arrow_buffer/buffer/immutable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::alloc::Layout;
use std::fmt::Debug;
use std::ptr::NonNull;
use std::sync::Arc;
use crate::alloc::{Allocation, Deallocation};
use crate::util::bit_chunk_iterator::{BitChunks, UnalignedBitChunk};
use crate::BufferBuilder;
use crate::{bit_util, bytes::Bytes, native::ArrowNativeType};
use super::ops::bitwise_unary_op_helper;
use super::{MutableBuffer, ScalarBuffer};
/// Buffer represents a contiguous memory region that can be shared with other buffers and across
/// thread boundaries.
#[derive(Clone, Debug)]
pub struct Buffer {
/// the internal byte buffer.
data: Arc<Bytes>,
/// Pointer into `data` valid
///
/// We store a pointer instead of an offset to avoid pointer arithmetic
/// which causes LLVM to fail to vectorise code correctly
ptr: *const u8,
/// Byte length of the buffer.
///
/// Must be less than or equal to `data.len()`
length: usize,
}
impl PartialEq for Buffer {
fn eq(&self, other: &Self) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl Eq for Buffer {}
unsafe impl Send for Buffer where Bytes: Send {}
unsafe impl Sync for Buffer where Bytes: Sync {}
impl Buffer {
/// Auxiliary method to create a new Buffer
#[inline]
pub fn from_bytes(bytes: Bytes) -> Self {
let length = bytes.len();
let ptr = bytes.as_ptr();
Buffer {
data: Arc::new(bytes),
ptr,
length,
}
}
/// Returns the offset, in bytes, of `Self::ptr` to `Self::data`
///
/// self.ptr and self.data can be different after slicing or advancing the buffer.
pub fn ptr_offset(&self) -> usize {
// Safety: `ptr` is always in bounds of `data`.
unsafe { self.ptr.offset_from(self.data.ptr().as_ptr()) as usize }
}
/// Returns the pointer to the start of the buffer without the offset.
pub fn data_ptr(&self) -> NonNull<u8> {
self.data.ptr()
}
/// Create a [`Buffer`] from the provided [`Vec`] without copying
#[inline]
pub fn from_vec<T: ArrowNativeType>(vec: Vec<T>) -> Self {
MutableBuffer::from(vec).into()
}
/// Initializes a [Buffer] from a slice of items.
pub fn from_slice_ref<U: ArrowNativeType, T: AsRef<[U]>>(items: T) -> Self {
let slice = items.as_ref();
let capacity = std::mem::size_of_val(slice);
let mut buffer = MutableBuffer::with_capacity(capacity);
buffer.extend_from_slice(slice);
buffer.into()
}
/// Creates a buffer from an existing memory region. Ownership of the memory is tracked via reference counting
/// and the memory will be freed using the `drop` method of [crate::alloc::Allocation] when the reference count reaches zero.
///
/// # Arguments
///
/// * `ptr` - Pointer to raw parts
/// * `len` - Length of raw parts in **bytes**
/// * `owner` - A [crate::alloc::Allocation] which is responsible for freeing that data
///
/// # Safety
///
/// This function is unsafe as there is no guarantee that the given pointer is valid for `len` bytes
pub unsafe fn from_custom_allocation(
ptr: NonNull<u8>,
len: usize,
owner: Arc<dyn Allocation>,
) -> Self {
Buffer::build_with_arguments(ptr, len, Deallocation::Custom(owner, len))
}
/// Auxiliary method to create a new Buffer
unsafe fn build_with_arguments(
ptr: NonNull<u8>,
len: usize,
deallocation: Deallocation,
) -> Self {
let bytes = Bytes::new(ptr, len, deallocation);
let ptr = bytes.as_ptr();
Buffer {
ptr,
data: Arc::new(bytes),
length: len,
}
}
/// Returns the number of bytes in the buffer
#[inline]
pub fn len(&self) -> usize {
self.length
}
/// Returns the capacity of this buffer.
/// For externally owned buffers, this returns zero
#[inline]
pub fn capacity(&self) -> usize {
self.data.capacity()
}
/// Tried to shrink the capacity of the buffer as much as possible, freeing unused memory.
///
/// If the buffer is shared, this is a no-op.
///
/// If the memory was allocated with a custom allocator, this is a no-op.
///
/// If the capacity is already less than or equal to the desired capacity, this is a no-op.
///
/// The memory region will be reallocated using `std::alloc::realloc`.
pub fn shrink_to_fit(&mut self) {
let offset = self.ptr_offset();
let is_empty = self.is_empty();
let desired_capacity = if is_empty {
0
} else {
// For realloc to work, we cannot free the elements before the offset
offset + self.len()
};
if desired_capacity < self.capacity() {
if let Some(bytes) = Arc::get_mut(&mut self.data) {
if bytes.try_realloc(desired_capacity).is_ok() {
// Realloc complete - update our pointer into `bytes`:
self.ptr = if is_empty {
bytes.as_ptr()
} else {
// SAFETY: we kept all elements leading up to the offset
unsafe { bytes.as_ptr().add(offset) }
}
} else {
// Failure to reallocate is fine; we just failed to free up memory.
}
}
}
}
/// Returns whether the buffer is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.length == 0
}
/// Returns the byte slice stored in this buffer
pub fn as_slice(&self) -> &[u8] {
unsafe { std::slice::from_raw_parts(self.ptr, self.length) }
}
pub(crate) fn deallocation(&self) -> &Deallocation {
self.data.deallocation()
}
/// Returns a new [Buffer] that is a slice of this buffer starting at `offset`.
/// Doing so allows the same memory region to be shared between buffers.
///
/// # Panics
///
/// Panics iff `offset` is larger than `len`.
pub fn slice(&self, offset: usize) -> Self {
let mut s = self.clone();
s.advance(offset);
s
}
/// Increases the offset of this buffer by `offset`
///
/// # Panics
///
/// Panics iff `offset` is larger than `len`.
#[inline]
pub fn advance(&mut self, offset: usize) {
assert!(
offset <= self.length,
"the offset of the new Buffer cannot exceed the existing length: offset={} length={}",
offset,
self.length
);
self.length -= offset;
// Safety:
// This cannot overflow as
// `self.offset + self.length < self.data.len()`
// `offset < self.length`
self.ptr = unsafe { self.ptr.add(offset) };
}
/// Returns a new [Buffer] that is a slice of this buffer starting at `offset`,
/// with `length` bytes.
/// Doing so allows the same memory region to be shared between buffers.
/// # Panics
/// Panics iff `(offset + length)` is larger than the existing length.
pub fn slice_with_length(&self, offset: usize, length: usize) -> Self {
assert!(
offset.saturating_add(length) <= self.length,
"the offset of the new Buffer cannot exceed the existing length: slice offset={offset} length={length} selflen={}",
self.length
);
// Safety:
// offset + length <= self.length
let ptr = unsafe { self.ptr.add(offset) };
Self {
data: self.data.clone(),
ptr,
length,
}
}
/// Returns a pointer to the start of this buffer.
///
/// Note that this should be used cautiously, and the returned pointer should not be
/// stored anywhere, to avoid dangling pointers.
#[inline]
pub fn as_ptr(&self) -> *const u8 {
self.ptr
}
/// View buffer as a slice of a specific type.
///
/// # Panics
///
/// This function panics if the underlying buffer is not aligned
/// correctly for type `T`.
pub fn typed_data<T: ArrowNativeType>(&self) -> &[T] {
// SAFETY
// ArrowNativeType is trivially transmutable, is sealed to prevent potentially incorrect
// implementation outside this crate, and this method checks alignment
let (prefix, offsets, suffix) = unsafe { self.as_slice().align_to::<T>() };
assert!(prefix.is_empty() && suffix.is_empty());
offsets
}
/// Returns a slice of this buffer starting at a certain bit offset.
/// If the offset is byte-aligned the returned buffer is a shallow clone,
/// otherwise a new buffer is allocated and filled with a copy of the bits in the range.
pub fn bit_slice(&self, offset: usize, len: usize) -> Self {
if offset % 8 == 0 {
return self.slice_with_length(offset / 8, bit_util::ceil(len, 8));
}
bitwise_unary_op_helper(self, offset, len, |a| a)
}
/// Returns a `BitChunks` instance which can be used to iterate over this buffers bits
/// in larger chunks and starting at arbitrary bit offsets.
/// Note that both `offset` and `length` are measured in bits.
pub fn bit_chunks(&self, offset: usize, len: usize) -> BitChunks {
BitChunks::new(self.as_slice(), offset, len)
}
/// Returns the number of 1-bits in this buffer, starting from `offset` with `length` bits
/// inspected. Note that both `offset` and `length` are measured in bits.
pub fn count_set_bits_offset(&self, offset: usize, len: usize) -> usize {
UnalignedBitChunk::new(self.as_slice(), offset, len).count_ones()
}
/// Returns `MutableBuffer` for mutating the buffer if this buffer is not shared.
/// Returns `Err` if this is shared or its allocation is from an external source or
/// it is not allocated with alignment [`ALIGNMENT`]
///
/// [`ALIGNMENT`]: crate::alloc::ALIGNMENT
pub fn into_mutable(self) -> Result<MutableBuffer, Self> {
let ptr = self.ptr;
let length = self.length;
Arc::try_unwrap(self.data)
.and_then(|bytes| {
// The pointer of underlying buffer should not be offset.
assert_eq!(ptr, bytes.ptr().as_ptr());
MutableBuffer::from_bytes(bytes).map_err(Arc::new)
})
.map_err(|bytes| Buffer {
data: bytes,
ptr,
length,
})
}
/// Returns `Vec` for mutating the buffer
///
/// Returns `Err(self)` if this buffer does not have the same [`Layout`] as
/// the destination Vec or contains a non-zero offset
pub fn into_vec<T: ArrowNativeType>(self) -> Result<Vec<T>, Self> {
let layout = match self.data.deallocation() {
Deallocation::Standard(l) => l,
_ => return Err(self), // Custom allocation
};
if self.ptr != self.data.as_ptr() {
return Err(self); // Data is offset
}
let v_capacity = layout.size() / std::mem::size_of::<T>();
match Layout::array::<T>(v_capacity) {
Ok(expected) if layout == &expected => {}
_ => return Err(self), // Incorrect layout
}
let length = self.length;
let ptr = self.ptr;
let v_len = self.length / std::mem::size_of::<T>();
Arc::try_unwrap(self.data)
.map(|bytes| unsafe {
let ptr = bytes.ptr().as_ptr() as _;
std::mem::forget(bytes);
// Safety
// Verified that bytes layout matches that of Vec
Vec::from_raw_parts(ptr, v_len, v_capacity)
})
.map_err(|bytes| Buffer {
data: bytes,
ptr,
length,
})
}
/// Returns true if this [`Buffer`] is equal to `other`, using pointer comparisons
/// to determine buffer equality. This is cheaper than `PartialEq::eq` but may
/// return false when the arrays are logically equal
#[inline]
pub fn ptr_eq(&self, other: &Self) -> bool {
self.ptr == other.ptr && self.length == other.length
}
}
/// Note that here we deliberately do not implement
/// `impl<T: AsRef<[u8]>> From<T> for Buffer`
/// As it would accept `Buffer::from(vec![...])` that would cause an unexpected copy.
/// Instead, we ask user to be explicit when copying is occurring, e.g., `Buffer::from(vec![...].to_byte_slice())`.
/// For zero-copy conversion, user should use `Buffer::from_vec(vec![...])`.
///
/// Since we removed impl for `AsRef<u8>`, we added the following three specific implementations to reduce API breakage.
/// See <https://github.com/apache/arrow-rs/issues/6033> for more discussion on this.
impl From<&[u8]> for Buffer {
fn from(p: &[u8]) -> Self {
Self::from_slice_ref(p)
}
}
impl<const N: usize> From<[u8; N]> for Buffer {
fn from(p: [u8; N]) -> Self {
Self::from_slice_ref(p)
}
}
impl<const N: usize> From<&[u8; N]> for Buffer {
fn from(p: &[u8; N]) -> Self {
Self::from_slice_ref(p)
}
}
impl<T: ArrowNativeType> From<Vec<T>> for Buffer {
fn from(value: Vec<T>) -> Self {
Self::from_vec(value)
}
}
impl<T: ArrowNativeType> From<ScalarBuffer<T>> for Buffer {
fn from(value: ScalarBuffer<T>) -> Self {
value.into_inner()
}
}
/// Creating a `Buffer` instance by storing the boolean values into the buffer
impl FromIterator<bool> for Buffer {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = bool>,
{
MutableBuffer::from_iter(iter).into()
}
}
impl std::ops::Deref for Buffer {
type Target = [u8];
fn deref(&self) -> &[u8] {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len()) }
}
}
impl From<MutableBuffer> for Buffer {
#[inline]
fn from(buffer: MutableBuffer) -> Self {
buffer.into_buffer()
}
}
impl<T: ArrowNativeType> From<BufferBuilder<T>> for Buffer {
fn from(mut value: BufferBuilder<T>) -> Self {
value.finish()
}
}
impl Buffer {
/// Creates a [`Buffer`] from an [`Iterator`] with a trusted (upper) length.
/// Prefer this to `collect` whenever possible, as it is ~60% faster.
/// # Example
/// ```
/// # use arrow_buffer::buffer::Buffer;
/// let v = vec![1u32];
/// let iter = v.iter().map(|x| x * 2);
/// let buffer = unsafe { Buffer::from_trusted_len_iter(iter) };
/// assert_eq!(buffer.len(), 4) // u32 has 4 bytes
/// ```
/// # Safety
/// This method assumes that the iterator's size is correct and is undefined behavior
/// to use it on an iterator that reports an incorrect length.
// This implementation is required for two reasons:
// 1. there is no trait `TrustedLen` in stable rust and therefore
// we can't specialize `extend` for `TrustedLen` like `Vec` does.
// 2. `from_trusted_len_iter` is faster.
#[inline]
pub unsafe fn from_trusted_len_iter<T: ArrowNativeType, I: Iterator<Item = T>>(
iterator: I,
) -> Self {
MutableBuffer::from_trusted_len_iter(iterator).into()
}
/// Creates a [`Buffer`] from an [`Iterator`] with a trusted (upper) length or errors
/// if any of the items of the iterator is an error.
/// Prefer this to `collect` whenever possible, as it is ~60% faster.
/// # Safety
/// This method assumes that the iterator's size is correct and is undefined behavior
/// to use it on an iterator that reports an incorrect length.
#[inline]
pub unsafe fn try_from_trusted_len_iter<
E,
T: ArrowNativeType,
I: Iterator<Item = Result<T, E>>,
>(
iterator: I,
) -> Result<Self, E> {
Ok(MutableBuffer::try_from_trusted_len_iter(iterator)?.into())
}
}
impl<T: ArrowNativeType> FromIterator<T> for Buffer {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let vec = Vec::from_iter(iter);
Buffer::from_vec(vec)
}
}
#[cfg(test)]
mod tests {
use crate::i256;
use std::panic::{RefUnwindSafe, UnwindSafe};
use std::thread;
use super::*;
#[test]
fn test_buffer_data_equality() {
let buf1 = Buffer::from(&[0, 1, 2, 3, 4]);
let buf2 = Buffer::from(&[0, 1, 2, 3, 4]);
assert_eq!(buf1, buf2);
// slice with same offset and same length should still preserve equality
let buf3 = buf1.slice(2);
assert_ne!(buf1, buf3);
let buf4 = buf2.slice_with_length(2, 3);
assert_eq!(buf3, buf4);
// Different capacities should still preserve equality
let mut buf2 = MutableBuffer::new(65);
buf2.extend_from_slice(&[0u8, 1, 2, 3, 4]);
let buf2 = buf2.into();
assert_eq!(buf1, buf2);
// unequal because of different elements
let buf2 = Buffer::from(&[0, 0, 2, 3, 4]);
assert_ne!(buf1, buf2);
// unequal because of different length
let buf2 = Buffer::from(&[0, 1, 2, 3]);
assert_ne!(buf1, buf2);
}
#[test]
fn test_from_raw_parts() {
let buf = Buffer::from(&[0, 1, 2, 3, 4]);
assert_eq!(5, buf.len());
assert!(!buf.as_ptr().is_null());
assert_eq!([0, 1, 2, 3, 4], buf.as_slice());
}
#[test]
fn test_from_vec() {
let buf = Buffer::from(&[0, 1, 2, 3, 4]);
assert_eq!(5, buf.len());
assert!(!buf.as_ptr().is_null());
assert_eq!([0, 1, 2, 3, 4], buf.as_slice());
}
#[test]
fn test_copy() {
let buf = Buffer::from(&[0, 1, 2, 3, 4]);
let buf2 = buf;
assert_eq!(5, buf2.len());
assert_eq!(64, buf2.capacity());
assert!(!buf2.as_ptr().is_null());
assert_eq!([0, 1, 2, 3, 4], buf2.as_slice());
}
#[test]
fn test_slice() {
let buf = Buffer::from(&[2, 4, 6, 8, 10]);
let buf2 = buf.slice(2);
assert_eq!([6, 8, 10], buf2.as_slice());
assert_eq!(3, buf2.len());
assert_eq!(unsafe { buf.as_ptr().offset(2) }, buf2.as_ptr());
let buf3 = buf2.slice_with_length(1, 2);
assert_eq!([8, 10], buf3.as_slice());
assert_eq!(2, buf3.len());
assert_eq!(unsafe { buf.as_ptr().offset(3) }, buf3.as_ptr());
let buf4 = buf.slice(5);
let empty_slice: [u8; 0] = [];
assert_eq!(empty_slice, buf4.as_slice());
assert_eq!(0, buf4.len());
assert!(buf4.is_empty());
assert_eq!(buf2.slice_with_length(2, 1).as_slice(), &[10]);
}
#[test]
fn test_shrink_to_fit() {
let original = Buffer::from(&[0, 1, 2, 3, 4, 5, 6, 7]);
assert_eq!(original.as_slice(), &[0, 1, 2, 3, 4, 5, 6, 7]);
assert_eq!(original.capacity(), 64);
let slice = original.slice_with_length(2, 3);
drop(original); // Make sure the buffer isn't shared (or shrink_to_fit won't work)
assert_eq!(slice.as_slice(), &[2, 3, 4]);
assert_eq!(slice.capacity(), 64);
let mut shrunk = slice;
shrunk.shrink_to_fit();
assert_eq!(shrunk.as_slice(), &[2, 3, 4]);
assert_eq!(shrunk.capacity(), 5); // shrink_to_fit is allowed to keep the elements before the offset
// Test that we can handle empty slices:
let empty_slice = shrunk.slice_with_length(1, 0);
drop(shrunk); // Make sure the buffer isn't shared (or shrink_to_fit won't work)
assert_eq!(empty_slice.as_slice(), &[]);
assert_eq!(empty_slice.capacity(), 5);
let mut shrunk_empty = empty_slice;
shrunk_empty.shrink_to_fit();
assert_eq!(shrunk_empty.as_slice(), &[]);
assert_eq!(shrunk_empty.capacity(), 0);
}
#[test]
#[should_panic(expected = "the offset of the new Buffer cannot exceed the existing length")]
fn test_slice_offset_out_of_bound() {
let buf = Buffer::from(&[2, 4, 6, 8, 10]);
buf.slice(6);
}
#[test]
fn test_access_concurrently() {
let buffer = Buffer::from([1, 2, 3, 4, 5]);
let buffer2 = buffer.clone();
assert_eq!([1, 2, 3, 4, 5], buffer.as_slice());
let buffer_copy = thread::spawn(move || {
// access buffer in another thread.
buffer
})
.join();
assert!(buffer_copy.is_ok());
assert_eq!(buffer2, buffer_copy.ok().unwrap());
}
macro_rules! check_as_typed_data {
($input: expr, $native_t: ty) => {{
let buffer = Buffer::from_slice_ref($input);
let slice: &[$native_t] = buffer.typed_data::<$native_t>();
assert_eq!($input, slice);
}};
}
#[test]
#[allow(clippy::float_cmp)]
fn test_as_typed_data() {
check_as_typed_data!(&[1i8, 3i8, 6i8], i8);
check_as_typed_data!(&[1u8, 3u8, 6u8], u8);
check_as_typed_data!(&[1i16, 3i16, 6i16], i16);
check_as_typed_data!(&[1i32, 3i32, 6i32], i32);
check_as_typed_data!(&[1i64, 3i64, 6i64], i64);
check_as_typed_data!(&[1u16, 3u16, 6u16], u16);
check_as_typed_data!(&[1u32, 3u32, 6u32], u32);
check_as_typed_data!(&[1u64, 3u64, 6u64], u64);
check_as_typed_data!(&[1f32, 3f32, 6f32], f32);
check_as_typed_data!(&[1f64, 3f64, 6f64], f64);
}
#[test]
fn test_count_bits() {
assert_eq!(0, Buffer::from(&[0b00000000]).count_set_bits_offset(0, 8));
assert_eq!(8, Buffer::from(&[0b11111111]).count_set_bits_offset(0, 8));
assert_eq!(3, Buffer::from(&[0b00001101]).count_set_bits_offset(0, 8));
assert_eq!(
6,
Buffer::from(&[0b01001001, 0b01010010]).count_set_bits_offset(0, 16)
);
assert_eq!(
16,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(0, 16)
);
}
#[test]
fn test_count_bits_slice() {
assert_eq!(
0,
Buffer::from(&[0b11111111, 0b00000000])
.slice(1)
.count_set_bits_offset(0, 8)
);
assert_eq!(
8,
Buffer::from(&[0b11111111, 0b11111111])
.slice_with_length(1, 1)
.count_set_bits_offset(0, 8)
);
assert_eq!(
3,
Buffer::from(&[0b11111111, 0b11111111, 0b00001101])
.slice(2)
.count_set_bits_offset(0, 8)
);
assert_eq!(
6,
Buffer::from(&[0b11111111, 0b01001001, 0b01010010])
.slice_with_length(1, 2)
.count_set_bits_offset(0, 16)
);
assert_eq!(
16,
Buffer::from(&[0b11111111, 0b11111111, 0b11111111, 0b11111111])
.slice(2)
.count_set_bits_offset(0, 16)
);
}
#[test]
fn test_count_bits_offset_slice() {
assert_eq!(8, Buffer::from(&[0b11111111]).count_set_bits_offset(0, 8));
assert_eq!(3, Buffer::from(&[0b11111111]).count_set_bits_offset(0, 3));
assert_eq!(5, Buffer::from(&[0b11111111]).count_set_bits_offset(3, 5));
assert_eq!(1, Buffer::from(&[0b11111111]).count_set_bits_offset(3, 1));
assert_eq!(0, Buffer::from(&[0b11111111]).count_set_bits_offset(8, 0));
assert_eq!(2, Buffer::from(&[0b01010101]).count_set_bits_offset(0, 3));
assert_eq!(
16,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(0, 16)
);
assert_eq!(
10,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(0, 10)
);
assert_eq!(
10,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(3, 10)
);
assert_eq!(
8,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(8, 8)
);
assert_eq!(
5,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(11, 5)
);
assert_eq!(
0,
Buffer::from(&[0b11111111, 0b11111111]).count_set_bits_offset(16, 0)
);
assert_eq!(
2,
Buffer::from(&[0b01101101, 0b10101010]).count_set_bits_offset(7, 5)
);
assert_eq!(
4,
Buffer::from(&[0b01101101, 0b10101010]).count_set_bits_offset(7, 9)
);
}
#[test]
fn test_unwind_safe() {
fn assert_unwind_safe<T: RefUnwindSafe + UnwindSafe>() {}
assert_unwind_safe::<Buffer>()
}
#[test]
fn test_from_foreign_vec() {
let mut vector = vec![1_i32, 2, 3, 4, 5];
let buffer = unsafe {
Buffer::from_custom_allocation(
NonNull::new_unchecked(vector.as_mut_ptr() as *mut u8),
vector.len() * std::mem::size_of::<i32>(),
Arc::new(vector),
)
};
let slice = buffer.typed_data::<i32>();
assert_eq!(slice, &[1, 2, 3, 4, 5]);
let buffer = buffer.slice(std::mem::size_of::<i32>());
let slice = buffer.typed_data::<i32>();
assert_eq!(slice, &[2, 3, 4, 5]);
}
#[test]
#[should_panic(expected = "the offset of the new Buffer cannot exceed the existing length")]
fn slice_overflow() {
let buffer = Buffer::from(MutableBuffer::from_len_zeroed(12));
buffer.slice_with_length(2, usize::MAX);
}
#[test]
fn test_vec_interop() {
// Test empty vec
let a: Vec<i128> = Vec::new();
let b = Buffer::from_vec(a);
b.into_vec::<i128>().unwrap();
// Test vec with capacity
let a: Vec<i128> = Vec::with_capacity(20);
let b = Buffer::from_vec(a);
let back = b.into_vec::<i128>().unwrap();
assert_eq!(back.len(), 0);
assert_eq!(back.capacity(), 20);
// Test vec with values
let mut a: Vec<i128> = Vec::with_capacity(3);
a.extend_from_slice(&[1, 2, 3]);
let b = Buffer::from_vec(a);
let back = b.into_vec::<i128>().unwrap();
assert_eq!(back.len(), 3);
assert_eq!(back.capacity(), 3);
// Test vec with values and spare capacity
let mut a: Vec<i128> = Vec::with_capacity(20);
a.extend_from_slice(&[1, 4, 7, 8, 9, 3, 6]);
let b = Buffer::from_vec(a);
let back = b.into_vec::<i128>().unwrap();
assert_eq!(back.len(), 7);
assert_eq!(back.capacity(), 20);
// Test incorrect alignment
let a: Vec<i128> = Vec::new();
let b = Buffer::from_vec(a);
let b = b.into_vec::<i32>().unwrap_err();
b.into_vec::<i8>().unwrap_err();
// Test convert between types with same alignment
// This is an implementation quirk, but isn't harmful
// as ArrowNativeType are trivially transmutable
let a: Vec<i64> = vec![1, 2, 3, 4];
let b = Buffer::from_vec(a);
let back = b.into_vec::<u64>().unwrap();
assert_eq!(back.len(), 4);
assert_eq!(back.capacity(), 4);
// i256 has the same layout as i128 so this is valid
let mut b: Vec<i128> = Vec::with_capacity(4);
b.extend_from_slice(&[1, 2, 3, 4]);
let b = Buffer::from_vec(b);
let back = b.into_vec::<i256>().unwrap();
assert_eq!(back.len(), 2);
assert_eq!(back.capacity(), 2);
// Invalid layout
let b: Vec<i128> = vec![1, 2, 3];
let b = Buffer::from_vec(b);
b.into_vec::<i256>().unwrap_err();
// Invalid layout
let mut b: Vec<i128> = Vec::with_capacity(5);
b.extend_from_slice(&[1, 2, 3, 4]);
let b = Buffer::from_vec(b);
b.into_vec::<i256>().unwrap_err();
// Truncates length
// This is an implementation quirk, but isn't harmful
let mut b: Vec<i128> = Vec::with_capacity(4);
b.extend_from_slice(&[1, 2, 3]);
let b = Buffer::from_vec(b);
let back = b.into_vec::<i256>().unwrap();
assert_eq!(back.len(), 1);
assert_eq!(back.capacity(), 2);
// Cannot use aligned allocation
let b = Buffer::from(MutableBuffer::new(10));
let b = b.into_vec::<u8>().unwrap_err();
b.into_vec::<u64>().unwrap_err();
// Test slicing
let mut a: Vec<i128> = Vec::with_capacity(20);
a.extend_from_slice(&[1, 4, 7, 8, 9, 3, 6]);
let b = Buffer::from_vec(a);
let slice = b.slice_with_length(0, 64);
// Shared reference fails
let slice = slice.into_vec::<i128>().unwrap_err();
drop(b);
// Succeeds as no outstanding shared reference
let back = slice.into_vec::<i128>().unwrap();
assert_eq!(&back, &[1, 4, 7, 8]);
assert_eq!(back.capacity(), 20);
// Slicing by non-multiple length truncates
let mut a: Vec<i128> = Vec::with_capacity(8);
a.extend_from_slice(&[1, 4, 7, 3]);
let b = Buffer::from_vec(a);
let slice = b.slice_with_length(0, 34);
drop(b);
let back = slice.into_vec::<i128>().unwrap();
assert_eq!(&back, &[1, 4]);
assert_eq!(back.capacity(), 8);
// Offset prevents conversion
let a: Vec<u32> = vec![1, 3, 4, 6];
let b = Buffer::from_vec(a).slice(2);
b.into_vec::<u32>().unwrap_err();
let b = MutableBuffer::new(16).into_buffer();
let b = b.into_vec::<u8>().unwrap_err(); // Invalid layout
let b = b.into_vec::<u32>().unwrap_err(); // Invalid layout
b.into_mutable().unwrap();
let b = Buffer::from_vec(vec![1_u32, 3, 5]);
let b = b.into_mutable().unwrap();
let b = Buffer::from(b);
let b = b.into_vec::<u32>().unwrap();
assert_eq!(b, &[1, 3, 5]);
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn test_from_iter_overflow() {
let iter_len = usize::MAX / std::mem::size_of::<u64>() + 1;
let _ = Buffer::from_iter(std::iter::repeat(0_u64).take(iter_len));
}
#[test]
fn bit_slice_length_preserved() {
// Create a boring buffer
let buf = Buffer::from_iter(std::iter::repeat(true).take(64));
let assert_preserved = |offset: usize, len: usize| {
let new_buf = buf.bit_slice(offset, len);
assert_eq!(new_buf.len(), bit_util::ceil(len, 8));
// if the offset is not byte-aligned, we have to create a deep copy to a new buffer
// (since the `offset` value inside a Buffer is byte-granular, not bit-granular), so
// checking the offset should always return 0 if so. If the offset IS byte-aligned, we
// want to make sure it doesn't unnecessarily create a deep copy.
if offset % 8 == 0 {
assert_eq!(new_buf.ptr_offset(), offset / 8);
} else {
assert_eq!(new_buf.ptr_offset(), 0);
}
};
// go through every available value for offset
for o in 0..=64 {
// and go through every length that could accompany that offset - we can't have a
// situation where offset + len > 64, because that would go past the end of the buffer,
// so we use the map to ensure it's in range.
for l in (o..=64).map(|l| l - o) {
// and we just want to make sure every one of these keeps its offset and length
// when neeeded
assert_preserved(o, l);
}
}
}
}