1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::buffer::ScalarBuffer;
use crate::{ArrowNativeType, MutableBuffer};
use std::ops::Deref;

/// A non-empty buffer of monotonically increasing, positive integers.
///
/// [`OffsetBuffer`] are used to represent ranges of offsets. An
/// `OffsetBuffer` of `N+1` items contains `N` such ranges. The start
/// offset for element `i` is `offsets[i]` and the end offset is
/// `offsets[i+1]`. Equal offsets represent an empty range.
///
/// # Example
///
/// This example shows how 5 distinct ranges, are represented using a
/// 6 entry `OffsetBuffer`. The first entry `(0, 3)` represents the
/// three offsets `0, 1, 2`. The entry `(3,3)` represent no offsets
/// (e.g. an empty list).
///
/// ```text
///   ┌───────┐                ┌───┐
///   │ (0,3) │                │ 0 │
///   ├───────┤                ├───┤
///   │ (3,3) │                │ 3 │
///   ├───────┤                ├───┤
///   │ (3,4) │                │ 3 │
///   ├───────┤                ├───┤
///   │ (4,5) │                │ 4 │
///   ├───────┤                ├───┤
///   │ (5,7) │                │ 5 │
///   └───────┘                ├───┤
///                            │ 7 │
///                            └───┘
///
///                        Offsets Buffer
///    Logical
///    Offsets
///
///  (offsets[i],
///   offsets[i+1])
/// ```

#[derive(Debug, Clone)]
pub struct OffsetBuffer<O: ArrowNativeType>(ScalarBuffer<O>);

impl<O: ArrowNativeType> OffsetBuffer<O> {
    /// Create a new [`OffsetBuffer`] from the provided [`ScalarBuffer`]
    ///
    /// # Panics
    ///
    /// Panics if `buffer` is not a non-empty buffer containing
    /// monotonically increasing values greater than or equal to zero
    pub fn new(buffer: ScalarBuffer<O>) -> Self {
        assert!(!buffer.is_empty(), "offsets cannot be empty");
        assert!(
            buffer[0] >= O::usize_as(0),
            "offsets must be greater than 0"
        );
        assert!(
            buffer.windows(2).all(|w| w[0] <= w[1]),
            "offsets must be monotonically increasing"
        );
        Self(buffer)
    }

    /// Create a new [`OffsetBuffer`] from the provided [`ScalarBuffer`]
    ///
    /// # Safety
    ///
    /// `buffer` must be a non-empty buffer containing monotonically increasing
    /// values greater than or equal to zero
    pub unsafe fn new_unchecked(buffer: ScalarBuffer<O>) -> Self {
        Self(buffer)
    }

    /// Create a new [`OffsetBuffer`] containing a single 0 value
    pub fn new_empty() -> Self {
        let buffer = MutableBuffer::from_len_zeroed(std::mem::size_of::<O>());
        Self(buffer.into_buffer().into())
    }

    /// Create a new [`OffsetBuffer`] containing `len + 1` `0` values
    pub fn new_zeroed(len: usize) -> Self {
        let len_bytes = len
            .checked_add(1)
            .and_then(|o| o.checked_mul(std::mem::size_of::<O>()))
            .expect("overflow");
        let buffer = MutableBuffer::from_len_zeroed(len_bytes);
        Self(buffer.into_buffer().into())
    }

    /// Create a new [`OffsetBuffer`] from the iterator of slice lengths
    ///
    /// ```
    /// # use arrow_buffer::OffsetBuffer;
    /// let offsets = OffsetBuffer::<i32>::from_lengths([1, 3, 5]);
    /// assert_eq!(offsets.as_ref(), &[0, 1, 4, 9]);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics on overflow
    pub fn from_lengths<I>(lengths: I) -> Self
    where
        I: IntoIterator<Item = usize>,
    {
        let iter = lengths.into_iter();
        let mut out = Vec::with_capacity(iter.size_hint().0 + 1);
        out.push(O::usize_as(0));

        let mut acc = 0_usize;
        for length in iter {
            acc = acc.checked_add(length).expect("usize overflow");
            out.push(O::usize_as(acc))
        }
        // Check for overflow
        O::from_usize(acc).expect("offset overflow");
        Self(out.into())
    }

    /// Returns the inner [`ScalarBuffer`]
    pub fn inner(&self) -> &ScalarBuffer<O> {
        &self.0
    }

    /// Returns the inner [`ScalarBuffer`], consuming self
    pub fn into_inner(self) -> ScalarBuffer<O> {
        self.0
    }

    /// Returns a zero-copy slice of this buffer with length `len` and starting at `offset`
    pub fn slice(&self, offset: usize, len: usize) -> Self {
        Self(self.0.slice(offset, len.saturating_add(1)))
    }
}

impl<T: ArrowNativeType> Deref for OffsetBuffer<T> {
    type Target = [T];

    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T: ArrowNativeType> AsRef<[T]> for OffsetBuffer<T> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        self
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic(expected = "offsets cannot be empty")]
    fn empty_offsets() {
        OffsetBuffer::new(Vec::<i32>::new().into());
    }

    #[test]
    #[should_panic(expected = "offsets must be greater than 0")]
    fn negative_offsets() {
        OffsetBuffer::new(vec![-1, 0, 1].into());
    }

    #[test]
    fn offsets() {
        OffsetBuffer::new(vec![0, 1, 2, 3].into());

        let offsets = OffsetBuffer::<i32>::new_zeroed(3);
        assert_eq!(offsets.as_ref(), &[0; 4]);

        let offsets = OffsetBuffer::<i32>::new_zeroed(0);
        assert_eq!(offsets.as_ref(), &[0; 1]);
    }

    #[test]
    #[should_panic(expected = "overflow")]
    fn offsets_new_zeroed_overflow() {
        OffsetBuffer::<i32>::new_zeroed(usize::MAX);
    }

    #[test]
    #[should_panic(expected = "offsets must be monotonically increasing")]
    fn non_monotonic_offsets() {
        OffsetBuffer::new(vec![1, 2, 0].into());
    }

    #[test]
    fn from_lengths() {
        let buffer = OffsetBuffer::<i32>::from_lengths([2, 6, 3, 7, 2]);
        assert_eq!(buffer.as_ref(), &[0, 2, 8, 11, 18, 20]);

        let half_max = i32::MAX / 2;
        let buffer =
            OffsetBuffer::<i32>::from_lengths([half_max as usize, half_max as usize]);
        assert_eq!(buffer.as_ref(), &[0, half_max, half_max * 2]);
    }

    #[test]
    #[should_panic(expected = "offset overflow")]
    fn from_lengths_offset_overflow() {
        OffsetBuffer::<i32>::from_lengths([i32::MAX as usize, 1]);
    }

    #[test]
    #[should_panic(expected = "usize overflow")]
    fn from_lengths_usize_overflow() {
        OffsetBuffer::<i32>::from_lengths([usize::MAX, 1]);
    }
}