arrow_buffer/buffer/
run.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::buffer::ScalarBuffer;
use crate::ArrowNativeType;

/// A slice-able buffer of monotonically increasing, positive integers used to store run-ends
///
/// # Logical vs Physical
///
/// A [`RunEndBuffer`] is used to encode runs of the same value, the index of each run is
/// called the physical index. The logical index is then the corresponding index in the logical
/// run-encoded array, i.e. a single run of length `3`, would have the logical indices `0..3`.
///
/// Each value in [`RunEndBuffer::values`] is the cumulative length of all runs in the
/// logical array, up to that physical index.
///
/// Consider a [`RunEndBuffer`] containing `[3, 4, 6]`. The maximum physical index is `2`,
/// as there are `3` values, and the maximum logical index is `5`, as the maximum run end
/// is `6`. The physical indices are therefore `[0, 0, 0, 1, 2, 2]`
///
/// ```text
///     ┌─────────┐        ┌─────────┐           ┌─────────┐
///     │    3    │        │    0    │ ─┬──────▶ │    0    │
///     ├─────────┤        ├─────────┤  │        ├─────────┤
///     │    4    │        │    1    │ ─┤ ┌────▶ │    1    │
///     ├─────────┤        ├─────────┤  │ │      ├─────────┤
///     │    6    │        │    2    │ ─┘ │ ┌──▶ │    2    │
///     └─────────┘        ├─────────┤    │ │    └─────────┘
///      run ends          │    3    │ ───┘ │  physical indices
///                        ├─────────┤      │
///                        │    4    │ ─────┤
///                        ├─────────┤      │
///                        │    5    │ ─────┘
///                        └─────────┘
///                      logical indices
/// ```
///
/// # Slicing
///
/// In order to provide zero-copy slicing, this container stores a separate offset and length
///
/// For example, a [`RunEndBuffer`] containing values `[3, 6, 8]` with offset and length `4` would
/// describe the physical indices `1, 1, 2, 2`
///
/// For example, a [`RunEndBuffer`] containing values `[6, 8, 9]` with offset `2` and length `5`
/// would describe the physical indices `0, 0, 0, 0, 1`
///
/// [Run-End encoded layout]: https://arrow.apache.org/docs/format/Columnar.html#run-end-encoded-layout
#[derive(Debug, Clone)]
pub struct RunEndBuffer<E: ArrowNativeType> {
    run_ends: ScalarBuffer<E>,
    len: usize,
    offset: usize,
}

impl<E> RunEndBuffer<E>
where
    E: ArrowNativeType,
{
    /// Create a new [`RunEndBuffer`] from a [`ScalarBuffer`], an `offset` and `len`
    ///
    /// # Panics
    ///
    /// - `buffer` does not contain strictly increasing values greater than zero
    /// - the last value of `buffer` is less than `offset + len`
    pub fn new(run_ends: ScalarBuffer<E>, offset: usize, len: usize) -> Self {
        assert!(
            run_ends.windows(2).all(|w| w[0] < w[1]),
            "run-ends not strictly increasing"
        );

        if len != 0 {
            assert!(!run_ends.is_empty(), "non-empty slice but empty run-ends");
            let end = E::from_usize(offset.saturating_add(len)).unwrap();
            assert!(
                *run_ends.first().unwrap() > E::usize_as(0),
                "run-ends not greater than 0"
            );
            assert!(
                *run_ends.last().unwrap() >= end,
                "slice beyond bounds of run-ends"
            );
        }

        Self {
            run_ends,
            offset,
            len,
        }
    }

    /// Create a new [`RunEndBuffer`] from an [`ScalarBuffer`], an `offset` and `len`
    ///
    /// # Safety
    ///
    /// - `buffer` must contain strictly increasing values greater than zero
    /// - The last value of `buffer` must be greater than or equal to `offset + len`
    pub unsafe fn new_unchecked(run_ends: ScalarBuffer<E>, offset: usize, len: usize) -> Self {
        Self {
            run_ends,
            offset,
            len,
        }
    }

    /// Returns the logical offset into the run-ends stored by this buffer
    #[inline]
    pub fn offset(&self) -> usize {
        self.offset
    }

    /// Returns the logical length of the run-ends stored by this buffer
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true if this buffer is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Free up unused memory.
    pub fn shrink_to_fit(&mut self) {
        // TODO(emilk): we could shrink even more in the case where we are a small sub-slice of the full buffer
        self.run_ends.shrink_to_fit();
    }

    /// Returns the values of this [`RunEndBuffer`] not including any offset
    #[inline]
    pub fn values(&self) -> &[E] {
        &self.run_ends
    }

    /// Returns the maximum run-end encoded in the underlying buffer
    #[inline]
    pub fn max_value(&self) -> usize {
        self.values().last().copied().unwrap_or_default().as_usize()
    }

    /// Performs a binary search to find the physical index for the given logical index
    ///
    /// The result is arbitrary if `logical_index >= self.len()`
    pub fn get_physical_index(&self, logical_index: usize) -> usize {
        let logical_index = E::usize_as(self.offset + logical_index);
        let cmp = |p: &E| p.partial_cmp(&logical_index).unwrap();

        match self.run_ends.binary_search_by(cmp) {
            Ok(idx) => idx + 1,
            Err(idx) => idx,
        }
    }

    /// Returns the physical index at which the logical array starts
    pub fn get_start_physical_index(&self) -> usize {
        if self.offset == 0 || self.len == 0 {
            return 0;
        }
        // Fallback to binary search
        self.get_physical_index(0)
    }

    /// Returns the physical index at which the logical array ends
    pub fn get_end_physical_index(&self) -> usize {
        if self.len == 0 {
            return 0;
        }
        if self.max_value() == self.offset + self.len {
            return self.values().len() - 1;
        }
        // Fallback to binary search
        self.get_physical_index(self.len - 1)
    }

    /// Slices this [`RunEndBuffer`] by the provided `offset` and `length`
    pub fn slice(&self, offset: usize, len: usize) -> Self {
        assert!(
            offset.saturating_add(len) <= self.len,
            "the length + offset of the sliced RunEndBuffer cannot exceed the existing length"
        );
        Self {
            run_ends: self.run_ends.clone(),
            offset: self.offset + offset,
            len,
        }
    }

    /// Returns the inner [`ScalarBuffer`]
    pub fn inner(&self) -> &ScalarBuffer<E> {
        &self.run_ends
    }

    /// Returns the inner [`ScalarBuffer`], consuming self
    pub fn into_inner(self) -> ScalarBuffer<E> {
        self.run_ends
    }
}

#[cfg(test)]
mod tests {
    use crate::buffer::RunEndBuffer;

    #[test]
    fn test_zero_length_slice() {
        let buffer = RunEndBuffer::new(vec![1_i32, 4_i32].into(), 0, 4);
        assert_eq!(buffer.get_start_physical_index(), 0);
        assert_eq!(buffer.get_end_physical_index(), 1);
        assert_eq!(buffer.get_physical_index(3), 1);

        for offset in 0..4 {
            let sliced = buffer.slice(offset, 0);
            assert_eq!(sliced.get_start_physical_index(), 0);
            assert_eq!(sliced.get_end_physical_index(), 0);
        }

        let buffer = RunEndBuffer::new(Vec::<i32>::new().into(), 0, 0);
        assert_eq!(buffer.get_start_physical_index(), 0);
        assert_eq!(buffer.get_end_physical_index(), 0);
    }
}