arrow_buffer/buffer/
mutable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::alloc::{handle_alloc_error, Layout};
use std::mem;
use std::ptr::NonNull;

use crate::alloc::{Deallocation, ALIGNMENT};
use crate::{
    bytes::Bytes,
    native::{ArrowNativeType, ToByteSlice},
    util::bit_util,
};

use super::Buffer;

/// A [`MutableBuffer`] is Arrow's interface to build a [`Buffer`] out of items or slices of items.
///
/// [`Buffer`]s created from [`MutableBuffer`] (via `into`) are guaranteed to have its pointer aligned
/// along cache lines and in multiple of 64 bytes.
///
/// Use [MutableBuffer::push] to insert an item, [MutableBuffer::extend_from_slice]
/// to insert many items, and `into` to convert it to [`Buffer`].
///
/// For a safe, strongly typed API consider using [`Vec`] and [`ScalarBuffer`](crate::ScalarBuffer)
///
/// Note: this may be deprecated in a future release ([#1176](https://github.com/apache/arrow-rs/issues/1176))
///
/// # Example
///
/// ```
/// # use arrow_buffer::buffer::{Buffer, MutableBuffer};
/// let mut buffer = MutableBuffer::new(0);
/// buffer.push(256u32);
/// buffer.extend_from_slice(&[1u32]);
/// let buffer: Buffer = buffer.into();
/// assert_eq!(buffer.as_slice(), &[0u8, 1, 0, 0, 1, 0, 0, 0])
/// ```
#[derive(Debug)]
pub struct MutableBuffer {
    // dangling iff capacity = 0
    data: NonNull<u8>,
    // invariant: len <= capacity
    len: usize,
    layout: Layout,
}

impl MutableBuffer {
    /// Allocate a new [MutableBuffer] with initial capacity to be at least `capacity`.
    ///
    /// See [`MutableBuffer::with_capacity`].
    #[inline]
    pub fn new(capacity: usize) -> Self {
        Self::with_capacity(capacity)
    }

    /// Allocate a new [MutableBuffer] with initial capacity to be at least `capacity`.
    ///
    /// # Panics
    ///
    /// If `capacity`, when rounded up to the nearest multiple of [`ALIGNMENT`], is greater
    /// then `isize::MAX`, then this function will panic.
    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        let capacity = bit_util::round_upto_multiple_of_64(capacity);
        let layout = Layout::from_size_align(capacity, ALIGNMENT)
            .expect("failed to create layout for MutableBuffer");
        let data = match layout.size() {
            0 => dangling_ptr(),
            _ => {
                // Safety: Verified size != 0
                let raw_ptr = unsafe { std::alloc::alloc(layout) };
                NonNull::new(raw_ptr).unwrap_or_else(|| handle_alloc_error(layout))
            }
        };
        Self {
            data,
            len: 0,
            layout,
        }
    }

    /// Allocates a new [MutableBuffer] with `len` and capacity to be at least `len` where
    /// all bytes are guaranteed to be `0u8`.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::{Buffer, MutableBuffer};
    /// let mut buffer = MutableBuffer::from_len_zeroed(127);
    /// assert_eq!(buffer.len(), 127);
    /// assert!(buffer.capacity() >= 127);
    /// let data = buffer.as_slice_mut();
    /// assert_eq!(data[126], 0u8);
    /// ```
    pub fn from_len_zeroed(len: usize) -> Self {
        let layout = Layout::from_size_align(len, ALIGNMENT).unwrap();
        let data = match layout.size() {
            0 => dangling_ptr(),
            _ => {
                // Safety: Verified size != 0
                let raw_ptr = unsafe { std::alloc::alloc_zeroed(layout) };
                NonNull::new(raw_ptr).unwrap_or_else(|| handle_alloc_error(layout))
            }
        };
        Self { data, len, layout }
    }

    /// Allocates a new [MutableBuffer] from given `Bytes`.
    pub(crate) fn from_bytes(bytes: Bytes) -> Result<Self, Bytes> {
        let layout = match bytes.deallocation() {
            Deallocation::Standard(layout) => *layout,
            _ => return Err(bytes),
        };

        let len = bytes.len();
        let data = bytes.ptr();
        mem::forget(bytes);

        Ok(Self { data, len, layout })
    }

    /// creates a new [MutableBuffer] with capacity and length capable of holding `len` bits.
    /// This is useful to create a buffer for packed bitmaps.
    pub fn new_null(len: usize) -> Self {
        let num_bytes = bit_util::ceil(len, 8);
        MutableBuffer::from_len_zeroed(num_bytes)
    }

    /// Set the bits in the range of `[0, end)` to 0 (if `val` is false), or 1 (if `val`
    /// is true). Also extend the length of this buffer to be `end`.
    ///
    /// This is useful when one wants to clear (or set) the bits and then manipulate
    /// the buffer directly (e.g., modifying the buffer by holding a mutable reference
    /// from `data_mut()`).
    pub fn with_bitset(mut self, end: usize, val: bool) -> Self {
        assert!(end <= self.layout.size());
        let v = if val { 255 } else { 0 };
        unsafe {
            std::ptr::write_bytes(self.data.as_ptr(), v, end);
            self.len = end;
        }
        self
    }

    /// Ensure that `count` bytes from `start` contain zero bits
    ///
    /// This is used to initialize the bits in a buffer, however, it has no impact on the
    /// `len` of the buffer and so can be used to initialize the memory region from
    /// `len` to `capacity`.
    pub fn set_null_bits(&mut self, start: usize, count: usize) {
        assert!(
            start.saturating_add(count) <= self.layout.size(),
            "range start index {start} and count {count} out of bounds for \
            buffer of length {}",
            self.layout.size(),
        );

        // Safety: `self.data[start..][..count]` is in-bounds and well-aligned for `u8`
        unsafe {
            std::ptr::write_bytes(self.data.as_ptr().add(start), 0, count);
        }
    }

    /// Ensures that this buffer has at least `self.len + additional` bytes. This re-allocates iff
    /// `self.len + additional > capacity`.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::{Buffer, MutableBuffer};
    /// let mut buffer = MutableBuffer::new(0);
    /// buffer.reserve(253); // allocates for the first time
    /// (0..253u8).for_each(|i| buffer.push(i)); // no reallocation
    /// let buffer: Buffer = buffer.into();
    /// assert_eq!(buffer.len(), 253);
    /// ```
    // For performance reasons, this must be inlined so that the `if` is executed inside the caller, and not as an extra call that just
    // exits.
    #[inline(always)]
    pub fn reserve(&mut self, additional: usize) {
        let required_cap = self.len + additional;
        if required_cap > self.layout.size() {
            let new_capacity = bit_util::round_upto_multiple_of_64(required_cap);
            let new_capacity = std::cmp::max(new_capacity, self.layout.size() * 2);
            self.reallocate(new_capacity)
        }
    }

    #[cold]
    fn reallocate(&mut self, capacity: usize) {
        let new_layout = Layout::from_size_align(capacity, self.layout.align()).unwrap();
        if new_layout.size() == 0 {
            if self.layout.size() != 0 {
                // Safety: data was allocated with layout
                unsafe { std::alloc::dealloc(self.as_mut_ptr(), self.layout) };
                self.layout = new_layout
            }
            return;
        }

        let data = match self.layout.size() {
            // Safety: new_layout is not empty
            0 => unsafe { std::alloc::alloc(new_layout) },
            // Safety: verified new layout is valid and not empty
            _ => unsafe { std::alloc::realloc(self.as_mut_ptr(), self.layout, capacity) },
        };
        self.data = NonNull::new(data).unwrap_or_else(|| handle_alloc_error(new_layout));
        self.layout = new_layout;
    }

    /// Truncates this buffer to `len` bytes
    ///
    /// If `len` is greater than the buffer's current length, this has no effect
    #[inline(always)]
    pub fn truncate(&mut self, len: usize) {
        if len > self.len {
            return;
        }
        self.len = len;
    }

    /// Resizes the buffer, either truncating its contents (with no change in capacity), or
    /// growing it (potentially reallocating it) and writing `value` in the newly available bytes.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::{Buffer, MutableBuffer};
    /// let mut buffer = MutableBuffer::new(0);
    /// buffer.resize(253, 2); // allocates for the first time
    /// assert_eq!(buffer.as_slice()[252], 2u8);
    /// ```
    // For performance reasons, this must be inlined so that the `if` is executed inside the caller, and not as an extra call that just
    // exits.
    #[inline(always)]
    pub fn resize(&mut self, new_len: usize, value: u8) {
        if new_len > self.len {
            let diff = new_len - self.len;
            self.reserve(diff);
            // write the value
            unsafe { self.data.as_ptr().add(self.len).write_bytes(value, diff) };
        }
        // this truncates the buffer when new_len < self.len
        self.len = new_len;
    }

    /// Shrinks the capacity of the buffer as much as possible.
    /// The new capacity will aligned to the nearest 64 bit alignment.
    ///
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::{Buffer, MutableBuffer};
    /// // 2 cache lines
    /// let mut buffer = MutableBuffer::new(128);
    /// assert_eq!(buffer.capacity(), 128);
    /// buffer.push(1);
    /// buffer.push(2);
    ///
    /// buffer.shrink_to_fit();
    /// assert!(buffer.capacity() >= 64 && buffer.capacity() < 128);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        let new_capacity = bit_util::round_upto_multiple_of_64(self.len);
        if new_capacity < self.layout.size() {
            self.reallocate(new_capacity)
        }
    }

    /// Returns whether this buffer is empty or not.
    #[inline]
    pub const fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns the length (the number of bytes written) in this buffer.
    /// The invariant `buffer.len() <= buffer.capacity()` is always upheld.
    #[inline]
    pub const fn len(&self) -> usize {
        self.len
    }

    /// Returns the total capacity in this buffer.
    /// The invariant `buffer.len() <= buffer.capacity()` is always upheld.
    #[inline]
    pub const fn capacity(&self) -> usize {
        self.layout.size()
    }

    /// Clear all existing data from this buffer.
    pub fn clear(&mut self) {
        self.len = 0
    }

    /// Returns the data stored in this buffer as a slice.
    pub fn as_slice(&self) -> &[u8] {
        self
    }

    /// Returns the data stored in this buffer as a mutable slice.
    pub fn as_slice_mut(&mut self) -> &mut [u8] {
        self
    }

    /// Returns a raw pointer to this buffer's internal memory
    /// This pointer is guaranteed to be aligned along cache-lines.
    #[inline]
    pub const fn as_ptr(&self) -> *const u8 {
        self.data.as_ptr()
    }

    /// Returns a mutable raw pointer to this buffer's internal memory
    /// This pointer is guaranteed to be aligned along cache-lines.
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut u8 {
        self.data.as_ptr()
    }

    #[inline]
    pub(super) fn into_buffer(self) -> Buffer {
        let bytes = unsafe { Bytes::new(self.data, self.len, Deallocation::Standard(self.layout)) };
        std::mem::forget(self);
        Buffer::from_bytes(bytes)
    }

    /// View this buffer as a mutable slice of a specific type.
    ///
    /// # Panics
    ///
    /// This function panics if the underlying buffer is not aligned
    /// correctly for type `T`.
    pub fn typed_data_mut<T: ArrowNativeType>(&mut self) -> &mut [T] {
        // SAFETY
        // ArrowNativeType is trivially transmutable, is sealed to prevent potentially incorrect
        // implementation outside this crate, and this method checks alignment
        let (prefix, offsets, suffix) = unsafe { self.as_slice_mut().align_to_mut::<T>() };
        assert!(prefix.is_empty() && suffix.is_empty());
        offsets
    }

    /// View buffer as a immutable slice of a specific type.
    ///
    /// # Panics
    ///
    /// This function panics if the underlying buffer is not aligned
    /// correctly for type `T`.
    pub fn typed_data<T: ArrowNativeType>(&self) -> &[T] {
        // SAFETY
        // ArrowNativeType is trivially transmutable, is sealed to prevent potentially incorrect
        // implementation outside this crate, and this method checks alignment
        let (prefix, offsets, suffix) = unsafe { self.as_slice().align_to::<T>() };
        assert!(prefix.is_empty() && suffix.is_empty());
        offsets
    }

    /// Extends this buffer from a slice of items that can be represented in bytes, increasing its capacity if needed.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::MutableBuffer;
    /// let mut buffer = MutableBuffer::new(0);
    /// buffer.extend_from_slice(&[2u32, 0]);
    /// assert_eq!(buffer.len(), 8) // u32 has 4 bytes
    /// ```
    #[inline]
    pub fn extend_from_slice<T: ArrowNativeType>(&mut self, items: &[T]) {
        let additional = mem::size_of_val(items);
        self.reserve(additional);
        unsafe {
            // this assumes that `[ToByteSlice]` can be copied directly
            // without calling `to_byte_slice` for each element,
            // which is correct for all ArrowNativeType implementations.
            let src = items.as_ptr() as *const u8;
            let dst = self.data.as_ptr().add(self.len);
            std::ptr::copy_nonoverlapping(src, dst, additional)
        }
        self.len += additional;
    }

    /// Extends the buffer with a new item, increasing its capacity if needed.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::MutableBuffer;
    /// let mut buffer = MutableBuffer::new(0);
    /// buffer.push(256u32);
    /// assert_eq!(buffer.len(), 4) // u32 has 4 bytes
    /// ```
    #[inline]
    pub fn push<T: ToByteSlice>(&mut self, item: T) {
        let additional = std::mem::size_of::<T>();
        self.reserve(additional);
        unsafe {
            let src = item.to_byte_slice().as_ptr();
            let dst = self.data.as_ptr().add(self.len);
            std::ptr::copy_nonoverlapping(src, dst, additional);
        }
        self.len += additional;
    }

    /// Extends the buffer with a new item, without checking for sufficient capacity
    /// # Safety
    /// Caller must ensure that the capacity()-len()>=`size_of<T>`()
    #[inline]
    pub unsafe fn push_unchecked<T: ToByteSlice>(&mut self, item: T) {
        let additional = std::mem::size_of::<T>();
        let src = item.to_byte_slice().as_ptr();
        let dst = self.data.as_ptr().add(self.len);
        std::ptr::copy_nonoverlapping(src, dst, additional);
        self.len += additional;
    }

    /// Extends the buffer by `additional` bytes equal to `0u8`, incrementing its capacity if needed.
    #[inline]
    pub fn extend_zeros(&mut self, additional: usize) {
        self.resize(self.len + additional, 0);
    }

    /// # Safety
    /// The caller must ensure that the buffer was properly initialized up to `len`.
    #[inline]
    pub unsafe fn set_len(&mut self, len: usize) {
        assert!(len <= self.capacity());
        self.len = len;
    }

    /// Invokes `f` with values `0..len` collecting the boolean results into a new `MutableBuffer`
    ///
    /// This is similar to `from_trusted_len_iter_bool`, however, can be significantly faster
    /// as it eliminates the conditional `Iterator::next`
    #[inline]
    pub fn collect_bool<F: FnMut(usize) -> bool>(len: usize, mut f: F) -> Self {
        let mut buffer = Self::new(bit_util::ceil(len, 64) * 8);

        let chunks = len / 64;
        let remainder = len % 64;
        for chunk in 0..chunks {
            let mut packed = 0;
            for bit_idx in 0..64 {
                let i = bit_idx + chunk * 64;
                packed |= (f(i) as u64) << bit_idx;
            }

            // SAFETY: Already allocated sufficient capacity
            unsafe { buffer.push_unchecked(packed) }
        }

        if remainder != 0 {
            let mut packed = 0;
            for bit_idx in 0..remainder {
                let i = bit_idx + chunks * 64;
                packed |= (f(i) as u64) << bit_idx;
            }

            // SAFETY: Already allocated sufficient capacity
            unsafe { buffer.push_unchecked(packed) }
        }

        buffer.truncate(bit_util::ceil(len, 8));
        buffer
    }
}

/// Creates a non-null pointer with alignment of [`ALIGNMENT`]
///
/// This is similar to [`NonNull::dangling`]
#[inline]
pub(crate) fn dangling_ptr() -> NonNull<u8> {
    // SAFETY: ALIGNMENT is a non-zero usize which is then cast
    // to a *mut u8. Therefore, `ptr` is not null and the conditions for
    // calling new_unchecked() are respected.
    #[cfg(miri)]
    {
        // Since miri implies a nightly rust version we can use the unstable strict_provenance feature
        unsafe { NonNull::new_unchecked(std::ptr::without_provenance_mut(ALIGNMENT)) }
    }
    #[cfg(not(miri))]
    {
        unsafe { NonNull::new_unchecked(ALIGNMENT as *mut u8) }
    }
}

impl<A: ArrowNativeType> Extend<A> for MutableBuffer {
    #[inline]
    fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T) {
        let iterator = iter.into_iter();
        self.extend_from_iter(iterator)
    }
}

impl<T: ArrowNativeType> From<Vec<T>> for MutableBuffer {
    fn from(value: Vec<T>) -> Self {
        // Safety
        // Vec::as_ptr guaranteed to not be null and ArrowNativeType are trivially transmutable
        let data = unsafe { NonNull::new_unchecked(value.as_ptr() as _) };
        let len = value.len() * mem::size_of::<T>();
        // Safety
        // Vec guaranteed to have a valid layout matching that of `Layout::array`
        // This is based on `RawVec::current_memory`
        let layout = unsafe { Layout::array::<T>(value.capacity()).unwrap_unchecked() };
        mem::forget(value);
        Self { data, len, layout }
    }
}

impl MutableBuffer {
    #[inline]
    pub(super) fn extend_from_iter<T: ArrowNativeType, I: Iterator<Item = T>>(
        &mut self,
        mut iterator: I,
    ) {
        let item_size = std::mem::size_of::<T>();
        let (lower, _) = iterator.size_hint();
        let additional = lower * item_size;
        self.reserve(additional);

        // this is necessary because of https://github.com/rust-lang/rust/issues/32155
        let mut len = SetLenOnDrop::new(&mut self.len);
        let mut dst = unsafe { self.data.as_ptr().add(len.local_len) };
        let capacity = self.layout.size();

        while len.local_len + item_size <= capacity {
            if let Some(item) = iterator.next() {
                unsafe {
                    let src = item.to_byte_slice().as_ptr();
                    std::ptr::copy_nonoverlapping(src, dst, item_size);
                    dst = dst.add(item_size);
                }
                len.local_len += item_size;
            } else {
                break;
            }
        }
        drop(len);

        iterator.for_each(|item| self.push(item));
    }

    /// Creates a [`MutableBuffer`] from an [`Iterator`] with a trusted (upper) length.
    /// Prefer this to `collect` whenever possible, as it is faster ~60% faster.
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::MutableBuffer;
    /// let v = vec![1u32];
    /// let iter = v.iter().map(|x| x * 2);
    /// let buffer = unsafe { MutableBuffer::from_trusted_len_iter(iter) };
    /// assert_eq!(buffer.len(), 4) // u32 has 4 bytes
    /// ```
    /// # Safety
    /// This method assumes that the iterator's size is correct and is undefined behavior
    /// to use it on an iterator that reports an incorrect length.
    // This implementation is required for two reasons:
    // 1. there is no trait `TrustedLen` in stable rust and therefore
    //    we can't specialize `extend` for `TrustedLen` like `Vec` does.
    // 2. `from_trusted_len_iter` is faster.
    #[inline]
    pub unsafe fn from_trusted_len_iter<T: ArrowNativeType, I: Iterator<Item = T>>(
        iterator: I,
    ) -> Self {
        let item_size = std::mem::size_of::<T>();
        let (_, upper) = iterator.size_hint();
        let upper = upper.expect("from_trusted_len_iter requires an upper limit");
        let len = upper * item_size;

        let mut buffer = MutableBuffer::new(len);

        let mut dst = buffer.data.as_ptr();
        for item in iterator {
            // note how there is no reserve here (compared with `extend_from_iter`)
            let src = item.to_byte_slice().as_ptr();
            std::ptr::copy_nonoverlapping(src, dst, item_size);
            dst = dst.add(item_size);
        }
        assert_eq!(
            dst.offset_from(buffer.data.as_ptr()) as usize,
            len,
            "Trusted iterator length was not accurately reported"
        );
        buffer.len = len;
        buffer
    }

    /// Creates a [`MutableBuffer`] from a boolean [`Iterator`] with a trusted (upper) length.
    /// # use arrow_buffer::buffer::MutableBuffer;
    /// # Example
    /// ```
    /// # use arrow_buffer::buffer::MutableBuffer;
    /// let v = vec![false, true, false];
    /// let iter = v.iter().map(|x| *x || true);
    /// let buffer = unsafe { MutableBuffer::from_trusted_len_iter_bool(iter) };
    /// assert_eq!(buffer.len(), 1) // 3 booleans have 1 byte
    /// ```
    /// # Safety
    /// This method assumes that the iterator's size is correct and is undefined behavior
    /// to use it on an iterator that reports an incorrect length.
    // This implementation is required for two reasons:
    // 1. there is no trait `TrustedLen` in stable rust and therefore
    //    we can't specialize `extend` for `TrustedLen` like `Vec` does.
    // 2. `from_trusted_len_iter_bool` is faster.
    #[inline]
    pub unsafe fn from_trusted_len_iter_bool<I: Iterator<Item = bool>>(mut iterator: I) -> Self {
        let (_, upper) = iterator.size_hint();
        let len = upper.expect("from_trusted_len_iter requires an upper limit");

        Self::collect_bool(len, |_| iterator.next().unwrap())
    }

    /// Creates a [`MutableBuffer`] from an [`Iterator`] with a trusted (upper) length or errors
    /// if any of the items of the iterator is an error.
    /// Prefer this to `collect` whenever possible, as it is faster ~60% faster.
    /// # Safety
    /// This method assumes that the iterator's size is correct and is undefined behavior
    /// to use it on an iterator that reports an incorrect length.
    #[inline]
    pub unsafe fn try_from_trusted_len_iter<
        E,
        T: ArrowNativeType,
        I: Iterator<Item = Result<T, E>>,
    >(
        iterator: I,
    ) -> Result<Self, E> {
        let item_size = std::mem::size_of::<T>();
        let (_, upper) = iterator.size_hint();
        let upper = upper.expect("try_from_trusted_len_iter requires an upper limit");
        let len = upper * item_size;

        let mut buffer = MutableBuffer::new(len);

        let mut dst = buffer.data.as_ptr();
        for item in iterator {
            let item = item?;
            // note how there is no reserve here (compared with `extend_from_iter`)
            let src = item.to_byte_slice().as_ptr();
            std::ptr::copy_nonoverlapping(src, dst, item_size);
            dst = dst.add(item_size);
        }
        // try_from_trusted_len_iter is instantiated a lot, so we extract part of it into a less
        // generic method to reduce compile time
        unsafe fn finalize_buffer(dst: *mut u8, buffer: &mut MutableBuffer, len: usize) {
            assert_eq!(
                dst.offset_from(buffer.data.as_ptr()) as usize,
                len,
                "Trusted iterator length was not accurately reported"
            );
            buffer.len = len;
        }
        finalize_buffer(dst, &mut buffer, len);
        Ok(buffer)
    }
}

impl Default for MutableBuffer {
    fn default() -> Self {
        Self::with_capacity(0)
    }
}

impl std::ops::Deref for MutableBuffer {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len) }
    }
}

impl std::ops::DerefMut for MutableBuffer {
    fn deref_mut(&mut self) -> &mut [u8] {
        unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
    }
}

impl Drop for MutableBuffer {
    fn drop(&mut self) {
        if self.layout.size() != 0 {
            // Safety: data was allocated with standard allocator with given layout
            unsafe { std::alloc::dealloc(self.data.as_ptr() as _, self.layout) };
        }
    }
}

impl PartialEq for MutableBuffer {
    fn eq(&self, other: &MutableBuffer) -> bool {
        if self.len != other.len {
            return false;
        }
        if self.layout != other.layout {
            return false;
        }
        self.as_slice() == other.as_slice()
    }
}

unsafe impl Sync for MutableBuffer {}
unsafe impl Send for MutableBuffer {}

struct SetLenOnDrop<'a> {
    len: &'a mut usize,
    local_len: usize,
}

impl<'a> SetLenOnDrop<'a> {
    #[inline]
    fn new(len: &'a mut usize) -> Self {
        SetLenOnDrop {
            local_len: *len,
            len,
        }
    }
}

impl Drop for SetLenOnDrop<'_> {
    #[inline]
    fn drop(&mut self) {
        *self.len = self.local_len;
    }
}

/// Creating a `MutableBuffer` instance by setting bits according to the boolean values
impl std::iter::FromIterator<bool> for MutableBuffer {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = bool>,
    {
        let mut iterator = iter.into_iter();
        let mut result = {
            let byte_capacity: usize = iterator.size_hint().0.saturating_add(7) / 8;
            MutableBuffer::new(byte_capacity)
        };

        loop {
            let mut exhausted = false;
            let mut byte_accum: u8 = 0;
            let mut mask: u8 = 1;

            //collect (up to) 8 bits into a byte
            while mask != 0 {
                if let Some(value) = iterator.next() {
                    byte_accum |= match value {
                        true => mask,
                        false => 0,
                    };
                    mask <<= 1;
                } else {
                    exhausted = true;
                    break;
                }
            }

            // break if the iterator was exhausted before it provided a bool for this byte
            if exhausted && mask == 1 {
                break;
            }

            //ensure we have capacity to write the byte
            if result.len() == result.capacity() {
                //no capacity for new byte, allocate 1 byte more (plus however many more the iterator advertises)
                let additional_byte_capacity = 1usize.saturating_add(
                    iterator.size_hint().0.saturating_add(7) / 8, //convert bit count to byte count, rounding up
                );
                result.reserve(additional_byte_capacity)
            }

            // Soundness: capacity was allocated above
            unsafe { result.push_unchecked(byte_accum) };
            if exhausted {
                break;
            }
        }
        result
    }
}

impl<T: ArrowNativeType> std::iter::FromIterator<T> for MutableBuffer {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut buffer = Self::default();
        buffer.extend_from_iter(iter.into_iter());
        buffer
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_mutable_new() {
        let buf = MutableBuffer::new(63);
        assert_eq!(64, buf.capacity());
        assert_eq!(0, buf.len());
        assert!(buf.is_empty());
    }

    #[test]
    fn test_mutable_default() {
        let buf = MutableBuffer::default();
        assert_eq!(0, buf.capacity());
        assert_eq!(0, buf.len());
        assert!(buf.is_empty());

        let mut buf = MutableBuffer::default();
        buf.extend_from_slice(b"hello");
        assert_eq!(5, buf.len());
        assert_eq!(b"hello", buf.as_slice());
    }

    #[test]
    fn test_mutable_extend_from_slice() {
        let mut buf = MutableBuffer::new(100);
        buf.extend_from_slice(b"hello");
        assert_eq!(5, buf.len());
        assert_eq!(b"hello", buf.as_slice());

        buf.extend_from_slice(b" world");
        assert_eq!(11, buf.len());
        assert_eq!(b"hello world", buf.as_slice());

        buf.clear();
        assert_eq!(0, buf.len());
        buf.extend_from_slice(b"hello arrow");
        assert_eq!(11, buf.len());
        assert_eq!(b"hello arrow", buf.as_slice());
    }

    #[test]
    fn mutable_extend_from_iter() {
        let mut buf = MutableBuffer::new(0);
        buf.extend(vec![1u32, 2]);
        assert_eq!(8, buf.len());
        assert_eq!(&[1u8, 0, 0, 0, 2, 0, 0, 0], buf.as_slice());

        buf.extend(vec![3u32, 4]);
        assert_eq!(16, buf.len());
        assert_eq!(
            &[1u8, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0],
            buf.as_slice()
        );
    }

    #[test]
    fn mutable_extend_from_iter_unaligned_u64() {
        let mut buf = MutableBuffer::new(16);
        buf.push(1_u8);
        buf.extend([1_u64]);
        assert_eq!(9, buf.len());
        assert_eq!(&[1u8, 1u8, 0, 0, 0, 0, 0, 0, 0], buf.as_slice());
    }

    #[test]
    fn mutable_extend_from_slice_unaligned_u64() {
        let mut buf = MutableBuffer::new(16);
        buf.extend_from_slice(&[1_u8]);
        buf.extend_from_slice(&[1_u64]);
        assert_eq!(9, buf.len());
        assert_eq!(&[1u8, 1u8, 0, 0, 0, 0, 0, 0, 0], buf.as_slice());
    }

    #[test]
    fn mutable_push_unaligned_u64() {
        let mut buf = MutableBuffer::new(16);
        buf.push(1_u8);
        buf.push(1_u64);
        assert_eq!(9, buf.len());
        assert_eq!(&[1u8, 1u8, 0, 0, 0, 0, 0, 0, 0], buf.as_slice());
    }

    #[test]
    fn mutable_push_unchecked_unaligned_u64() {
        let mut buf = MutableBuffer::new(16);
        unsafe {
            buf.push_unchecked(1_u8);
            buf.push_unchecked(1_u64);
        }
        assert_eq!(9, buf.len());
        assert_eq!(&[1u8, 1u8, 0, 0, 0, 0, 0, 0, 0], buf.as_slice());
    }

    #[test]
    fn test_from_trusted_len_iter() {
        let iter = vec![1u32, 2].into_iter();
        let buf = unsafe { MutableBuffer::from_trusted_len_iter(iter) };
        assert_eq!(8, buf.len());
        assert_eq!(&[1u8, 0, 0, 0, 2, 0, 0, 0], buf.as_slice());
    }

    #[test]
    fn test_mutable_reserve() {
        let mut buf = MutableBuffer::new(1);
        assert_eq!(64, buf.capacity());

        // Reserving a smaller capacity should have no effect.
        buf.reserve(10);
        assert_eq!(64, buf.capacity());

        buf.reserve(80);
        assert_eq!(128, buf.capacity());

        buf.reserve(129);
        assert_eq!(256, buf.capacity());
    }

    #[test]
    fn test_mutable_resize() {
        let mut buf = MutableBuffer::new(1);
        assert_eq!(64, buf.capacity());
        assert_eq!(0, buf.len());

        buf.resize(20, 0);
        assert_eq!(64, buf.capacity());
        assert_eq!(20, buf.len());

        buf.resize(10, 0);
        assert_eq!(64, buf.capacity());
        assert_eq!(10, buf.len());

        buf.resize(100, 0);
        assert_eq!(128, buf.capacity());
        assert_eq!(100, buf.len());

        buf.resize(30, 0);
        assert_eq!(128, buf.capacity());
        assert_eq!(30, buf.len());

        buf.resize(0, 0);
        assert_eq!(128, buf.capacity());
        assert_eq!(0, buf.len());
    }

    #[test]
    fn test_mutable_into() {
        let mut buf = MutableBuffer::new(1);
        buf.extend_from_slice(b"aaaa bbbb cccc dddd");
        assert_eq!(19, buf.len());
        assert_eq!(64, buf.capacity());
        assert_eq!(b"aaaa bbbb cccc dddd", buf.as_slice());

        let immutable_buf: Buffer = buf.into();
        assert_eq!(19, immutable_buf.len());
        assert_eq!(64, immutable_buf.capacity());
        assert_eq!(b"aaaa bbbb cccc dddd", immutable_buf.as_slice());
    }

    #[test]
    fn test_mutable_equal() {
        let mut buf = MutableBuffer::new(1);
        let mut buf2 = MutableBuffer::new(1);

        buf.extend_from_slice(&[0xaa]);
        buf2.extend_from_slice(&[0xaa, 0xbb]);
        assert!(buf != buf2);

        buf.extend_from_slice(&[0xbb]);
        assert_eq!(buf, buf2);

        buf2.reserve(65);
        assert!(buf != buf2);
    }

    #[test]
    fn test_mutable_shrink_to_fit() {
        let mut buffer = MutableBuffer::new(128);
        assert_eq!(buffer.capacity(), 128);
        buffer.push(1);
        buffer.push(2);

        buffer.shrink_to_fit();
        assert!(buffer.capacity() >= 64 && buffer.capacity() < 128);
    }

    #[test]
    fn test_mutable_set_null_bits() {
        let mut buffer = MutableBuffer::new(8).with_bitset(8, true);

        for i in 0..=buffer.capacity() {
            buffer.set_null_bits(i, 0);
            assert_eq!(buffer[..8], [255; 8][..]);
        }

        buffer.set_null_bits(1, 4);
        assert_eq!(buffer[..8], [255, 0, 0, 0, 0, 255, 255, 255][..]);
    }

    #[test]
    #[should_panic = "out of bounds for buffer of length"]
    fn test_mutable_set_null_bits_oob() {
        let mut buffer = MutableBuffer::new(64);
        buffer.set_null_bits(1, buffer.capacity());
    }

    #[test]
    #[should_panic = "out of bounds for buffer of length"]
    fn test_mutable_set_null_bits_oob_by_overflow() {
        let mut buffer = MutableBuffer::new(0);
        buffer.set_null_bits(1, usize::MAX);
    }

    #[test]
    fn from_iter() {
        let buffer = [1u16, 2, 3, 4].into_iter().collect::<MutableBuffer>();
        assert_eq!(buffer.len(), 4 * mem::size_of::<u16>());
        assert_eq!(buffer.as_slice(), &[1, 0, 2, 0, 3, 0, 4, 0]);
    }

    #[test]
    #[should_panic(expected = "failed to create layout for MutableBuffer: LayoutError")]
    fn test_with_capacity_panics_above_max_capacity() {
        let max_capacity = isize::MAX as usize - (isize::MAX as usize % ALIGNMENT);
        let _ = MutableBuffer::with_capacity(max_capacity + 1);
    }
}