1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::buffer::ScalarBuffer;
use crate::ArrowNativeType;
/// A slice-able buffer of monotonically increasing, positive integers used to store run-ends
///
/// # Logical vs Physical
///
/// A [`RunEndBuffer`] is used to encode runs of the same value, the index of each run is
/// called the physical index. The logical index is then the corresponding index in the logical
/// run-encoded array, i.e. a single run of length `3`, would have the logical indices `0..3`.
///
/// Each value in [`RunEndBuffer::values`] is the cumulative length of all runs in the
/// logical array, up to that physical index.
///
/// Consider a [`RunEndBuffer`] containing `[3, 4, 6]`. The maximum physical index is `2`,
/// as there are `3` values, and the maximum logical index is `5`, as the maximum run end
/// is `6`. The physical indices are therefore `[0, 0, 0, 1, 2, 2]`
///
/// ```text
/// ┌─────────┐ ┌─────────┐ ┌─────────┐
/// │ 3 │ │ 0 │ ─┬──────▶ │ 0 │
/// ├─────────┤ ├─────────┤ │ ├─────────┤
/// │ 4 │ │ 1 │ ─┤ ┌────▶ │ 1 │
/// ├─────────┤ ├─────────┤ │ │ ├─────────┤
/// │ 6 │ │ 2 │ ─┘ │ ┌──▶ │ 2 │
/// └─────────┘ ├─────────┤ │ │ └─────────┘
/// run ends │ 3 │ ───┘ │ physical indices
/// ├─────────┤ │
/// │ 4 │ ─────┤
/// ├─────────┤ │
/// │ 5 │ ─────┘
/// └─────────┘
/// logical indices
/// ```
///
/// # Slicing
///
/// In order to provide zero-copy slicing, this container stores a separate offset and length
///
/// For example, a [`RunEndBuffer`] containing values `[3, 6, 8]` with offset and length `4` would
/// describe the physical indices `1, 1, 2, 2`
///
/// For example, a [`RunEndBuffer`] containing values `[6, 8, 9]` with offset `2` and length `5`
/// would describe the physical indices `0, 0, 0, 0, 1`
///
/// [Run-End encoded layout]: https://arrow.apache.org/docs/format/Columnar.html#run-end-encoded-layout
#[derive(Debug, Clone)]
pub struct RunEndBuffer<E: ArrowNativeType> {
run_ends: ScalarBuffer<E>,
len: usize,
offset: usize,
}
impl<E> RunEndBuffer<E>
where
E: ArrowNativeType,
{
/// Create a new [`RunEndBuffer`] from a [`ScalarBuffer`], an `offset` and `len`
///
/// # Panics
///
/// - `buffer` does not contain strictly increasing values greater than zero
/// - the last value of `buffer` is less than `offset + len`
pub fn new(run_ends: ScalarBuffer<E>, offset: usize, len: usize) -> Self {
assert!(
run_ends.windows(2).all(|w| w[0] < w[1]),
"run-ends not strictly increasing"
);
if len != 0 {
assert!(!run_ends.is_empty(), "non-empty slice but empty run-ends");
let end = E::from_usize(offset.saturating_add(len)).unwrap();
assert!(
*run_ends.first().unwrap() > E::usize_as(0),
"run-ends not greater than 0"
);
assert!(
*run_ends.last().unwrap() >= end,
"slice beyond bounds of run-ends"
);
}
Self {
run_ends,
offset,
len,
}
}
/// Create a new [`RunEndBuffer`] from an [`ScalarBuffer`], an `offset` and `len`
///
/// # Safety
///
/// - `buffer` must contain strictly increasing values greater than zero
/// - The last value of `buffer` must be greater than or equal to `offset + len`
pub unsafe fn new_unchecked(
run_ends: ScalarBuffer<E>,
offset: usize,
len: usize,
) -> Self {
Self {
run_ends,
offset,
len,
}
}
/// Returns the logical offset into the run-ends stored by this buffer
#[inline]
pub fn offset(&self) -> usize {
self.offset
}
/// Returns the logical length of the run-ends stored by this buffer
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns true if this buffer is empty
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the values of this [`RunEndBuffer`] not including any offset
#[inline]
pub fn values(&self) -> &[E] {
&self.run_ends
}
/// Returns the maximum run-end encoded in the underlying buffer
#[inline]
pub fn max_value(&self) -> usize {
self.values().last().copied().unwrap_or_default().as_usize()
}
/// Performs a binary search to find the physical index for the given logical index
///
/// The result is arbitrary if `logical_index >= self.len()`
pub fn get_physical_index(&self, logical_index: usize) -> usize {
let logical_index = E::usize_as(self.offset + logical_index);
let cmp = |p: &E| p.partial_cmp(&logical_index).unwrap();
match self.run_ends.binary_search_by(cmp) {
Ok(idx) => idx + 1,
Err(idx) => idx,
}
}
/// Returns the physical index at which the logical array starts
pub fn get_start_physical_index(&self) -> usize {
if self.offset == 0 || self.len == 0 {
return 0;
}
// Fallback to binary search
self.get_physical_index(0)
}
/// Returns the physical index at which the logical array ends
pub fn get_end_physical_index(&self) -> usize {
if self.len == 0 {
return 0;
}
if self.max_value() == self.offset + self.len {
return self.values().len() - 1;
}
// Fallback to binary search
self.get_physical_index(self.len - 1)
}
/// Slices this [`RunEndBuffer`] by the provided `offset` and `length`
pub fn slice(&self, offset: usize, len: usize) -> Self {
assert!(
offset.saturating_add(len) <= self.len,
"the length + offset of the sliced RunEndBuffer cannot exceed the existing length"
);
Self {
run_ends: self.run_ends.clone(),
offset: self.offset + offset,
len,
}
}
/// Returns the inner [`ScalarBuffer`]
pub fn inner(&self) -> &ScalarBuffer<E> {
&self.run_ends
}
/// Returns the inner [`ScalarBuffer`], consuming self
pub fn into_inner(self) -> ScalarBuffer<E> {
self.run_ends
}
}
#[cfg(test)]
mod tests {
use crate::buffer::RunEndBuffer;
#[test]
fn test_zero_length_slice() {
let buffer = RunEndBuffer::new(vec![1_i32, 4_i32].into(), 0, 4);
assert_eq!(buffer.get_start_physical_index(), 0);
assert_eq!(buffer.get_end_physical_index(), 1);
assert_eq!(buffer.get_physical_index(3), 1);
for offset in 0..4 {
let sliced = buffer.slice(offset, 0);
assert_eq!(sliced.get_start_physical_index(), 0);
assert_eq!(sliced.get_end_physical_index(), 0);
}
let buffer = RunEndBuffer::new(Vec::<i32>::new().into(), 0, 0);
assert_eq!(buffer.get_start_physical_index(), 0);
assert_eq!(buffer.get_end_physical_index(), 0);
}
}