1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use num::cast::AsPrimitive;
use num::{BigInt, FromPrimitive, ToPrimitive};
use std::cmp::Ordering;
use std::num::ParseIntError;
use std::ops::{BitAnd, BitOr, BitXor, Neg, Shl, Shr};
use std::str::FromStr;

/// An opaque error similar to [`std::num::ParseIntError`]
#[derive(Debug)]
pub struct ParseI256Error {}

impl From<ParseIntError> for ParseI256Error {
    fn from(_: ParseIntError) -> Self {
        Self {}
    }
}

impl std::fmt::Display for ParseI256Error {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Failed to parse as i256")
    }
}
impl std::error::Error for ParseI256Error {}

/// Error returned by i256::DivRem
enum DivRemError {
    /// Division by zero
    DivideByZero,
    /// Division overflow
    DivideOverflow,
}

/// A signed 256-bit integer
#[allow(non_camel_case_types)]
#[derive(Copy, Clone, Default, Eq, PartialEq, Hash)]
pub struct i256 {
    low: u128,
    high: i128,
}

impl std::fmt::Debug for i256 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{self}")
    }
}

impl std::fmt::Display for i256 {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", BigInt::from_signed_bytes_le(&self.to_le_bytes()))
    }
}

impl FromStr for i256 {
    type Err = ParseI256Error;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        // i128 can store up to 38 decimal digits
        if s.len() <= 38 {
            return Ok(Self::from_i128(i128::from_str(s)?));
        }

        let (negative, s) = match s.as_bytes()[0] {
            b'-' => (true, &s[1..]),
            b'+' => (false, &s[1..]),
            _ => (false, s),
        };

        // Trim leading 0s
        let s = s.trim_start_matches('0');
        if s.is_empty() {
            return Ok(i256::ZERO);
        }

        if !s.as_bytes()[0].is_ascii_digit() {
            // Ensures no duplicate sign
            return Err(ParseI256Error {});
        }

        parse_impl(s, negative)
    }
}

impl From<i8> for i256 {
    fn from(value: i8) -> Self {
        Self::from_i128(value.into())
    }
}

impl From<i16> for i256 {
    fn from(value: i16) -> Self {
        Self::from_i128(value.into())
    }
}

impl From<i32> for i256 {
    fn from(value: i32) -> Self {
        Self::from_i128(value.into())
    }
}

impl From<i64> for i256 {
    fn from(value: i64) -> Self {
        Self::from_i128(value.into())
    }
}

/// Parse `s` with any sign and leading 0s removed
fn parse_impl(s: &str, negative: bool) -> Result<i256, ParseI256Error> {
    if s.len() <= 38 {
        let low = i128::from_str(s)?;
        return Ok(match negative {
            true => i256::from_parts(low.neg() as _, -1),
            false => i256::from_parts(low as _, 0),
        });
    }

    let split = s.len() - 38;
    if !s.as_bytes()[split].is_ascii_digit() {
        // Ensures not splitting codepoint and no sign
        return Err(ParseI256Error {});
    }
    let (hs, ls) = s.split_at(split);

    let mut low = i128::from_str(ls)?;
    let high = parse_impl(hs, negative)?;

    if negative {
        low = -low;
    }

    let low = i256::from_i128(low);

    high.checked_mul(i256::from_i128(10_i128.pow(38)))
        .and_then(|high| high.checked_add(low))
        .ok_or(ParseI256Error {})
}

impl PartialOrd for i256 {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for i256 {
    fn cmp(&self, other: &Self) -> Ordering {
        // This is 25x faster than using a variable length encoding such
        // as BigInt as it avoids allocation and branching
        self.high.cmp(&other.high).then(self.low.cmp(&other.low))
    }
}

impl i256 {
    /// The additive identity for this integer type, i.e. `0`.
    pub const ZERO: Self = i256 { low: 0, high: 0 };

    /// The multiplicative identity for this integer type, i.e. `1`.
    pub const ONE: Self = i256 { low: 1, high: 0 };

    /// The multiplicative inverse for this integer type, i.e. `-1`.
    pub const MINUS_ONE: Self = i256 {
        low: u128::MAX,
        high: -1,
    };

    /// The maximum value that can be represented by this integer type
    pub const MAX: Self = i256 {
        low: u128::MAX,
        high: i128::MAX,
    };

    /// The minimum value that can be represented by this integer type
    pub const MIN: Self = i256 {
        low: u128::MIN,
        high: i128::MIN,
    };

    /// Create an integer value from its representation as a byte array in little-endian.
    #[inline]
    pub const fn from_le_bytes(b: [u8; 32]) -> Self {
        let (low, high) = split_array(b);
        Self {
            high: i128::from_le_bytes(high),
            low: u128::from_le_bytes(low),
        }
    }

    /// Create an integer value from its representation as a byte array in big-endian.
    #[inline]
    pub const fn from_be_bytes(b: [u8; 32]) -> Self {
        let (high, low) = split_array(b);
        Self {
            high: i128::from_be_bytes(high),
            low: u128::from_be_bytes(low),
        }
    }

    pub const fn from_i128(v: i128) -> Self {
        Self::from_parts(v as u128, v >> 127)
    }

    /// Create an integer value from its representation as string.
    #[inline]
    pub fn from_string(value_str: &str) -> Option<Self> {
        value_str.parse().ok()
    }

    /// Create an optional i256 from the provided `f64`. Returning `None`
    /// if overflow occurred
    pub fn from_f64(v: f64) -> Option<Self> {
        BigInt::from_f64(v).and_then(|i| {
            let (integer, overflow) = i256::from_bigint_with_overflow(i);
            if overflow {
                None
            } else {
                Some(integer)
            }
        })
    }

    /// Create an i256 from the provided low u128 and high i128
    #[inline]
    pub const fn from_parts(low: u128, high: i128) -> Self {
        Self { low, high }
    }

    /// Returns this `i256` as a low u128 and high i128
    pub const fn to_parts(self) -> (u128, i128) {
        (self.low, self.high)
    }

    /// Converts this `i256` into an `i128` returning `None` if this would result
    /// in truncation/overflow
    pub fn to_i128(self) -> Option<i128> {
        let as_i128 = self.low as i128;

        let high_negative = self.high < 0;
        let low_negative = as_i128 < 0;
        let high_valid = self.high == -1 || self.high == 0;

        (high_negative == low_negative && high_valid).then_some(self.low as i128)
    }

    /// Wraps this `i256` into an `i128`
    pub fn as_i128(self) -> i128 {
        self.low as i128
    }

    /// Return the memory representation of this integer as a byte array in little-endian byte order.
    #[inline]
    pub const fn to_le_bytes(self) -> [u8; 32] {
        let low = self.low.to_le_bytes();
        let high = self.high.to_le_bytes();
        let mut t = [0; 32];
        let mut i = 0;
        while i != 16 {
            t[i] = low[i];
            t[i + 16] = high[i];
            i += 1;
        }
        t
    }

    /// Return the memory representation of this integer as a byte array in big-endian byte order.
    #[inline]
    pub const fn to_be_bytes(self) -> [u8; 32] {
        let low = self.low.to_be_bytes();
        let high = self.high.to_be_bytes();
        let mut t = [0; 32];
        let mut i = 0;
        while i != 16 {
            t[i] = high[i];
            t[i + 16] = low[i];
            i += 1;
        }
        t
    }

    /// Create an i256 from the provided [`BigInt`] returning a bool indicating
    /// if overflow occurred
    fn from_bigint_with_overflow(v: BigInt) -> (Self, bool) {
        let v_bytes = v.to_signed_bytes_le();
        match v_bytes.len().cmp(&32) {
            Ordering::Less => {
                let mut bytes = if num::Signed::is_negative(&v) {
                    [255_u8; 32]
                } else {
                    [0; 32]
                };
                bytes[0..v_bytes.len()].copy_from_slice(&v_bytes[..v_bytes.len()]);
                (Self::from_le_bytes(bytes), false)
            }
            Ordering::Equal => (Self::from_le_bytes(v_bytes.try_into().unwrap()), false),
            Ordering::Greater => {
                (Self::from_le_bytes(v_bytes[..32].try_into().unwrap()), true)
            }
        }
    }

    /// Computes the absolute value of this i256
    #[inline]
    pub fn wrapping_abs(self) -> Self {
        // -1 if negative, otherwise 0
        let sa = self.high >> 127;
        let sa = Self::from_parts(sa as u128, sa);

        // Inverted if negative
        Self::from_parts(self.low ^ sa.low, self.high ^ sa.high).wrapping_sub(sa)
    }

    /// Computes the absolute value of this i256 returning `None` if `Self == Self::MIN`
    #[inline]
    pub fn checked_abs(self) -> Option<Self> {
        (self != Self::MIN).then(|| self.wrapping_abs())
    }

    /// Negates this i256
    #[inline]
    pub fn wrapping_neg(self) -> Self {
        Self::from_parts(!self.low, !self.high).wrapping_add(i256::ONE)
    }

    /// Negates this i256 returning `None` if `Self == Self::MIN`
    #[inline]
    pub fn checked_neg(self) -> Option<Self> {
        (self != Self::MIN).then(|| self.wrapping_neg())
    }

    /// Performs wrapping addition
    #[inline]
    pub fn wrapping_add(self, other: Self) -> Self {
        let (low, carry) = self.low.overflowing_add(other.low);
        let high = self.high.wrapping_add(other.high).wrapping_add(carry as _);
        Self { low, high }
    }

    /// Performs checked addition
    #[inline]
    pub fn checked_add(self, other: Self) -> Option<Self> {
        let r = self.wrapping_add(other);
        ((other.is_negative() && r < self) || (!other.is_negative() && r >= self))
            .then_some(r)
    }

    /// Performs wrapping subtraction
    #[inline]
    pub fn wrapping_sub(self, other: Self) -> Self {
        let (low, carry) = self.low.overflowing_sub(other.low);
        let high = self.high.wrapping_sub(other.high).wrapping_sub(carry as _);
        Self { low, high }
    }

    /// Performs checked subtraction
    #[inline]
    pub fn checked_sub(self, other: Self) -> Option<Self> {
        let r = self.wrapping_sub(other);
        ((other.is_negative() && r > self) || (!other.is_negative() && r <= self))
            .then_some(r)
    }

    /// Performs wrapping multiplication
    #[inline]
    pub fn wrapping_mul(self, other: Self) -> Self {
        let (low, high) = mulx(self.low, other.low);

        // Compute the high multiples, only impacting the high 128-bits
        let hl = self.high.wrapping_mul(other.low as i128);
        let lh = (self.low as i128).wrapping_mul(other.high);

        Self {
            low,
            high: (high as i128).wrapping_add(hl).wrapping_add(lh),
        }
    }

    /// Performs checked multiplication
    #[inline]
    pub fn checked_mul(self, other: Self) -> Option<Self> {
        if self == i256::ZERO || other == i256::ZERO {
            return Some(i256::ZERO);
        }

        // Shift sign bit down to construct mask of all set bits if negative
        let l_sa = self.high >> 127;
        let r_sa = other.high >> 127;
        let out_sa = (l_sa ^ r_sa) as u128;

        // Compute absolute values
        let l_abs = self.wrapping_abs();
        let r_abs = other.wrapping_abs();

        // Overflow if both high parts are non-zero
        if l_abs.high != 0 && r_abs.high != 0 {
            return None;
        }

        // Perform checked multiplication on absolute values
        let (low, high) = mulx(l_abs.low, r_abs.low);

        // Compute the high multiples, only impacting the high 128-bits
        let hl = (l_abs.high as u128).checked_mul(r_abs.low)?;
        let lh = l_abs.low.checked_mul(r_abs.high as u128)?;

        let high = high.checked_add(hl)?.checked_add(lh)?;

        // Reverse absolute value, if necessary
        let (low, c) = (low ^ out_sa).overflowing_sub(out_sa);
        let high = (high ^ out_sa).wrapping_sub(out_sa).wrapping_sub(c as u128) as i128;

        // Check for overflow in final conversion
        (high.is_negative() == (self.is_negative() ^ other.is_negative()))
            .then_some(Self { low, high })
    }

    /// Return the least number of bits needed to represent the number
    #[inline]
    fn bits_required(&self) -> usize {
        let le_bytes = self.to_le_bytes();
        let arr: [u128; 2] = [
            u128::from_le_bytes(le_bytes[0..16].try_into().unwrap()),
            u128::from_le_bytes(le_bytes[16..32].try_into().unwrap()),
        ];

        let iter = arr.iter().rev().take(2 - 1);
        if self.is_negative() {
            let ctr = iter.take_while(|&&b| b == ::core::u128::MAX).count();
            (128 * (2 - ctr)) + 1 - (!arr[2 - ctr - 1]).leading_zeros() as usize
        } else {
            let ctr = iter.take_while(|&&b| b == ::core::u128::MIN).count();
            (128 * (2 - ctr)) + 1 - arr[2 - ctr - 1].leading_zeros() as usize
        }
    }

    /// Division operation, returns (quotient, remainder).
    /// This basically implements [Long division]: `<https://en.wikipedia.org/wiki/Division_algorithm>`
    #[inline]
    fn div_rem(self, other: Self) -> Result<(Self, Self), DivRemError> {
        if other == Self::ZERO {
            return Err(DivRemError::DivideByZero);
        }
        if other == Self::MINUS_ONE && self == Self::MIN {
            return Err(DivRemError::DivideOverflow);
        }

        if self == Self::MIN || other == Self::MIN {
            let l = BigInt::from_signed_bytes_le(&self.to_le_bytes());
            let r = BigInt::from_signed_bytes_le(&other.to_le_bytes());
            let d = i256::from_bigint_with_overflow(&l / &r).0;
            let r = i256::from_bigint_with_overflow(&l % &r).0;
            return Ok((d, r));
        }

        let mut me = self.checked_abs().unwrap();
        let mut you = other.checked_abs().unwrap();
        let mut ret = [0u128; 2];
        if me < you {
            return Ok((Self::from_parts(ret[0], ret[1] as i128), self));
        }

        let shift = me.bits_required() - you.bits_required();
        you = you.shl(shift as u8);
        for i in (0..=shift).rev() {
            if me >= you {
                ret[i / 128] |= 1 << (i % 128);
                me = me.checked_sub(you).unwrap();
            }
            you = you.shr(1);
        }

        Ok((
            if self.is_negative() == other.is_negative() {
                Self::from_parts(ret[0], ret[1] as i128)
            } else {
                -Self::from_parts(ret[0], ret[1] as i128)
            },
            if self.is_negative() { -me } else { me },
        ))
    }

    /// Performs wrapping division
    #[inline]
    pub fn wrapping_div(self, other: Self) -> Self {
        match self.div_rem(other) {
            Ok((v, _)) => v,
            Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"),
            Err(_) => Self::MIN,
        }
    }

    /// Performs checked division
    #[inline]
    pub fn checked_div(self, other: Self) -> Option<Self> {
        self.div_rem(other).map(|(v, _)| v).ok()
    }

    /// Performs wrapping remainder
    #[inline]
    pub fn wrapping_rem(self, other: Self) -> Self {
        match self.div_rem(other) {
            Ok((_, v)) => v,
            Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"),
            Err(_) => Self::ZERO,
        }
    }

    /// Performs checked remainder
    #[inline]
    pub fn checked_rem(self, other: Self) -> Option<Self> {
        self.div_rem(other).map(|(_, v)| v).ok()
    }

    /// Performs checked exponentiation
    #[inline]
    pub fn checked_pow(self, mut exp: u32) -> Option<Self> {
        if exp == 0 {
            return Some(i256::from_i128(1));
        }

        let mut base = self;
        let mut acc: Self = i256::from_i128(1);

        while exp > 1 {
            if (exp & 1) == 1 {
                acc = acc.checked_mul(base)?;
            }
            exp /= 2;
            base = base.checked_mul(base)?;
        }
        // since exp!=0, finally the exp must be 1.
        // Deal with the final bit of the exponent separately, since
        // squaring the base afterwards is not necessary and may cause a
        // needless overflow.
        acc.checked_mul(base)
    }

    /// Performs wrapping exponentiation
    #[inline]
    pub fn wrapping_pow(self, mut exp: u32) -> Self {
        if exp == 0 {
            return i256::from_i128(1);
        }

        let mut base = self;
        let mut acc: Self = i256::from_i128(1);

        while exp > 1 {
            if (exp & 1) == 1 {
                acc = acc.wrapping_mul(base);
            }
            exp /= 2;
            base = base.wrapping_mul(base);
        }

        // since exp!=0, finally the exp must be 1.
        // Deal with the final bit of the exponent separately, since
        // squaring the base afterwards is not necessary and may cause a
        // needless overflow.
        acc.wrapping_mul(base)
    }

    /// Returns a number [`i256`] representing sign of this [`i256`].
    ///
    /// 0 if the number is zero
    /// 1 if the number is positive
    /// -1 if the number is negative
    pub const fn signum(self) -> Self {
        if self.is_positive() {
            i256::ONE
        } else if self.is_negative() {
            i256::MINUS_ONE
        } else {
            i256::ZERO
        }
    }

    /// Returns `true` if this [`i256`] is negative
    #[inline]
    pub const fn is_negative(self) -> bool {
        self.high.is_negative()
    }

    /// Returns `true` if this [`i256`] is positive
    pub const fn is_positive(self) -> bool {
        self.high.is_positive() || self.high == 0 && self.low != 0
    }
}

/// Temporary workaround due to lack of stable const array slicing
/// See <https://github.com/rust-lang/rust/issues/90091>
const fn split_array<const N: usize, const M: usize>(
    vals: [u8; N],
) -> ([u8; M], [u8; M]) {
    let mut a = [0; M];
    let mut b = [0; M];
    let mut i = 0;
    while i != M {
        a[i] = vals[i];
        b[i] = vals[i + M];
        i += 1;
    }
    (a, b)
}

/// Performs an unsigned multiplication of `a * b` returning a tuple of
/// `(low, high)` where `low` contains the lower 128-bits of the result
/// and `high` the higher 128-bits
///
/// This mirrors the x86 mulx instruction but for 128-bit types
#[inline]
fn mulx(a: u128, b: u128) -> (u128, u128) {
    let split = |a: u128| (a & (u64::MAX as u128), a >> 64);

    const MASK: u128 = u64::MAX as _;

    let (a_low, a_high) = split(a);
    let (b_low, b_high) = split(b);

    // Carry stores the upper 64-bits of low and lower 64-bits of high
    let (mut low, mut carry) = split(a_low * b_low);
    carry += a_high * b_low;

    // Update low and high with corresponding parts of carry
    low += carry << 64;
    let mut high = carry >> 64;

    // Update carry with overflow from low
    carry = low >> 64;
    low &= MASK;

    // Perform multiply including overflow from low
    carry += b_high * a_low;

    // Update low and high with values from carry
    low += carry << 64;
    high += carry >> 64;

    // Perform 4th multiplication
    high += a_high * b_high;

    (low, high)
}

macro_rules! derive_op {
    ($t:ident, $op:ident, $wrapping:ident, $checked:ident) => {
        impl std::ops::$t for i256 {
            type Output = i256;

            #[cfg(debug_assertions)]
            fn $op(self, rhs: Self) -> Self::Output {
                self.$checked(rhs).expect("i256 overflow")
            }

            #[cfg(not(debug_assertions))]
            fn $op(self, rhs: Self) -> Self::Output {
                self.$wrapping(rhs)
            }
        }
    };
}

derive_op!(Add, add, wrapping_add, checked_add);
derive_op!(Sub, sub, wrapping_sub, checked_sub);
derive_op!(Mul, mul, wrapping_mul, checked_mul);
derive_op!(Div, div, wrapping_div, checked_div);
derive_op!(Rem, rem, wrapping_rem, checked_rem);

impl std::ops::Neg for i256 {
    type Output = i256;

    #[cfg(debug_assertions)]
    fn neg(self) -> Self::Output {
        self.checked_neg().expect("i256 overflow")
    }

    #[cfg(not(debug_assertions))]
    fn neg(self) -> Self::Output {
        self.wrapping_neg()
    }
}

impl BitAnd for i256 {
    type Output = i256;

    #[inline]
    fn bitand(self, rhs: Self) -> Self::Output {
        Self {
            low: self.low & rhs.low,
            high: self.high & rhs.high,
        }
    }
}

impl BitOr for i256 {
    type Output = i256;

    #[inline]
    fn bitor(self, rhs: Self) -> Self::Output {
        Self {
            low: self.low | rhs.low,
            high: self.high | rhs.high,
        }
    }
}

impl BitXor for i256 {
    type Output = i256;

    #[inline]
    fn bitxor(self, rhs: Self) -> Self::Output {
        Self {
            low: self.low ^ rhs.low,
            high: self.high ^ rhs.high,
        }
    }
}

impl Shl<u8> for i256 {
    type Output = i256;

    #[inline]
    fn shl(self, rhs: u8) -> Self::Output {
        if rhs == 0 {
            self
        } else if rhs < 128 {
            Self {
                high: self.high << rhs | (self.low >> (128 - rhs)) as i128,
                low: self.low << rhs,
            }
        } else {
            Self {
                high: (self.low << (rhs - 128)) as i128,
                low: 0,
            }
        }
    }
}

impl Shr<u8> for i256 {
    type Output = i256;

    #[inline]
    fn shr(self, rhs: u8) -> Self::Output {
        if rhs == 0 {
            self
        } else if rhs < 128 {
            Self {
                high: self.high >> rhs,
                low: self.low >> rhs | ((self.high as u128) << (128 - rhs)),
            }
        } else {
            Self {
                high: self.high >> 127,
                low: (self.high >> (rhs - 128)) as u128,
            }
        }
    }
}

macro_rules! define_as_primitive {
    ($native_ty:ty) => {
        impl AsPrimitive<i256> for $native_ty {
            fn as_(self) -> i256 {
                i256::from_i128(self as i128)
            }
        }
    };
}

define_as_primitive!(i8);
define_as_primitive!(i16);
define_as_primitive!(i32);
define_as_primitive!(i64);
define_as_primitive!(u8);
define_as_primitive!(u16);
define_as_primitive!(u32);
define_as_primitive!(u64);

impl ToPrimitive for i256 {
    fn to_i64(&self) -> Option<i64> {
        let as_i128 = self.low as i128;

        let high_negative = self.high < 0;
        let low_negative = as_i128 < 0;
        let high_valid = self.high == -1 || self.high == 0;

        if high_negative == low_negative && high_valid {
            let (low_bytes, high_bytes) = split_array(u128::to_le_bytes(self.low));
            let high = i64::from_le_bytes(high_bytes);
            let low = i64::from_le_bytes(low_bytes);

            let high_negative = high < 0;
            let low_negative = low < 0;
            let high_valid = self.high == -1 || self.high == 0;

            (high_negative == low_negative && high_valid).then_some(low)
        } else {
            None
        }
    }

    fn to_u64(&self) -> Option<u64> {
        let as_i128 = self.low as i128;

        let high_negative = self.high < 0;
        let low_negative = as_i128 < 0;
        let high_valid = self.high == -1 || self.high == 0;

        if high_negative == low_negative && high_valid {
            self.low.to_u64()
        } else {
            None
        }
    }
}

#[cfg(all(test, not(miri)))] // llvm.x86.subborrow.64 not supported by MIRI
mod tests {
    use super::*;
    use num::{BigInt, FromPrimitive, Signed, ToPrimitive};
    use rand::{thread_rng, Rng};
    use std::ops::Neg;

    #[test]
    fn test_signed_cmp() {
        let a = i256::from_parts(i128::MAX as u128, 12);
        let b = i256::from_parts(i128::MIN as u128, 12);
        assert!(a < b);

        let a = i256::from_parts(i128::MAX as u128, 12);
        let b = i256::from_parts(i128::MIN as u128, -12);
        assert!(a > b);
    }

    #[test]
    fn test_to_i128() {
        let vals = [
            BigInt::from_i128(-1).unwrap(),
            BigInt::from_i128(i128::MAX).unwrap(),
            BigInt::from_i128(i128::MIN).unwrap(),
            BigInt::from_u128(u128::MIN).unwrap(),
            BigInt::from_u128(u128::MAX).unwrap(),
        ];

        for v in vals {
            let (t, overflow) = i256::from_bigint_with_overflow(v.clone());
            assert!(!overflow);
            assert_eq!(t.to_i128(), v.to_i128(), "{v} vs {t}");
        }
    }

    /// Tests operations against the two provided [`i256`]
    fn test_ops(il: i256, ir: i256) {
        let bl = BigInt::from_signed_bytes_le(&il.to_le_bytes());
        let br = BigInt::from_signed_bytes_le(&ir.to_le_bytes());

        // Comparison
        assert_eq!(il.cmp(&ir), bl.cmp(&br), "{bl} cmp {br}");

        // Conversions
        assert_eq!(i256::from_le_bytes(il.to_le_bytes()), il);
        assert_eq!(i256::from_be_bytes(il.to_be_bytes()), il);
        assert_eq!(i256::from_le_bytes(ir.to_le_bytes()), ir);
        assert_eq!(i256::from_be_bytes(ir.to_be_bytes()), ir);

        // To i128
        assert_eq!(il.to_i128(), bl.to_i128(), "{bl}");
        assert_eq!(ir.to_i128(), br.to_i128(), "{br}");

        // Absolute value
        let (abs, overflow) = i256::from_bigint_with_overflow(bl.abs());
        assert_eq!(il.wrapping_abs(), abs);
        assert_eq!(il.checked_abs().is_none(), overflow);

        let (abs, overflow) = i256::from_bigint_with_overflow(br.abs());
        assert_eq!(ir.wrapping_abs(), abs);
        assert_eq!(ir.checked_abs().is_none(), overflow);

        // Negation
        let (neg, overflow) = i256::from_bigint_with_overflow(bl.clone().neg());
        assert_eq!(il.wrapping_neg(), neg);
        assert_eq!(il.checked_neg().is_none(), overflow);

        // Negation
        let (neg, overflow) = i256::from_bigint_with_overflow(br.clone().neg());
        assert_eq!(ir.wrapping_neg(), neg);
        assert_eq!(ir.checked_neg().is_none(), overflow);

        // Addition
        let actual = il.wrapping_add(ir);
        let (expected, overflow) =
            i256::from_bigint_with_overflow(bl.clone() + br.clone());
        assert_eq!(actual, expected);

        let checked = il.checked_add(ir);
        match overflow {
            true => assert!(checked.is_none()),
            false => assert_eq!(checked, Some(actual)),
        }

        // Subtraction
        let actual = il.wrapping_sub(ir);
        let (expected, overflow) =
            i256::from_bigint_with_overflow(bl.clone() - br.clone());
        assert_eq!(actual.to_string(), expected.to_string());

        let checked = il.checked_sub(ir);
        match overflow {
            true => assert!(checked.is_none()),
            false => assert_eq!(checked, Some(actual), "{bl} - {br} = {expected}"),
        }

        // Multiplication
        let actual = il.wrapping_mul(ir);
        let (expected, overflow) =
            i256::from_bigint_with_overflow(bl.clone() * br.clone());
        assert_eq!(actual.to_string(), expected.to_string());

        let checked = il.checked_mul(ir);
        match overflow {
            true => assert!(
                checked.is_none(),
                "{il} * {ir} = {actual} vs {bl} * {br} = {expected}"
            ),
            false => assert_eq!(
                checked,
                Some(actual),
                "{il} * {ir} = {actual} vs {bl} * {br} = {expected}"
            ),
        }

        // Division
        if ir != i256::ZERO {
            let actual = il.wrapping_div(ir);
            let expected = bl.clone() / br.clone();
            let checked = il.checked_div(ir);

            if ir == i256::MINUS_ONE && il == i256::MIN {
                // BigInt produces an integer over i256::MAX
                assert_eq!(actual, i256::MIN);
                assert!(checked.is_none());
            } else {
                assert_eq!(actual.to_string(), expected.to_string());
                assert_eq!(checked.unwrap().to_string(), expected.to_string());
            }
        } else {
            // `wrapping_div` panics on division by zero
            assert!(il.checked_div(ir).is_none());
        }

        // Remainder
        if ir != i256::ZERO {
            let actual = il.wrapping_rem(ir);
            let expected = bl.clone() % br.clone();
            let checked = il.checked_rem(ir);

            assert_eq!(actual.to_string(), expected.to_string());

            if ir == i256::MINUS_ONE && il == i256::MIN {
                assert!(checked.is_none());
            } else {
                assert_eq!(checked.unwrap().to_string(), expected.to_string());
            }
        } else {
            // `wrapping_rem` panics on division by zero
            assert!(il.checked_rem(ir).is_none());
        }

        // Exponentiation
        for exp in vec![0, 1, 2, 3, 8, 100].into_iter() {
            let actual = il.wrapping_pow(exp);
            let (expected, overflow) =
                i256::from_bigint_with_overflow(bl.clone().pow(exp));
            assert_eq!(actual.to_string(), expected.to_string());

            let checked = il.checked_pow(exp);
            match overflow {
                true => assert!(
                    checked.is_none(),
                    "{il} ^ {exp} = {actual} vs {bl} * {exp} = {expected}"
                ),
                false => assert_eq!(
                    checked,
                    Some(actual),
                    "{il} ^ {exp} = {actual} vs {bl} ^ {exp} = {expected}"
                ),
            }
        }

        // Bit operations
        let actual = il & ir;
        let (expected, _) = i256::from_bigint_with_overflow(bl.clone() & br.clone());
        assert_eq!(actual.to_string(), expected.to_string());

        let actual = il | ir;
        let (expected, _) = i256::from_bigint_with_overflow(bl.clone() | br.clone());
        assert_eq!(actual.to_string(), expected.to_string());

        let actual = il ^ ir;
        let (expected, _) = i256::from_bigint_with_overflow(bl.clone() ^ br);
        assert_eq!(actual.to_string(), expected.to_string());

        for shift in [0_u8, 1, 4, 126, 128, 129, 254, 255] {
            let actual = il << shift;
            let (expected, _) = i256::from_bigint_with_overflow(bl.clone() << shift);
            assert_eq!(actual.to_string(), expected.to_string());

            let actual = il >> shift;
            let (expected, _) = i256::from_bigint_with_overflow(bl.clone() >> shift);
            assert_eq!(actual.to_string(), expected.to_string());
        }
    }

    #[test]
    fn test_i256() {
        let candidates = [
            i256::ZERO,
            i256::ONE,
            i256::MINUS_ONE,
            i256::from_i128(2),
            i256::from_i128(-2),
            i256::from_parts(u128::MAX, 1),
            i256::from_parts(u128::MAX, -1),
            i256::from_parts(0, 1),
            i256::from_parts(0, -1),
            i256::from_parts(1, -1),
            i256::from_parts(1, 1),
            i256::from_parts(0, i128::MAX),
            i256::from_parts(0, i128::MIN),
            i256::from_parts(1, i128::MAX),
            i256::from_parts(1, i128::MIN),
            i256::from_parts(u128::MAX, i128::MIN),
            i256::from_parts(100, 32),
            i256::MIN,
            i256::MAX,
            i256::MIN >> 1,
            i256::MAX >> 1,
            i256::ONE << 127,
            i256::ONE << 128,
            i256::ONE << 129,
            i256::MINUS_ONE << 127,
            i256::MINUS_ONE << 128,
            i256::MINUS_ONE << 129,
        ];

        for il in candidates {
            for ir in candidates {
                test_ops(il, ir)
            }
        }
    }

    #[test]
    fn test_signed_ops() {
        // signum
        assert_eq!(i256::from_i128(1).signum(), i256::ONE);
        assert_eq!(i256::from_i128(0).signum(), i256::ZERO);
        assert_eq!(i256::from_i128(-0).signum(), i256::ZERO);
        assert_eq!(i256::from_i128(-1).signum(), i256::MINUS_ONE);

        // is_positive
        assert!(i256::from_i128(1).is_positive());
        assert!(!i256::from_i128(0).is_positive());
        assert!(!i256::from_i128(-0).is_positive());
        assert!(!i256::from_i128(-1).is_positive());

        // is_negative
        assert!(!i256::from_i128(1).is_negative());
        assert!(!i256::from_i128(0).is_negative());
        assert!(!i256::from_i128(-0).is_negative());
        assert!(i256::from_i128(-1).is_negative());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn test_i256_fuzz() {
        let mut rng = thread_rng();

        for _ in 0..1000 {
            let mut l = [0_u8; 32];
            let len = rng.gen_range(0..32);
            l.iter_mut().take(len).for_each(|x| *x = rng.gen());

            let mut r = [0_u8; 32];
            let len = rng.gen_range(0..32);
            r.iter_mut().take(len).for_each(|x| *x = rng.gen());

            test_ops(i256::from_le_bytes(l), i256::from_le_bytes(r))
        }
    }

    #[test]
    fn test_i256_to_primitive() {
        let a = i256::MAX;
        assert!(a.to_i64().is_none());
        assert!(a.to_u64().is_none());

        let a = i256::from_i128(i128::MAX);
        assert!(a.to_i64().is_none());
        assert!(a.to_u64().is_none());

        let a = i256::from_i128(i64::MAX as i128);
        assert_eq!(a.to_i64().unwrap(), i64::MAX);
        assert_eq!(a.to_u64().unwrap(), i64::MAX as u64);

        let a = i256::from_i128(i64::MAX as i128 + 1);
        assert!(a.to_i64().is_none());
        assert_eq!(a.to_u64().unwrap(), i64::MAX as u64 + 1);

        let a = i256::MIN;
        assert!(a.to_i64().is_none());
        assert!(a.to_u64().is_none());

        let a = i256::from_i128(i128::MIN);
        assert!(a.to_i64().is_none());
        assert!(a.to_u64().is_none());

        let a = i256::from_i128(i64::MIN as i128);
        assert_eq!(a.to_i64().unwrap(), i64::MIN);
        assert!(a.to_u64().is_none());

        let a = i256::from_i128(i64::MIN as i128 - 1);
        assert!(a.to_i64().is_none());
        assert!(a.to_u64().is_none());
    }

    #[test]
    fn test_i256_as_i128() {
        let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(1));
        let i128 = a.as_i128();
        assert_eq!(i128, i128::MIN);

        let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(2));
        let i128 = a.as_i128();
        assert_eq!(i128, i128::MIN + 1);

        let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(1));
        let i128 = a.as_i128();
        assert_eq!(i128, i128::MAX);

        let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(2));
        let i128 = a.as_i128();
        assert_eq!(i128, i128::MAX - 1);
    }

    #[test]
    fn test_string_roundtrip() {
        let roundtrip_cases = [
            i256::ZERO,
            i256::ONE,
            i256::MINUS_ONE,
            i256::from_i128(123456789),
            i256::from_i128(-123456789),
            i256::from_i128(i128::MIN),
            i256::from_i128(i128::MAX),
            i256::MIN,
            i256::MAX,
        ];
        for case in roundtrip_cases {
            let formatted = case.to_string();
            let back: i256 = formatted.parse().unwrap();
            assert_eq!(case, back);
        }
    }

    #[test]
    fn test_from_string() {
        let cases = [
            (
                "000000000000000000000000000000000000000011",
                Some(i256::from_i128(11)),
            ),
            (
                "-000000000000000000000000000000000000000011",
                Some(i256::from_i128(-11)),
            ),
            (
                "-0000000000000000000000000000000000000000123456789",
                Some(i256::from_i128(-123456789)),
            ),
            ("-", None),
            ("+", None),
            ("--1", None),
            ("-+1", None),
            ("000000000000000000000000000000000000000", Some(i256::ZERO)),
            ("0000000000000000000000000000000000000000-11", None),
            ("11-1111111111111111111111111111111111111", None),
            ("115792089237316195423570985008687907853269984665640564039457584007913129639936", None)
        ];
        for (case, expected) in cases {
            assert_eq!(i256::from_string(case), expected)
        }
    }
}