec<Option<&str>>> for StringViewArray {
825    fn from(v: Vec<Option<&str>>) -> Self {
826        v.into_iter().collect()
827    }
828}
829
830impl From<Vec<String>> for StringViewArray {
831    fn from(v: Vec<String>) -> Self {
832        Self::from_iter_values(v)
833    }
834}
835
836impl From<Vec<Option<String>>> for StringViewArray {
837    fn from(v: Vec<Option<String>>) -> Self {
838        v.into_iter().collect()
839    }
840}
841
842#[cfg(test)]
843mod tests {
844    use crate::builder::{BinaryViewBuilder, StringViewBuilder};
845    use crate::{Array, BinaryViewArray, StringViewArray};
846    use arrow_buffer::{Buffer, ScalarBuffer};
847    use arrow_data::ByteView;
848
849    #[test]
850    fn try_new_string() {
851        let array = StringViewArray::from_iter_values(vec![
852            "hello",
853            "world",
854            "lulu",
855            "large payload over 12 bytes",
856        ]);
857        assert_eq!(array.value(0), "hello");
858        assert_eq!(array.value(3), "large payload over 12 bytes");
859    }
860
861    #[test]
862    fn try_new_binary() {
863        let array = BinaryViewArray::from_iter_values(vec![
864            b"hello".as_slice(),
865            b"world".as_slice(),
866            b"lulu".as_slice(),
867            b"large payload over 12 bytes".as_slice(),
868        ]);
869        assert_eq!(array.value(0), b"hello");
870        assert_eq!(array.value(3), b"large payload over 12 bytes");
871    }
872
873    #[test]
874    fn try_new_empty_string() {
875        // test empty array
876        let array = {
877            let mut builder = StringViewBuilder::new();
878            builder.finish()
879        };
880        assert!(array.is_empty());
881    }
882
883    #[test]
884    fn try_new_empty_binary() {
885        // test empty array
886        let array = {
887            let mut builder = BinaryViewBuilder::new();
888            builder.finish()
889        };
890        assert!(array.is_empty());
891    }
892
893    #[test]
894    fn test_append_string() {
895        // test builder append
896        let array = {
897            let mut builder = StringViewBuilder::new();
898            builder.append_value("hello");
899            builder.append_null();
900            builder.append_option(Some("large payload over 12 bytes"));
901            builder.finish()
902        };
903        assert_eq!(array.value(0), "hello");
904        assert!(array.is_null(1));
905        assert_eq!(array.value(2), "large payload over 12 bytes");
906    }
907
908    #[test]
909    fn test_append_binary() {
910        // test builder append
911        let array = {
912            let mut builder = BinaryViewBuilder::new();
913            builder.append_value(b"hello");
914            builder.append_null();
915            builder.append_option(Some(b"large payload over 12 bytes"));
916            builder.finish()
917        };
918        assert_eq!(array.value(0), b"hello");
919        assert!(array.is_null(1));
920        assert_eq!(array.value(2), b"large payload over 12 bytes");
921    }
922
923    #[test]
924    fn test_in_progress_recreation() {
925        let array = {
926            // make a builder with small block size.
927            let mut builder = StringViewBuilder::new().with_fixed_block_size(14);
928            builder.append_value("large payload over 12 bytes");
929            builder.append_option(Some("another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created"));
930            builder.finish()
931        };
932        assert_eq!(array.value(0), "large payload over 12 bytes");
933        assert_eq!(array.value(1), "another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created");
934        assert_eq!(2, array.buffers.len());
935    }
936
937    #[test]
938    #[should_panic(expected = "Invalid buffer index at 0: got index 3 but only has 1 buffers")]
939    fn new_with_invalid_view_data() {
940        let v = "large payload over 12 bytes";
941        let view = ByteView::new(13, &v.as_bytes()[0..4])
942            .with_buffer_index(3)
943            .with_offset(1);
944        let views = ScalarBuffer::from(vec![view.into()]);
945        let buffers = vec![Buffer::from_slice_ref(v)];
946        StringViewArray::new(views, buffers, None);
947    }
948
949    #[test]
950    #[should_panic(
951        expected = "Encountered non-UTF-8 data at index 0: invalid utf-8 sequence of 1 bytes from index 0"
952    )]
953    fn new_with_invalid_utf8_data() {
954        let v: Vec<u8> = vec![
955            // invalid UTF8
956            0xf0, 0x80, 0x80, 0x80, // more bytes to make it larger than 12
957            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
958        ];
959        let view = ByteView::new(v.len() as u32, &v[0..4]);
960        let views = ScalarBuffer::from(vec![view.into()]);
961        let buffers = vec![Buffer::from_slice_ref(v)];
962        StringViewArray::new(views, buffers, None);
963    }
964
965    #[test]
966    #[should_panic(expected = "View at index 0 contained non-zero padding for string of length 1")]
967    fn new_with_invalid_zero_padding() {
968        let mut data = [0; 12];
969        data[0] = b'H';
970        data[11] = 1; // no zero padding
971
972        let mut view_buffer = [0; 16];
973        view_buffer[0..4].copy_from_slice(&1u32.to_le_bytes());
974        view_buffer[4..].copy_from_slice(&data);
975
976        let view = ByteView::from(u128::from_le_bytes(view_buffer));
977        let views = ScalarBuffer::from(vec![view.into()]);
978        let buffers = vec![];
979        StringViewArray::new(views, buffers, None);
980    }
981
982    #[test]
983    #[should_panic(expected = "Mismatch between embedded prefix and data")]
984    fn test_mismatch_between_embedded_prefix_and_data() {
985        let input_str_1 = "Hello, Rustaceans!";
986        let input_str_2 = "Hallo, Rustaceans!";
987        let length = input_str_1.len() as u32;
988        assert!(input_str_1.len() > 12);
989
990        let mut view_buffer = [0; 16];
991        view_buffer[0..4].copy_from_slice(&length.to_le_bytes());
992        view_buffer[4..8].copy_from_slice(&input_str_1.as_bytes()[0..4]);
993        view_buffer[8..12].copy_from_slice(&0u32.to_le_bytes());
994        view_buffer[12..].copy_from_slice(&0u32.to_le_bytes());
995        let view = ByteView::from(u128::from_le_bytes(view_buffer));
996        let views = ScalarBuffer::from(vec![view.into()]);
997        let buffers = vec![Buffer::from_slice_ref(input_str_2.as_bytes())];
998
999        StringViewArray::new(views, buffers, None);
1000    }
1001
1002    #[test]
1003    fn test_gc() {
1004        let test_data = [
1005            Some("longer than 12 bytes"),
1006            Some("short"),
1007            Some("t"),
1008            Some("longer than 12 bytes"),
1009            None,
1010            Some("short"),
1011        ];
1012
1013        let array = {
1014            let mut builder = StringViewBuilder::new().with_fixed_block_size(8); // create multiple buffers
1015            test_data.into_iter().for_each(|v| builder.append_option(v));
1016            builder.finish()
1017        };
1018        assert!(array.buffers.len() > 1);
1019
1020        fn check_gc(to_test: &StringViewArray) {
1021            let gc = to_test.gc();
1022            assert_ne!(to_test.data_buffers().len(), gc.data_buffers().len());
1023
1024            to_test.iter().zip(gc.iter()).for_each(|(a, b)| {
1025                assert_eq!(a, b);
1026            });
1027            assert_eq!(to_test.len(), gc.len());
1028        }
1029
1030        check_gc(&array);
1031        check_gc(&array.slice(1, 3));
1032        check_gc(&array.slice(2, 1));
1033        check_gc(&array.slice(2, 2));
1034        check_gc(&array.slice(3, 1));
1035    }
1036
1037    #[test]
1038    fn test_eq() {
1039        let test_data = [
1040            Some("longer than 12 bytes"),
1041            None,
1042            Some("short"),
1043            Some("again, this is longer than 12 bytes"),
1044        ];
1045
1046        let array1 = {
1047            let mut builder = StringViewBuilder::new().with_fixed_block_size(8);
1048            test_data.into_iter().for_each(|v| builder.append_option(v));
1049            builder.finish()
1050        };
1051        let array2 = {
1052            // create a new array with the same data but different layout
1053            let mut builder = StringViewBuilder::new().with_fixed_block_size(100);
1054            test_data.into_iter().for_each(|v| builder.append_option(v));
1055            builder.finish()
1056        };
1057        assert_eq!(array1, array1.clone());
1058        assert_eq!(array2, array2.clone());
1059        assert_eq!(array1, array2);
1060    }
1061}