1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::buffer::ScalarBuffer;
use crate::{ArrowNativeType, MutableBuffer, OffsetBufferBuilder};
use std::ops::Deref;
/// A non-empty buffer of monotonically increasing, positive integers.
///
/// [`OffsetBuffer`] are used to represent ranges of offsets. An
/// `OffsetBuffer` of `N+1` items contains `N` such ranges. The start
/// offset for element `i` is `offsets[i]` and the end offset is
/// `offsets[i+1]`. Equal offsets represent an empty range.
///
/// # Example
///
/// This example shows how 5 distinct ranges, are represented using a
/// 6 entry `OffsetBuffer`. The first entry `(0, 3)` represents the
/// three offsets `0, 1, 2`. The entry `(3,3)` represent no offsets
/// (e.g. an empty list).
///
/// ```text
/// ┌───────┐ ┌───┐
/// │ (0,3) │ │ 0 │
/// ├───────┤ ├───┤
/// │ (3,3) │ │ 3 │
/// ├───────┤ ├───┤
/// │ (3,4) │ │ 3 │
/// ├───────┤ ├───┤
/// │ (4,5) │ │ 4 │
/// ├───────┤ ├───┤
/// │ (5,7) │ │ 5 │
/// └───────┘ ├───┤
/// │ 7 │
/// └───┘
///
/// Offsets Buffer
/// Logical
/// Offsets
///
/// (offsets[i],
/// offsets[i+1])
/// ```
#[derive(Debug, Clone)]
pub struct OffsetBuffer<O: ArrowNativeType>(ScalarBuffer<O>);
impl<O: ArrowNativeType> OffsetBuffer<O> {
/// Create a new [`OffsetBuffer`] from the provided [`ScalarBuffer`]
///
/// # Panics
///
/// Panics if `buffer` is not a non-empty buffer containing
/// monotonically increasing values greater than or equal to zero
pub fn new(buffer: ScalarBuffer<O>) -> Self {
assert!(!buffer.is_empty(), "offsets cannot be empty");
assert!(
buffer[0] >= O::usize_as(0),
"offsets must be greater than 0"
);
assert!(
buffer.windows(2).all(|w| w[0] <= w[1]),
"offsets must be monotonically increasing"
);
Self(buffer)
}
/// Create a new [`OffsetBuffer`] from the provided [`ScalarBuffer`]
///
/// # Safety
///
/// `buffer` must be a non-empty buffer containing monotonically increasing
/// values greater than or equal to zero
pub unsafe fn new_unchecked(buffer: ScalarBuffer<O>) -> Self {
Self(buffer)
}
/// Create a new [`OffsetBuffer`] containing a single 0 value
pub fn new_empty() -> Self {
let buffer = MutableBuffer::from_len_zeroed(std::mem::size_of::<O>());
Self(buffer.into_buffer().into())
}
/// Create a new [`OffsetBuffer`] containing `len + 1` `0` values
pub fn new_zeroed(len: usize) -> Self {
let len_bytes = len
.checked_add(1)
.and_then(|o| o.checked_mul(std::mem::size_of::<O>()))
.expect("overflow");
let buffer = MutableBuffer::from_len_zeroed(len_bytes);
Self(buffer.into_buffer().into())
}
/// Create a new [`OffsetBuffer`] from the iterator of slice lengths
///
/// ```
/// # use arrow_buffer::OffsetBuffer;
/// let offsets = OffsetBuffer::<i32>::from_lengths([1, 3, 5]);
/// assert_eq!(offsets.as_ref(), &[0, 1, 4, 9]);
/// ```
///
/// # Panics
///
/// Panics on overflow
pub fn from_lengths<I>(lengths: I) -> Self
where
I: IntoIterator<Item = usize>,
{
let iter = lengths.into_iter();
let mut out = Vec::with_capacity(iter.size_hint().0 + 1);
out.push(O::usize_as(0));
let mut acc = 0_usize;
for length in iter {
acc = acc.checked_add(length).expect("usize overflow");
out.push(O::usize_as(acc))
}
// Check for overflow
O::from_usize(acc).expect("offset overflow");
Self(out.into())
}
/// Returns the inner [`ScalarBuffer`]
pub fn inner(&self) -> &ScalarBuffer<O> {
&self.0
}
/// Returns the inner [`ScalarBuffer`], consuming self
pub fn into_inner(self) -> ScalarBuffer<O> {
self.0
}
/// Returns a zero-copy slice of this buffer with length `len` and starting at `offset`
pub fn slice(&self, offset: usize, len: usize) -> Self {
Self(self.0.slice(offset, len.saturating_add(1)))
}
/// Returns true if this [`OffsetBuffer`] is equal to `other`, using pointer comparisons
/// to determine buffer equality. This is cheaper than `PartialEq::eq` but may
/// return false when the arrays are logically equal
#[inline]
pub fn ptr_eq(&self, other: &Self) -> bool {
self.0.ptr_eq(&other.0)
}
}
impl<T: ArrowNativeType> Deref for OffsetBuffer<T> {
type Target = [T];
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T: ArrowNativeType> AsRef<[T]> for OffsetBuffer<T> {
#[inline]
fn as_ref(&self) -> &[T] {
self
}
}
impl<O: ArrowNativeType> From<OffsetBufferBuilder<O>> for OffsetBuffer<O> {
fn from(value: OffsetBufferBuilder<O>) -> Self {
value.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic(expected = "offsets cannot be empty")]
fn empty_offsets() {
OffsetBuffer::new(Vec::<i32>::new().into());
}
#[test]
#[should_panic(expected = "offsets must be greater than 0")]
fn negative_offsets() {
OffsetBuffer::new(vec![-1, 0, 1].into());
}
#[test]
fn offsets() {
OffsetBuffer::new(vec![0, 1, 2, 3].into());
let offsets = OffsetBuffer::<i32>::new_zeroed(3);
assert_eq!(offsets.as_ref(), &[0; 4]);
let offsets = OffsetBuffer::<i32>::new_zeroed(0);
assert_eq!(offsets.as_ref(), &[0; 1]);
}
#[test]
#[should_panic(expected = "overflow")]
fn offsets_new_zeroed_overflow() {
OffsetBuffer::<i32>::new_zeroed(usize::MAX);
}
#[test]
#[should_panic(expected = "offsets must be monotonically increasing")]
fn non_monotonic_offsets() {
OffsetBuffer::new(vec![1, 2, 0].into());
}
#[test]
fn from_lengths() {
let buffer = OffsetBuffer::<i32>::from_lengths([2, 6, 3, 7, 2]);
assert_eq!(buffer.as_ref(), &[0, 2, 8, 11, 18, 20]);
let half_max = i32::MAX / 2;
let buffer = OffsetBuffer::<i32>::from_lengths([half_max as usize, half_max as usize]);
assert_eq!(buffer.as_ref(), &[0, half_max, half_max * 2]);
}
#[test]
#[should_panic(expected = "offset overflow")]
fn from_lengths_offset_overflow() {
OffsetBuffer::<i32>::from_lengths([i32::MAX as usize, 1]);
}
#[test]
#[should_panic(expected = "usize overflow")]
fn from_lengths_usize_overflow() {
OffsetBuffer::<i32>::from_lengths([usize::MAX, 1]);
}
}