use crate::alloc::Deallocation;
use crate::buffer::Buffer;
use crate::native::ArrowNativeType;
use crate::MutableBuffer;
use std::fmt::Formatter;
use std::marker::PhantomData;
use std::ops::Deref;
#[derive(Clone)]
pub struct ScalarBuffer<T: ArrowNativeType> {
buffer: Buffer,
phantom: PhantomData<T>,
}
impl<T: ArrowNativeType> std::fmt::Debug for ScalarBuffer<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("ScalarBuffer").field(&self.as_ref()).finish()
}
}
impl<T: ArrowNativeType> ScalarBuffer<T> {
pub fn new(buffer: Buffer, offset: usize, len: usize) -> Self {
let size = std::mem::size_of::<T>();
let byte_offset = offset.checked_mul(size).expect("offset overflow");
let byte_len = len.checked_mul(size).expect("length overflow");
buffer.slice_with_length(byte_offset, byte_len).into()
}
pub fn slice(&self, offset: usize, len: usize) -> Self {
Self::new(self.buffer.clone(), offset, len)
}
pub fn inner(&self) -> &Buffer {
&self.buffer
}
pub fn into_inner(self) -> Buffer {
self.buffer
}
}
impl<T: ArrowNativeType> Deref for ScalarBuffer<T> {
type Target = [T];
#[inline]
fn deref(&self) -> &Self::Target {
unsafe {
std::slice::from_raw_parts(
self.buffer.as_ptr() as *const T,
self.buffer.len() / std::mem::size_of::<T>(),
)
}
}
}
impl<T: ArrowNativeType> AsRef<[T]> for ScalarBuffer<T> {
#[inline]
fn as_ref(&self) -> &[T] {
self
}
}
impl<T: ArrowNativeType> From<MutableBuffer> for ScalarBuffer<T> {
fn from(value: MutableBuffer) -> Self {
Buffer::from(value).into()
}
}
impl<T: ArrowNativeType> From<Buffer> for ScalarBuffer<T> {
fn from(buffer: Buffer) -> Self {
let align = std::mem::align_of::<T>();
let is_aligned = buffer.as_ptr().align_offset(align) == 0;
match buffer.deallocation() {
Deallocation::Standard(_) => assert!(
is_aligned,
"Memory pointer is not aligned with the specified scalar type"
),
Deallocation::Custom(_) =>
assert!(is_aligned, "Memory pointer from external source (e.g, FFI) is not aligned with the specified scalar type. Before importing buffer through FFI, please make sure the allocation is aligned."),
}
Self {
buffer,
phantom: Default::default(),
}
}
}
impl<T: ArrowNativeType> From<Vec<T>> for ScalarBuffer<T> {
fn from(value: Vec<T>) -> Self {
Self {
buffer: Buffer::from_vec(value),
phantom: Default::default(),
}
}
}
impl<T: ArrowNativeType> FromIterator<T> for ScalarBuffer<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
iter.into_iter().collect::<Vec<_>>().into()
}
}
impl<'a, T: ArrowNativeType> IntoIterator for &'a ScalarBuffer<T> {
type Item = &'a T;
type IntoIter = std::slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.as_ref().iter()
}
}
impl<T: ArrowNativeType, S: AsRef<[T]> + ?Sized> PartialEq<S> for ScalarBuffer<T> {
fn eq(&self, other: &S) -> bool {
self.as_ref().eq(other.as_ref())
}
}
impl<T: ArrowNativeType, const N: usize> PartialEq<ScalarBuffer<T>> for [T; N] {
fn eq(&self, other: &ScalarBuffer<T>) -> bool {
self.as_ref().eq(other.as_ref())
}
}
impl<T: ArrowNativeType> PartialEq<ScalarBuffer<T>> for [T] {
fn eq(&self, other: &ScalarBuffer<T>) -> bool {
self.as_ref().eq(other.as_ref())
}
}
impl<T: ArrowNativeType> PartialEq<ScalarBuffer<T>> for Vec<T> {
fn eq(&self, other: &ScalarBuffer<T>) -> bool {
self.as_slice().eq(other.as_ref())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_basic() {
let expected = [0_i32, 1, 2];
let buffer = Buffer::from_iter(expected.iter().cloned());
let typed = ScalarBuffer::<i32>::new(buffer.clone(), 0, 3);
assert_eq!(*typed, expected);
let typed = ScalarBuffer::<i32>::new(buffer.clone(), 1, 2);
assert_eq!(*typed, expected[1..]);
let typed = ScalarBuffer::<i32>::new(buffer.clone(), 1, 0);
assert!(typed.is_empty());
let typed = ScalarBuffer::<i32>::new(buffer, 3, 0);
assert!(typed.is_empty());
}
#[test]
fn test_debug() {
let buffer = ScalarBuffer::from(vec![1, 2, 3]);
assert_eq!(format!("{buffer:?}"), "ScalarBuffer([1, 2, 3])");
}
#[test]
#[should_panic(
expected = "Memory pointer is not aligned with the specified scalar type"
)]
fn test_unaligned() {
let expected = [0_i32, 1, 2];
let buffer = Buffer::from_iter(expected.iter().cloned());
let buffer = buffer.slice(1);
ScalarBuffer::<i32>::new(buffer, 0, 2);
}
#[test]
#[should_panic(
expected = "the offset of the new Buffer cannot exceed the existing length"
)]
fn test_length_out_of_bounds() {
let buffer = Buffer::from_iter([0_i32, 1, 2]);
ScalarBuffer::<i32>::new(buffer, 1, 3);
}
#[test]
#[should_panic(
expected = "the offset of the new Buffer cannot exceed the existing length"
)]
fn test_offset_out_of_bounds() {
let buffer = Buffer::from_iter([0_i32, 1, 2]);
ScalarBuffer::<i32>::new(buffer, 4, 0);
}
#[test]
#[should_panic(expected = "offset overflow")]
fn test_length_overflow() {
let buffer = Buffer::from_iter([0_i32, 1, 2]);
ScalarBuffer::<i32>::new(buffer, usize::MAX, 1);
}
#[test]
#[should_panic(expected = "offset overflow")]
fn test_start_overflow() {
let buffer = Buffer::from_iter([0_i32, 1, 2]);
ScalarBuffer::<i32>::new(buffer, usize::MAX / 4 + 1, 0);
}
#[test]
#[should_panic(expected = "length overflow")]
fn test_end_overflow() {
let buffer = Buffer::from_iter([0_i32, 1, 2]);
ScalarBuffer::<i32>::new(buffer, 0, usize::MAX / 4 + 1);
}
}