1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::alloc::Deallocation;
use crate::buffer::Buffer;
use crate::native::ArrowNativeType;
use crate::MutableBuffer;
use std::fmt::Formatter;
use std::marker::PhantomData;
use std::ops::Deref;

/// A strongly-typed [`Buffer`] supporting zero-copy cloning and slicing
///
/// The easiest way to think about `ScalarBuffer<T>` is being equivalent to a `Arc<Vec<T>>`,
/// with the following differences:
///
/// - slicing and cloning is O(1).
/// - it supports external allocated memory
///
/// ```
/// # use arrow_buffer::ScalarBuffer;
/// // Zero-copy conversion from Vec
/// let buffer = ScalarBuffer::from(vec![1, 2, 3]);
/// assert_eq!(&buffer, &[1, 2, 3]);
///
/// // Zero-copy slicing
/// let sliced = buffer.slice(1, 2);
/// assert_eq!(&sliced, &[2, 3]);
/// ```
#[derive(Clone)]
pub struct ScalarBuffer<T: ArrowNativeType> {
    /// Underlying data buffer
    buffer: Buffer,
    phantom: PhantomData<T>,
}

impl<T: ArrowNativeType> std::fmt::Debug for ScalarBuffer<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        f.debug_tuple("ScalarBuffer").field(&self.as_ref()).finish()
    }
}

impl<T: ArrowNativeType> ScalarBuffer<T> {
    /// Create a new [`ScalarBuffer`] from a [`Buffer`], and an `offset`
    /// and `length` in units of `T`
    ///
    /// # Panics
    ///
    /// This method will panic if
    ///
    /// * `offset` or `len` would result in overflow
    /// * `buffer` is not aligned to a multiple of `std::mem::size_of::<T>`
    /// * `bytes` is not large enough for the requested slice
    pub fn new(buffer: Buffer, offset: usize, len: usize) -> Self {
        let size = std::mem::size_of::<T>();
        let byte_offset = offset.checked_mul(size).expect("offset overflow");
        let byte_len = len.checked_mul(size).expect("length overflow");
        buffer.slice_with_length(byte_offset, byte_len).into()
    }

    /// Returns a zero-copy slice of this buffer with length `len` and starting at `offset`
    pub fn slice(&self, offset: usize, len: usize) -> Self {
        Self::new(self.buffer.clone(), offset, len)
    }

    /// Returns the inner [`Buffer`]
    pub fn inner(&self) -> &Buffer {
        &self.buffer
    }

    /// Returns the inner [`Buffer`], consuming self
    pub fn into_inner(self) -> Buffer {
        self.buffer
    }
}

impl<T: ArrowNativeType> Deref for ScalarBuffer<T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        // SAFETY: Verified alignment in From<Buffer>
        unsafe {
            std::slice::from_raw_parts(
                self.buffer.as_ptr() as *const T,
                self.buffer.len() / std::mem::size_of::<T>(),
            )
        }
    }
}

impl<T: ArrowNativeType> AsRef<[T]> for ScalarBuffer<T> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        self
    }
}

impl<T: ArrowNativeType> From<MutableBuffer> for ScalarBuffer<T> {
    fn from(value: MutableBuffer) -> Self {
        Buffer::from(value).into()
    }
}

impl<T: ArrowNativeType> From<Buffer> for ScalarBuffer<T> {
    fn from(buffer: Buffer) -> Self {
        let align = std::mem::align_of::<T>();
        let is_aligned = buffer.as_ptr().align_offset(align) == 0;

        match buffer.deallocation() {
            Deallocation::Standard(_) => assert!(
                is_aligned,
                "Memory pointer is not aligned with the specified scalar type"
            ),
            Deallocation::Custom(_) =>
                assert!(is_aligned, "Memory pointer from external source (e.g, FFI) is not aligned with the specified scalar type. Before importing buffer through FFI, please make sure the allocation is aligned."),
        }

        Self {
            buffer,
            phantom: Default::default(),
        }
    }
}

impl<T: ArrowNativeType> From<Vec<T>> for ScalarBuffer<T> {
    fn from(value: Vec<T>) -> Self {
        Self {
            buffer: Buffer::from_vec(value),
            phantom: Default::default(),
        }
    }
}

impl<T: ArrowNativeType> FromIterator<T> for ScalarBuffer<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        iter.into_iter().collect::<Vec<_>>().into()
    }
}

impl<'a, T: ArrowNativeType> IntoIterator for &'a ScalarBuffer<T> {
    type Item = &'a T;
    type IntoIter = std::slice::Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.as_ref().iter()
    }
}

impl<T: ArrowNativeType, S: AsRef<[T]> + ?Sized> PartialEq<S> for ScalarBuffer<T> {
    fn eq(&self, other: &S) -> bool {
        self.as_ref().eq(other.as_ref())
    }
}

impl<T: ArrowNativeType, const N: usize> PartialEq<ScalarBuffer<T>> for [T; N] {
    fn eq(&self, other: &ScalarBuffer<T>) -> bool {
        self.as_ref().eq(other.as_ref())
    }
}

impl<T: ArrowNativeType> PartialEq<ScalarBuffer<T>> for [T] {
    fn eq(&self, other: &ScalarBuffer<T>) -> bool {
        self.as_ref().eq(other.as_ref())
    }
}

impl<T: ArrowNativeType> PartialEq<ScalarBuffer<T>> for Vec<T> {
    fn eq(&self, other: &ScalarBuffer<T>) -> bool {
        self.as_slice().eq(other.as_ref())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_basic() {
        let expected = [0_i32, 1, 2];
        let buffer = Buffer::from_iter(expected.iter().cloned());
        let typed = ScalarBuffer::<i32>::new(buffer.clone(), 0, 3);
        assert_eq!(*typed, expected);

        let typed = ScalarBuffer::<i32>::new(buffer.clone(), 1, 2);
        assert_eq!(*typed, expected[1..]);

        let typed = ScalarBuffer::<i32>::new(buffer.clone(), 1, 0);
        assert!(typed.is_empty());

        let typed = ScalarBuffer::<i32>::new(buffer, 3, 0);
        assert!(typed.is_empty());
    }

    #[test]
    fn test_debug() {
        let buffer = ScalarBuffer::from(vec![1, 2, 3]);
        assert_eq!(format!("{buffer:?}"), "ScalarBuffer([1, 2, 3])");
    }

    #[test]
    #[should_panic(
        expected = "Memory pointer is not aligned with the specified scalar type"
    )]
    fn test_unaligned() {
        let expected = [0_i32, 1, 2];
        let buffer = Buffer::from_iter(expected.iter().cloned());
        let buffer = buffer.slice(1);
        ScalarBuffer::<i32>::new(buffer, 0, 2);
    }

    #[test]
    #[should_panic(
        expected = "the offset of the new Buffer cannot exceed the existing length"
    )]
    fn test_length_out_of_bounds() {
        let buffer = Buffer::from_iter([0_i32, 1, 2]);
        ScalarBuffer::<i32>::new(buffer, 1, 3);
    }

    #[test]
    #[should_panic(
        expected = "the offset of the new Buffer cannot exceed the existing length"
    )]
    fn test_offset_out_of_bounds() {
        let buffer = Buffer::from_iter([0_i32, 1, 2]);
        ScalarBuffer::<i32>::new(buffer, 4, 0);
    }

    #[test]
    #[should_panic(expected = "offset overflow")]
    fn test_length_overflow() {
        let buffer = Buffer::from_iter([0_i32, 1, 2]);
        ScalarBuffer::<i32>::new(buffer, usize::MAX, 1);
    }

    #[test]
    #[should_panic(expected = "offset overflow")]
    fn test_start_overflow() {
        let buffer = Buffer::from_iter([0_i32, 1, 2]);
        ScalarBuffer::<i32>::new(buffer, usize::MAX / 4 + 1, 0);
    }

    #[test]
    #[should_panic(expected = "length overflow")]
    fn test_end_overflow() {
        let buffer = Buffer::from_iter([0_i32, 1, 2]);
        ScalarBuffer::<i32>::new(buffer, 0, usize::MAX / 4 + 1);
    }
}