mod records;
use arrow_array::builder::PrimitiveBuilder;
use arrow_array::types::*;
use arrow_array::*;
use arrow_cast::parse::{parse_decimal, string_to_datetime, Parser};
use arrow_schema::*;
use chrono::{TimeZone, Utc};
use csv::StringRecord;
use lazy_static::lazy_static;
use regex::{Regex, RegexSet};
use std::fmt::{self, Debug};
use std::fs::File;
use std::io::{BufRead, BufReader as StdBufReader, Read, Seek, SeekFrom};
use std::sync::Arc;
use crate::map_csv_error;
use crate::reader::records::{RecordDecoder, StringRecords};
use arrow_array::timezone::Tz;
lazy_static! {
static ref REGEX_SET: RegexSet = RegexSet::new([
r"(?i)^(true)$|^(false)$(?-i)", r"^-?(\d+)$", r"^-?((\d*\.\d+|\d+\.\d*)([eE]-?\d+)?|\d+([eE]-?\d+))$", r"^\d{4}-\d\d-\d\d$", r"^\d{4}-\d\d-\d\d[T ]\d\d:\d\d:\d\d(?:[^\d\.].*)?$", r"^\d{4}-\d\d-\d\d[T ]\d\d:\d\d:\d\d\.\d{1,3}(?:[^\d].*)?$", r"^\d{4}-\d\d-\d\d[T ]\d\d:\d\d:\d\d\.\d{1,6}(?:[^\d].*)?$", r"^\d{4}-\d\d-\d\d[T ]\d\d:\d\d:\d\d\.\d{1,9}(?:[^\d].*)?$", ]).unwrap();
}
#[derive(Debug, Clone, Default)]
struct NullRegex(Option<Regex>);
impl NullRegex {
#[inline]
fn is_null(&self, s: &str) -> bool {
match &self.0 {
Some(r) => r.is_match(s),
None => s.is_empty(),
}
}
}
#[derive(Default, Copy, Clone)]
struct InferredDataType {
packed: u16,
}
impl InferredDataType {
fn get(&self) -> DataType {
match self.packed {
0 => DataType::Null,
1 => DataType::Boolean,
2 => DataType::Int64,
4 | 6 => DataType::Float64, b if b != 0 && (b & !0b11111000) == 0 => match b.leading_zeros() {
8 => DataType::Timestamp(TimeUnit::Nanosecond, None),
9 => DataType::Timestamp(TimeUnit::Microsecond, None),
10 => DataType::Timestamp(TimeUnit::Millisecond, None),
11 => DataType::Timestamp(TimeUnit::Second, None),
12 => DataType::Date32,
_ => unreachable!(),
},
_ => DataType::Utf8,
}
}
fn update(&mut self, string: &str) {
self.packed |= if string.starts_with('"') {
1 << 8 } else if let Some(m) = REGEX_SET.matches(string).into_iter().next() {
1 << m
} else {
1 << 8 }
}
}
#[derive(Debug, Clone, Default)]
pub struct Format {
header: bool,
delimiter: Option<u8>,
escape: Option<u8>,
quote: Option<u8>,
terminator: Option<u8>,
null_regex: NullRegex,
}
impl Format {
pub fn with_header(mut self, has_header: bool) -> Self {
self.header = has_header;
self
}
pub fn with_delimiter(mut self, delimiter: u8) -> Self {
self.delimiter = Some(delimiter);
self
}
pub fn with_escape(mut self, escape: u8) -> Self {
self.escape = Some(escape);
self
}
pub fn with_quote(mut self, quote: u8) -> Self {
self.quote = Some(quote);
self
}
pub fn with_terminator(mut self, terminator: u8) -> Self {
self.terminator = Some(terminator);
self
}
pub fn with_null_regex(mut self, null_regex: Regex) -> Self {
self.null_regex = NullRegex(Some(null_regex));
self
}
pub fn infer_schema<R: Read>(
&self,
reader: R,
max_records: Option<usize>,
) -> Result<(Schema, usize), ArrowError> {
let mut csv_reader = self.build_reader(reader);
let headers: Vec<String> = if self.header {
let headers = &csv_reader.headers().map_err(map_csv_error)?.clone();
headers.iter().map(|s| s.to_string()).collect()
} else {
let first_record_count = &csv_reader.headers().map_err(map_csv_error)?.len();
(0..*first_record_count)
.map(|i| format!("column_{}", i + 1))
.collect()
};
let header_length = headers.len();
let mut column_types: Vec<InferredDataType> = vec![Default::default(); header_length];
let mut records_count = 0;
let mut record = StringRecord::new();
let max_records = max_records.unwrap_or(usize::MAX);
while records_count < max_records {
if !csv_reader.read_record(&mut record).map_err(map_csv_error)? {
break;
}
records_count += 1;
for (i, column_type) in column_types.iter_mut().enumerate().take(header_length) {
if let Some(string) = record.get(i) {
if !self.null_regex.is_null(string) {
column_type.update(string)
}
}
}
}
let fields: Fields = column_types
.iter()
.zip(&headers)
.map(|(inferred, field_name)| Field::new(field_name, inferred.get(), true))
.collect();
Ok((Schema::new(fields), records_count))
}
fn build_reader<R: Read>(&self, reader: R) -> csv::Reader<R> {
let mut builder = csv::ReaderBuilder::new();
builder.has_headers(self.header);
if let Some(c) = self.delimiter {
builder.delimiter(c);
}
builder.escape(self.escape);
if let Some(c) = self.quote {
builder.quote(c);
}
if let Some(t) = self.terminator {
builder.terminator(csv::Terminator::Any(t));
}
builder.from_reader(reader)
}
fn build_parser(&self) -> csv_core::Reader {
let mut builder = csv_core::ReaderBuilder::new();
builder.escape(self.escape);
if let Some(c) = self.delimiter {
builder.delimiter(c);
}
if let Some(c) = self.quote {
builder.quote(c);
}
if let Some(t) = self.terminator {
builder.terminator(csv_core::Terminator::Any(t));
}
builder.build()
}
}
#[deprecated(note = "Use Format::infer_schema")]
#[allow(deprecated)]
pub fn infer_file_schema<R: Read + Seek>(
mut reader: R,
delimiter: u8,
max_read_records: Option<usize>,
has_header: bool,
) -> Result<(Schema, usize), ArrowError> {
let saved_offset = reader.stream_position()?;
let r = infer_reader_schema(&mut reader, delimiter, max_read_records, has_header)?;
reader.seek(SeekFrom::Start(saved_offset))?;
Ok(r)
}
#[deprecated(note = "Use Format::infer_schema")]
pub fn infer_reader_schema<R: Read>(
reader: R,
delimiter: u8,
max_read_records: Option<usize>,
has_header: bool,
) -> Result<(Schema, usize), ArrowError> {
let format = Format {
delimiter: Some(delimiter),
header: has_header,
..Default::default()
};
format.infer_schema(reader, max_read_records)
}
pub fn infer_schema_from_files(
files: &[String],
delimiter: u8,
max_read_records: Option<usize>,
has_header: bool,
) -> Result<Schema, ArrowError> {
let mut schemas = vec![];
let mut records_to_read = max_read_records.unwrap_or(usize::MAX);
let format = Format {
delimiter: Some(delimiter),
header: has_header,
..Default::default()
};
for fname in files.iter() {
let f = File::open(fname)?;
let (schema, records_read) = format.infer_schema(f, Some(records_to_read))?;
if records_read == 0 {
continue;
}
schemas.push(schema.clone());
records_to_read -= records_read;
if records_to_read == 0 {
break;
}
}
Schema::try_merge(schemas)
}
type Bounds = Option<(usize, usize)>;
pub type Reader<R> = BufReader<StdBufReader<R>>;
pub struct BufReader<R> {
reader: R,
decoder: Decoder,
}
impl<R> fmt::Debug for BufReader<R>
where
R: BufRead,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Reader")
.field("decoder", &self.decoder)
.finish()
}
}
impl<R: Read> Reader<R> {
pub fn schema(&self) -> SchemaRef {
match &self.decoder.projection {
Some(projection) => {
let fields = self.decoder.schema.fields();
let projected = projection.iter().map(|i| fields[*i].clone());
Arc::new(Schema::new(projected.collect::<Fields>()))
}
None => self.decoder.schema.clone(),
}
}
}
impl<R: BufRead> BufReader<R> {
fn read(&mut self) -> Result<Option<RecordBatch>, ArrowError> {
loop {
let buf = self.reader.fill_buf()?;
let decoded = self.decoder.decode(buf)?;
self.reader.consume(decoded);
if decoded == 0 || self.decoder.capacity() == 0 {
break;
}
}
self.decoder.flush()
}
}
impl<R: BufRead> Iterator for BufReader<R> {
type Item = Result<RecordBatch, ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
self.read().transpose()
}
}
impl<R: BufRead> RecordBatchReader for BufReader<R> {
fn schema(&self) -> SchemaRef {
self.decoder.schema.clone()
}
}
#[derive(Debug)]
pub struct Decoder {
schema: SchemaRef,
projection: Option<Vec<usize>>,
batch_size: usize,
to_skip: usize,
line_number: usize,
end: usize,
record_decoder: RecordDecoder,
null_regex: NullRegex,
}
impl Decoder {
pub fn decode(&mut self, buf: &[u8]) -> Result<usize, ArrowError> {
if self.to_skip != 0 {
let to_skip = self.to_skip.min(self.batch_size);
let (skipped, bytes) = self.record_decoder.decode(buf, to_skip)?;
self.to_skip -= skipped;
self.record_decoder.clear();
return Ok(bytes);
}
let to_read = self.batch_size.min(self.end - self.line_number) - self.record_decoder.len();
let (_, bytes) = self.record_decoder.decode(buf, to_read)?;
Ok(bytes)
}
pub fn flush(&mut self) -> Result<Option<RecordBatch>, ArrowError> {
if self.record_decoder.is_empty() {
return Ok(None);
}
let rows = self.record_decoder.flush()?;
let batch = parse(
&rows,
self.schema.fields(),
Some(self.schema.metadata.clone()),
self.projection.as_ref(),
self.line_number,
&self.null_regex,
)?;
self.line_number += rows.len();
Ok(Some(batch))
}
pub fn capacity(&self) -> usize {
self.batch_size - self.record_decoder.len()
}
}
fn parse(
rows: &StringRecords<'_>,
fields: &Fields,
metadata: Option<std::collections::HashMap<String, String>>,
projection: Option<&Vec<usize>>,
line_number: usize,
null_regex: &NullRegex,
) -> Result<RecordBatch, ArrowError> {
let projection: Vec<usize> = match projection {
Some(v) => v.clone(),
None => fields.iter().enumerate().map(|(i, _)| i).collect(),
};
let arrays: Result<Vec<ArrayRef>, _> = projection
.iter()
.map(|i| {
let i = *i;
let field = &fields[i];
match field.data_type() {
DataType::Boolean => build_boolean_array(line_number, rows, i, null_regex),
DataType::Decimal128(precision, scale) => build_decimal_array::<Decimal128Type>(
line_number,
rows,
i,
*precision,
*scale,
null_regex,
),
DataType::Decimal256(precision, scale) => build_decimal_array::<Decimal256Type>(
line_number,
rows,
i,
*precision,
*scale,
null_regex,
),
DataType::Int8 => {
build_primitive_array::<Int8Type>(line_number, rows, i, null_regex)
}
DataType::Int16 => {
build_primitive_array::<Int16Type>(line_number, rows, i, null_regex)
}
DataType::Int32 => {
build_primitive_array::<Int32Type>(line_number, rows, i, null_regex)
}
DataType::Int64 => {
build_primitive_array::<Int64Type>(line_number, rows, i, null_regex)
}
DataType::UInt8 => {
build_primitive_array::<UInt8Type>(line_number, rows, i, null_regex)
}
DataType::UInt16 => {
build_primitive_array::<UInt16Type>(line_number, rows, i, null_regex)
}
DataType::UInt32 => {
build_primitive_array::<UInt32Type>(line_number, rows, i, null_regex)
}
DataType::UInt64 => {
build_primitive_array::<UInt64Type>(line_number, rows, i, null_regex)
}
DataType::Float32 => {
build_primitive_array::<Float32Type>(line_number, rows, i, null_regex)
}
DataType::Float64 => {
build_primitive_array::<Float64Type>(line_number, rows, i, null_regex)
}
DataType::Date32 => {
build_primitive_array::<Date32Type>(line_number, rows, i, null_regex)
}
DataType::Date64 => {
build_primitive_array::<Date64Type>(line_number, rows, i, null_regex)
}
DataType::Time32(TimeUnit::Second) => {
build_primitive_array::<Time32SecondType>(line_number, rows, i, null_regex)
}
DataType::Time32(TimeUnit::Millisecond) => {
build_primitive_array::<Time32MillisecondType>(line_number, rows, i, null_regex)
}
DataType::Time64(TimeUnit::Microsecond) => {
build_primitive_array::<Time64MicrosecondType>(line_number, rows, i, null_regex)
}
DataType::Time64(TimeUnit::Nanosecond) => {
build_primitive_array::<Time64NanosecondType>(line_number, rows, i, null_regex)
}
DataType::Timestamp(TimeUnit::Second, tz) => {
build_timestamp_array::<TimestampSecondType>(
line_number,
rows,
i,
tz.as_deref(),
null_regex,
)
}
DataType::Timestamp(TimeUnit::Millisecond, tz) => {
build_timestamp_array::<TimestampMillisecondType>(
line_number,
rows,
i,
tz.as_deref(),
null_regex,
)
}
DataType::Timestamp(TimeUnit::Microsecond, tz) => {
build_timestamp_array::<TimestampMicrosecondType>(
line_number,
rows,
i,
tz.as_deref(),
null_regex,
)
}
DataType::Timestamp(TimeUnit::Nanosecond, tz) => {
build_timestamp_array::<TimestampNanosecondType>(
line_number,
rows,
i,
tz.as_deref(),
null_regex,
)
}
DataType::Null => Ok(Arc::new(NullArray::builder(rows.len()).finish()) as ArrayRef),
DataType::Utf8 => Ok(Arc::new(
rows.iter()
.map(|row| {
let s = row.get(i);
(!null_regex.is_null(s)).then_some(s)
})
.collect::<StringArray>(),
) as ArrayRef),
DataType::Dictionary(key_type, value_type)
if value_type.as_ref() == &DataType::Utf8 =>
{
match key_type.as_ref() {
DataType::Int8 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<Int8Type>>(),
) as ArrayRef),
DataType::Int16 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<Int16Type>>(),
) as ArrayRef),
DataType::Int32 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<Int32Type>>(),
) as ArrayRef),
DataType::Int64 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<Int64Type>>(),
) as ArrayRef),
DataType::UInt8 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<UInt8Type>>(),
) as ArrayRef),
DataType::UInt16 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<UInt16Type>>(),
) as ArrayRef),
DataType::UInt32 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<UInt32Type>>(),
) as ArrayRef),
DataType::UInt64 => Ok(Arc::new(
rows.iter()
.map(|row| row.get(i))
.collect::<DictionaryArray<UInt64Type>>(),
) as ArrayRef),
_ => Err(ArrowError::ParseError(format!(
"Unsupported dictionary key type {key_type:?}"
))),
}
}
other => Err(ArrowError::ParseError(format!(
"Unsupported data type {other:?}"
))),
}
})
.collect();
let projected_fields: Fields = projection.iter().map(|i| fields[*i].clone()).collect();
let projected_schema = Arc::new(match metadata {
None => Schema::new(projected_fields),
Some(metadata) => Schema::new_with_metadata(projected_fields, metadata),
});
arrays.and_then(|arr| {
RecordBatch::try_new_with_options(
projected_schema,
arr,
&RecordBatchOptions::new()
.with_match_field_names(true)
.with_row_count(Some(rows.len())),
)
})
}
fn parse_bool(string: &str) -> Option<bool> {
if string.eq_ignore_ascii_case("false") {
Some(false)
} else if string.eq_ignore_ascii_case("true") {
Some(true)
} else {
None
}
}
fn build_decimal_array<T: DecimalType>(
_line_number: usize,
rows: &StringRecords<'_>,
col_idx: usize,
precision: u8,
scale: i8,
null_regex: &NullRegex,
) -> Result<ArrayRef, ArrowError> {
let mut decimal_builder = PrimitiveBuilder::<T>::with_capacity(rows.len());
for row in rows.iter() {
let s = row.get(col_idx);
if null_regex.is_null(s) {
decimal_builder.append_null();
} else {
let decimal_value: Result<T::Native, _> = parse_decimal::<T>(s, precision, scale);
match decimal_value {
Ok(v) => {
decimal_builder.append_value(v);
}
Err(e) => {
return Err(e);
}
}
}
}
Ok(Arc::new(
decimal_builder
.finish()
.with_precision_and_scale(precision, scale)?,
))
}
fn build_primitive_array<T: ArrowPrimitiveType + Parser>(
line_number: usize,
rows: &StringRecords<'_>,
col_idx: usize,
null_regex: &NullRegex,
) -> Result<ArrayRef, ArrowError> {
rows.iter()
.enumerate()
.map(|(row_index, row)| {
let s = row.get(col_idx);
if null_regex.is_null(s) {
return Ok(None);
}
match T::parse(s) {
Some(e) => Ok(Some(e)),
None => Err(ArrowError::ParseError(format!(
"Error while parsing value {} for column {} at line {}",
s,
col_idx,
line_number + row_index
))),
}
})
.collect::<Result<PrimitiveArray<T>, ArrowError>>()
.map(|e| Arc::new(e) as ArrayRef)
}
fn build_timestamp_array<T: ArrowTimestampType>(
line_number: usize,
rows: &StringRecords<'_>,
col_idx: usize,
timezone: Option<&str>,
null_regex: &NullRegex,
) -> Result<ArrayRef, ArrowError> {
Ok(Arc::new(match timezone {
Some(timezone) => {
let tz: Tz = timezone.parse()?;
build_timestamp_array_impl::<T, _>(line_number, rows, col_idx, &tz, null_regex)?
.with_timezone(timezone)
}
None => build_timestamp_array_impl::<T, _>(line_number, rows, col_idx, &Utc, null_regex)?,
}))
}
fn build_timestamp_array_impl<T: ArrowTimestampType, Tz: TimeZone>(
line_number: usize,
rows: &StringRecords<'_>,
col_idx: usize,
timezone: &Tz,
null_regex: &NullRegex,
) -> Result<PrimitiveArray<T>, ArrowError> {
rows.iter()
.enumerate()
.map(|(row_index, row)| {
let s = row.get(col_idx);
if null_regex.is_null(s) {
return Ok(None);
}
let date = string_to_datetime(timezone, s)
.and_then(|date| match T::UNIT {
TimeUnit::Second => Ok(date.timestamp()),
TimeUnit::Millisecond => Ok(date.timestamp_millis()),
TimeUnit::Microsecond => Ok(date.timestamp_micros()),
TimeUnit::Nanosecond => date.timestamp_nanos_opt().ok_or_else(|| {
ArrowError::ParseError(format!(
"{} would overflow 64-bit signed nanoseconds",
date.to_rfc3339(),
))
}),
})
.map_err(|e| {
ArrowError::ParseError(format!(
"Error parsing column {col_idx} at line {}: {}",
line_number + row_index,
e
))
})?;
Ok(Some(date))
})
.collect()
}
fn build_boolean_array(
line_number: usize,
rows: &StringRecords<'_>,
col_idx: usize,
null_regex: &NullRegex,
) -> Result<ArrayRef, ArrowError> {
rows.iter()
.enumerate()
.map(|(row_index, row)| {
let s = row.get(col_idx);
if null_regex.is_null(s) {
return Ok(None);
}
let parsed = parse_bool(s);
match parsed {
Some(e) => Ok(Some(e)),
None => Err(ArrowError::ParseError(format!(
"Error while parsing value {} for column {} at line {}",
s,
col_idx,
line_number + row_index
))),
}
})
.collect::<Result<BooleanArray, _>>()
.map(|e| Arc::new(e) as ArrayRef)
}
#[derive(Debug)]
pub struct ReaderBuilder {
schema: SchemaRef,
format: Format,
batch_size: usize,
bounds: Bounds,
projection: Option<Vec<usize>>,
}
impl ReaderBuilder {
pub fn new(schema: SchemaRef) -> ReaderBuilder {
Self {
schema,
format: Format::default(),
batch_size: 1024,
bounds: None,
projection: None,
}
}
#[deprecated(note = "Use with_header")]
#[doc(hidden)]
pub fn has_header(mut self, has_header: bool) -> Self {
self.format.header = has_header;
self
}
pub fn with_header(mut self, has_header: bool) -> Self {
self.format.header = has_header;
self
}
pub fn with_format(mut self, format: Format) -> Self {
self.format = format;
self
}
pub fn with_delimiter(mut self, delimiter: u8) -> Self {
self.format.delimiter = Some(delimiter);
self
}
pub fn with_escape(mut self, escape: u8) -> Self {
self.format.escape = Some(escape);
self
}
pub fn with_quote(mut self, quote: u8) -> Self {
self.format.quote = Some(quote);
self
}
pub fn with_terminator(mut self, terminator: u8) -> Self {
self.format.terminator = Some(terminator);
self
}
pub fn with_null_regex(mut self, null_regex: Regex) -> Self {
self.format.null_regex = NullRegex(Some(null_regex));
self
}
pub fn with_batch_size(mut self, batch_size: usize) -> Self {
self.batch_size = batch_size;
self
}
pub fn with_bounds(mut self, start: usize, end: usize) -> Self {
self.bounds = Some((start, end));
self
}
pub fn with_projection(mut self, projection: Vec<usize>) -> Self {
self.projection = Some(projection);
self
}
pub fn build<R: Read>(self, reader: R) -> Result<Reader<R>, ArrowError> {
self.build_buffered(StdBufReader::new(reader))
}
pub fn build_buffered<R: BufRead>(self, reader: R) -> Result<BufReader<R>, ArrowError> {
Ok(BufReader {
reader,
decoder: self.build_decoder(),
})
}
pub fn build_decoder(self) -> Decoder {
let delimiter = self.format.build_parser();
let record_decoder = RecordDecoder::new(delimiter, self.schema.fields().len());
let header = self.format.header as usize;
let (start, end) = match self.bounds {
Some((start, end)) => (start + header, end + header),
None => (header, usize::MAX),
};
Decoder {
schema: self.schema,
to_skip: start,
record_decoder,
line_number: start,
end,
projection: self.projection,
batch_size: self.batch_size,
null_regex: self.format.null_regex,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::{Cursor, Write};
use tempfile::NamedTempFile;
use arrow_array::cast::AsArray;
#[test]
fn test_csv() {
let schema = Arc::new(Schema::new(vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
Field::new("lng", DataType::Float64, false),
]));
let file = File::open("test/data/uk_cities.csv").unwrap();
let mut csv = ReaderBuilder::new(schema.clone()).build(file).unwrap();
assert_eq!(schema, csv.schema());
let batch = csv.next().unwrap().unwrap();
assert_eq!(37, batch.num_rows());
assert_eq!(3, batch.num_columns());
let lat = batch.column(1).as_primitive::<Float64Type>();
assert_eq!(57.653484, lat.value(0));
let city = batch.column(0).as_string::<i32>();
assert_eq!("Aberdeen, Aberdeen City, UK", city.value(13));
}
#[test]
fn test_csv_schema_metadata() {
let mut metadata = std::collections::HashMap::new();
metadata.insert("foo".to_owned(), "bar".to_owned());
let schema = Arc::new(Schema::new_with_metadata(
vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
Field::new("lng", DataType::Float64, false),
],
metadata.clone(),
));
let file = File::open("test/data/uk_cities.csv").unwrap();
let mut csv = ReaderBuilder::new(schema.clone()).build(file).unwrap();
assert_eq!(schema, csv.schema());
let batch = csv.next().unwrap().unwrap();
assert_eq!(37, batch.num_rows());
assert_eq!(3, batch.num_columns());
assert_eq!(&metadata, batch.schema().metadata());
}
#[test]
fn test_csv_reader_with_decimal() {
let schema = Arc::new(Schema::new(vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Decimal128(38, 6), false),
Field::new("lng", DataType::Decimal256(76, 6), false),
]));
let file = File::open("test/data/decimal_test.csv").unwrap();
let mut csv = ReaderBuilder::new(schema).build(file).unwrap();
let batch = csv.next().unwrap().unwrap();
let lat = batch
.column(1)
.as_any()
.downcast_ref::<Decimal128Array>()
.unwrap();
assert_eq!("57.653484", lat.value_as_string(0));
assert_eq!("53.002666", lat.value_as_string(1));
assert_eq!("52.412811", lat.value_as_string(2));
assert_eq!("51.481583", lat.value_as_string(3));
assert_eq!("12.123456", lat.value_as_string(4));
assert_eq!("50.760000", lat.value_as_string(5));
assert_eq!("0.123000", lat.value_as_string(6));
assert_eq!("123.000000", lat.value_as_string(7));
assert_eq!("123.000000", lat.value_as_string(8));
assert_eq!("-50.760000", lat.value_as_string(9));
let lng = batch
.column(2)
.as_any()
.downcast_ref::<Decimal256Array>()
.unwrap();
assert_eq!("-3.335724", lng.value_as_string(0));
assert_eq!("-2.179404", lng.value_as_string(1));
assert_eq!("-1.778197", lng.value_as_string(2));
assert_eq!("-3.179090", lng.value_as_string(3));
assert_eq!("-3.179090", lng.value_as_string(4));
assert_eq!("0.290472", lng.value_as_string(5));
assert_eq!("0.290472", lng.value_as_string(6));
assert_eq!("0.290472", lng.value_as_string(7));
assert_eq!("0.290472", lng.value_as_string(8));
assert_eq!("0.290472", lng.value_as_string(9));
}
#[test]
fn test_csv_from_buf_reader() {
let schema = Schema::new(vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
Field::new("lng", DataType::Float64, false),
]);
let file_with_headers = File::open("test/data/uk_cities_with_headers.csv").unwrap();
let file_without_headers = File::open("test/data/uk_cities.csv").unwrap();
let both_files = file_with_headers
.chain(Cursor::new("\n".to_string()))
.chain(file_without_headers);
let mut csv = ReaderBuilder::new(Arc::new(schema))
.with_header(true)
.build(both_files)
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert_eq!(74, batch.num_rows());
assert_eq!(3, batch.num_columns());
}
#[test]
fn test_csv_with_schema_inference() {
let mut file = File::open("test/data/uk_cities_with_headers.csv").unwrap();
let (schema, _) = Format::default()
.with_header(true)
.infer_schema(&mut file, None)
.unwrap();
file.rewind().unwrap();
let builder = ReaderBuilder::new(Arc::new(schema)).with_header(true);
let mut csv = builder.build(file).unwrap();
let expected_schema = Schema::new(vec![
Field::new("city", DataType::Utf8, true),
Field::new("lat", DataType::Float64, true),
Field::new("lng", DataType::Float64, true),
]);
assert_eq!(Arc::new(expected_schema), csv.schema());
let batch = csv.next().unwrap().unwrap();
assert_eq!(37, batch.num_rows());
assert_eq!(3, batch.num_columns());
let lat = batch
.column(1)
.as_any()
.downcast_ref::<Float64Array>()
.unwrap();
assert_eq!(57.653484, lat.value(0));
let city = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
assert_eq!("Aberdeen, Aberdeen City, UK", city.value(13));
}
#[test]
fn test_csv_with_schema_inference_no_headers() {
let mut file = File::open("test/data/uk_cities.csv").unwrap();
let (schema, _) = Format::default().infer_schema(&mut file, None).unwrap();
file.rewind().unwrap();
let mut csv = ReaderBuilder::new(Arc::new(schema)).build(file).unwrap();
let schema = csv.schema();
assert_eq!("column_1", schema.field(0).name());
assert_eq!("column_2", schema.field(1).name());
assert_eq!("column_3", schema.field(2).name());
let batch = csv.next().unwrap().unwrap();
let batch_schema = batch.schema();
assert_eq!(schema, batch_schema);
assert_eq!(37, batch.num_rows());
assert_eq!(3, batch.num_columns());
let lat = batch
.column(1)
.as_any()
.downcast_ref::<Float64Array>()
.unwrap();
assert_eq!(57.653484, lat.value(0));
let city = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
assert_eq!("Aberdeen, Aberdeen City, UK", city.value(13));
}
#[test]
fn test_csv_builder_with_bounds() {
let mut file = File::open("test/data/uk_cities.csv").unwrap();
let (schema, _) = Format::default().infer_schema(&mut file, None).unwrap();
file.rewind().unwrap();
let mut csv = ReaderBuilder::new(Arc::new(schema))
.with_bounds(0, 2)
.build(file)
.unwrap();
let batch = csv.next().unwrap().unwrap();
let city = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
assert_eq!("Elgin, Scotland, the UK", city.value(0));
let result = std::panic::catch_unwind(|| city.value(13));
assert!(result.is_err());
}
#[test]
fn test_csv_with_projection() {
let schema = Arc::new(Schema::new(vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
Field::new("lng", DataType::Float64, false),
]));
let file = File::open("test/data/uk_cities.csv").unwrap();
let mut csv = ReaderBuilder::new(schema)
.with_projection(vec![0, 1])
.build(file)
.unwrap();
let projected_schema = Arc::new(Schema::new(vec![
Field::new("city", DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
]));
assert_eq!(projected_schema, csv.schema());
let batch = csv.next().unwrap().unwrap();
assert_eq!(projected_schema, batch.schema());
assert_eq!(37, batch.num_rows());
assert_eq!(2, batch.num_columns());
}
#[test]
fn test_csv_with_dictionary() {
let schema = Arc::new(Schema::new(vec![
Field::new_dictionary("city", DataType::Int32, DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
Field::new("lng", DataType::Float64, false),
]));
let file = File::open("test/data/uk_cities.csv").unwrap();
let mut csv = ReaderBuilder::new(schema)
.with_projection(vec![0, 1])
.build(file)
.unwrap();
let projected_schema = Arc::new(Schema::new(vec![
Field::new_dictionary("city", DataType::Int32, DataType::Utf8, false),
Field::new("lat", DataType::Float64, false),
]));
assert_eq!(projected_schema, csv.schema());
let batch = csv.next().unwrap().unwrap();
assert_eq!(projected_schema, batch.schema());
assert_eq!(37, batch.num_rows());
assert_eq!(2, batch.num_columns());
let strings = arrow_cast::cast(batch.column(0), &DataType::Utf8).unwrap();
let strings = strings.as_string::<i32>();
assert_eq!(strings.value(0), "Elgin, Scotland, the UK");
assert_eq!(strings.value(4), "Eastbourne, East Sussex, UK");
assert_eq!(strings.value(29), "Uckfield, East Sussex, UK");
}
#[test]
fn test_nulls() {
let schema = Arc::new(Schema::new(vec![
Field::new("c_int", DataType::UInt64, false),
Field::new("c_float", DataType::Float32, true),
Field::new("c_string", DataType::Utf8, true),
Field::new("c_bool", DataType::Boolean, false),
]));
let file = File::open("test/data/null_test.csv").unwrap();
let mut csv = ReaderBuilder::new(schema)
.with_header(true)
.build(file)
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert!(!batch.column(1).is_null(0));
assert!(!batch.column(1).is_null(1));
assert!(batch.column(1).is_null(2));
assert!(!batch.column(1).is_null(3));
assert!(!batch.column(1).is_null(4));
}
#[test]
fn test_init_nulls() {
let schema = Arc::new(Schema::new(vec![
Field::new("c_int", DataType::UInt64, true),
Field::new("c_float", DataType::Float32, true),
Field::new("c_string", DataType::Utf8, true),
Field::new("c_bool", DataType::Boolean, true),
Field::new("c_null", DataType::Null, true),
]));
let file = File::open("test/data/init_null_test.csv").unwrap();
let mut csv = ReaderBuilder::new(schema)
.with_header(true)
.build(file)
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert!(batch.column(1).is_null(0));
assert!(!batch.column(1).is_null(1));
assert!(batch.column(1).is_null(2));
assert!(!batch.column(1).is_null(3));
assert!(!batch.column(1).is_null(4));
}
#[test]
fn test_init_nulls_with_inference() {
let format = Format::default().with_header(true).with_delimiter(b',');
let mut file = File::open("test/data/init_null_test.csv").unwrap();
let (schema, _) = format.infer_schema(&mut file, None).unwrap();
file.rewind().unwrap();
let expected_schema = Schema::new(vec![
Field::new("c_int", DataType::Int64, true),
Field::new("c_float", DataType::Float64, true),
Field::new("c_string", DataType::Utf8, true),
Field::new("c_bool", DataType::Boolean, true),
Field::new("c_null", DataType::Null, true),
]);
assert_eq!(schema, expected_schema);
let mut csv = ReaderBuilder::new(Arc::new(schema))
.with_format(format)
.build(file)
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert!(batch.column(1).is_null(0));
assert!(!batch.column(1).is_null(1));
assert!(batch.column(1).is_null(2));
assert!(!batch.column(1).is_null(3));
assert!(!batch.column(1).is_null(4));
}
#[test]
fn test_custom_nulls() {
let schema = Arc::new(Schema::new(vec![
Field::new("c_int", DataType::UInt64, true),
Field::new("c_float", DataType::Float32, true),
Field::new("c_string", DataType::Utf8, true),
Field::new("c_bool", DataType::Boolean, true),
]));
let file = File::open("test/data/custom_null_test.csv").unwrap();
let null_regex = Regex::new("^nil$").unwrap();
let mut csv = ReaderBuilder::new(schema)
.with_header(true)
.with_null_regex(null_regex)
.build(file)
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert!(batch.column(0).is_null(1));
assert!(batch.column(1).is_null(2));
assert!(batch.column(3).is_null(4));
assert!(batch.column(2).is_null(3));
assert!(!batch.column(2).is_null(4));
}
#[test]
fn test_nulls_with_inference() {
let mut file = File::open("test/data/various_types.csv").unwrap();
let format = Format::default().with_header(true).with_delimiter(b'|');
let (schema, _) = format.infer_schema(&mut file, None).unwrap();
file.rewind().unwrap();
let builder = ReaderBuilder::new(Arc::new(schema))
.with_format(format)
.with_batch_size(512)
.with_projection(vec![0, 1, 2, 3, 4, 5]);
let mut csv = builder.build(file).unwrap();
let batch = csv.next().unwrap().unwrap();
assert_eq!(7, batch.num_rows());
assert_eq!(6, batch.num_columns());
let schema = batch.schema();
assert_eq!(&DataType::Int64, schema.field(0).data_type());
assert_eq!(&DataType::Float64, schema.field(1).data_type());
assert_eq!(&DataType::Float64, schema.field(2).data_type());
assert_eq!(&DataType::Boolean, schema.field(3).data_type());
assert_eq!(&DataType::Date32, schema.field(4).data_type());
assert_eq!(
&DataType::Timestamp(TimeUnit::Second, None),
schema.field(5).data_type()
);
let names: Vec<&str> = schema.fields().iter().map(|x| x.name().as_str()).collect();
assert_eq!(
names,
vec![
"c_int",
"c_float",
"c_string",
"c_bool",
"c_date",
"c_datetime"
]
);
assert!(schema.field(0).is_nullable());
assert!(schema.field(1).is_nullable());
assert!(schema.field(2).is_nullable());
assert!(schema.field(3).is_nullable());
assert!(schema.field(4).is_nullable());
assert!(schema.field(5).is_nullable());
assert!(!batch.column(1).is_null(0));
assert!(!batch.column(1).is_null(1));
assert!(batch.column(1).is_null(2));
assert!(!batch.column(1).is_null(3));
assert!(!batch.column(1).is_null(4));
}
#[test]
fn test_custom_nulls_with_inference() {
let mut file = File::open("test/data/custom_null_test.csv").unwrap();
let null_regex = Regex::new("^nil$").unwrap();
let format = Format::default()
.with_header(true)
.with_null_regex(null_regex);
let (schema, _) = format.infer_schema(&mut file, None).unwrap();
file.rewind().unwrap();
let expected_schema = Schema::new(vec![
Field::new("c_int", DataType::Int64, true),
Field::new("c_float", DataType::Float64, true),
Field::new("c_string", DataType::Utf8, true),
Field::new("c_bool", DataType::Boolean, true),
]);
assert_eq!(schema, expected_schema);
let builder = ReaderBuilder::new(Arc::new(schema))
.with_format(format)
.with_batch_size(512)
.with_projection(vec![0, 1, 2, 3]);
let mut csv = builder.build(file).unwrap();
let batch = csv.next().unwrap().unwrap();
assert_eq!(5, batch.num_rows());
assert_eq!(4, batch.num_columns());
assert_eq!(batch.schema().as_ref(), &expected_schema);
}
#[test]
fn test_parse_invalid_csv() {
let file = File::open("test/data/various_types_invalid.csv").unwrap();
let schema = Schema::new(vec![
Field::new("c_int", DataType::UInt64, false),
Field::new("c_float", DataType::Float32, false),
Field::new("c_string", DataType::Utf8, false),
Field::new("c_bool", DataType::Boolean, false),
]);
let builder = ReaderBuilder::new(Arc::new(schema))
.with_header(true)
.with_delimiter(b'|')
.with_batch_size(512)
.with_projection(vec![0, 1, 2, 3]);
let mut csv = builder.build(file).unwrap();
match csv.next() {
Some(e) => match e {
Err(e) => assert_eq!(
"ParseError(\"Error while parsing value 4.x4 for column 1 at line 4\")",
format!("{e:?}")
),
Ok(_) => panic!("should have failed"),
},
None => panic!("should have failed"),
}
}
fn infer_field_schema(string: &str) -> DataType {
let mut v = InferredDataType::default();
v.update(string);
v.get()
}
#[test]
fn test_infer_field_schema() {
assert_eq!(infer_field_schema("A"), DataType::Utf8);
assert_eq!(infer_field_schema("\"123\""), DataType::Utf8);
assert_eq!(infer_field_schema("10"), DataType::Int64);
assert_eq!(infer_field_schema("10.2"), DataType::Float64);
assert_eq!(infer_field_schema(".2"), DataType::Float64);
assert_eq!(infer_field_schema("2."), DataType::Float64);
assert_eq!(infer_field_schema("true"), DataType::Boolean);
assert_eq!(infer_field_schema("trUe"), DataType::Boolean);
assert_eq!(infer_field_schema("false"), DataType::Boolean);
assert_eq!(infer_field_schema("2020-11-08"), DataType::Date32);
assert_eq!(
infer_field_schema("2020-11-08T14:20:01"),
DataType::Timestamp(TimeUnit::Second, None)
);
assert_eq!(
infer_field_schema("2020-11-08 14:20:01"),
DataType::Timestamp(TimeUnit::Second, None)
);
assert_eq!(
infer_field_schema("2020-11-08 14:20:01"),
DataType::Timestamp(TimeUnit::Second, None)
);
assert_eq!(infer_field_schema("-5.13"), DataType::Float64);
assert_eq!(infer_field_schema("0.1300"), DataType::Float64);
assert_eq!(
infer_field_schema("2021-12-19 13:12:30.921"),
DataType::Timestamp(TimeUnit::Millisecond, None)
);
assert_eq!(
infer_field_schema("2021-12-19T13:12:30.123456789"),
DataType::Timestamp(TimeUnit::Nanosecond, None)
);
}
#[test]
fn parse_date32() {
assert_eq!(Date32Type::parse("1970-01-01").unwrap(), 0);
assert_eq!(Date32Type::parse("2020-03-15").unwrap(), 18336);
assert_eq!(Date32Type::parse("1945-05-08").unwrap(), -9004);
}
#[test]
fn parse_time() {
assert_eq!(
Time64NanosecondType::parse("12:10:01.123456789 AM"),
Some(601_123_456_789)
);
assert_eq!(
Time64MicrosecondType::parse("12:10:01.123456 am"),
Some(601_123_456)
);
assert_eq!(
Time32MillisecondType::parse("2:10:01.12 PM"),
Some(51_001_120)
);
assert_eq!(Time32SecondType::parse("2:10:01 pm"), Some(51_001));
}
#[test]
fn parse_date64() {
assert_eq!(Date64Type::parse("1970-01-01T00:00:00").unwrap(), 0);
assert_eq!(
Date64Type::parse("2018-11-13T17:11:10").unwrap(),
1542129070000
);
assert_eq!(
Date64Type::parse("2018-11-13T17:11:10.011").unwrap(),
1542129070011
);
assert_eq!(
Date64Type::parse("1900-02-28T12:34:56").unwrap(),
-2203932304000
);
assert_eq!(
Date64Type::parse_formatted("1900-02-28 12:34:56", "%Y-%m-%d %H:%M:%S").unwrap(),
-2203932304000
);
assert_eq!(
Date64Type::parse_formatted("1900-02-28 12:34:56+0030", "%Y-%m-%d %H:%M:%S%z").unwrap(),
-2203932304000 - (30 * 60 * 1000)
);
}
fn test_parse_timestamp_impl<T: ArrowTimestampType>(
timezone: Option<Arc<str>>,
expected: &[i64],
) {
let csv = [
"1970-01-01T00:00:00",
"1970-01-01T00:00:00Z",
"1970-01-01T00:00:00+02:00",
]
.join("\n");
let schema = Arc::new(Schema::new(vec![Field::new(
"field",
DataType::Timestamp(T::UNIT, timezone.clone()),
true,
)]));
let mut decoder = ReaderBuilder::new(schema).build_decoder();
let decoded = decoder.decode(csv.as_bytes()).unwrap();
assert_eq!(decoded, csv.len());
decoder.decode(&[]).unwrap();
let batch = decoder.flush().unwrap().unwrap();
assert_eq!(batch.num_columns(), 1);
assert_eq!(batch.num_rows(), 3);
let col = batch.column(0).as_primitive::<T>();
assert_eq!(col.values(), expected);
assert_eq!(col.data_type(), &DataType::Timestamp(T::UNIT, timezone));
}
#[test]
fn test_parse_timestamp() {
test_parse_timestamp_impl::<TimestampNanosecondType>(None, &[0, 0, -7_200_000_000_000]);
test_parse_timestamp_impl::<TimestampNanosecondType>(
Some("+00:00".into()),
&[0, 0, -7_200_000_000_000],
);
test_parse_timestamp_impl::<TimestampNanosecondType>(
Some("-05:00".into()),
&[18_000_000_000_000, 0, -7_200_000_000_000],
);
test_parse_timestamp_impl::<TimestampMicrosecondType>(
Some("-03".into()),
&[10_800_000_000, 0, -7_200_000_000],
);
test_parse_timestamp_impl::<TimestampMillisecondType>(
Some("-03".into()),
&[10_800_000, 0, -7_200_000],
);
test_parse_timestamp_impl::<TimestampSecondType>(Some("-03".into()), &[10_800, 0, -7_200]);
}
#[test]
fn test_infer_schema_from_multiple_files() {
let mut csv1 = NamedTempFile::new().unwrap();
let mut csv2 = NamedTempFile::new().unwrap();
let csv3 = NamedTempFile::new().unwrap(); let mut csv4 = NamedTempFile::new().unwrap();
writeln!(csv1, "c1,c2,c3").unwrap();
writeln!(csv1, "1,\"foo\",0.5").unwrap();
writeln!(csv1, "3,\"bar\",1").unwrap();
writeln!(csv1, "3,\"bar\",2e-06").unwrap();
writeln!(csv2, "c1,c2,c3,c4").unwrap();
writeln!(csv2, "10,,3.14,true").unwrap();
writeln!(csv4, "c1,c2,c3").unwrap();
writeln!(csv4, "10,\"foo\",").unwrap();
let schema = infer_schema_from_files(
&[
csv3.path().to_str().unwrap().to_string(),
csv1.path().to_str().unwrap().to_string(),
csv2.path().to_str().unwrap().to_string(),
csv4.path().to_str().unwrap().to_string(),
],
b',',
Some(4), true,
)
.unwrap();
assert_eq!(schema.fields().len(), 4);
assert!(schema.field(0).is_nullable());
assert!(schema.field(1).is_nullable());
assert!(schema.field(2).is_nullable());
assert!(schema.field(3).is_nullable());
assert_eq!(&DataType::Int64, schema.field(0).data_type());
assert_eq!(&DataType::Utf8, schema.field(1).data_type());
assert_eq!(&DataType::Float64, schema.field(2).data_type());
assert_eq!(&DataType::Boolean, schema.field(3).data_type());
}
#[test]
fn test_bounded() {
let schema = Schema::new(vec![Field::new("int", DataType::UInt32, false)]);
let data = vec![
vec!["0"],
vec!["1"],
vec!["2"],
vec!["3"],
vec!["4"],
vec!["5"],
vec!["6"],
];
let data = data
.iter()
.map(|x| x.join(","))
.collect::<Vec<_>>()
.join("\n");
let data = data.as_bytes();
let reader = std::io::Cursor::new(data);
let mut csv = ReaderBuilder::new(Arc::new(schema))
.with_batch_size(2)
.with_projection(vec![0])
.with_bounds(2, 6)
.build_buffered(reader)
.unwrap();
let batch = csv.next().unwrap().unwrap();
let a = batch.column(0);
let a = a.as_any().downcast_ref::<UInt32Array>().unwrap();
assert_eq!(a, &UInt32Array::from(vec![2, 3]));
let batch = csv.next().unwrap().unwrap();
let a = batch.column(0);
let a = a.as_any().downcast_ref::<UInt32Array>().unwrap();
assert_eq!(a, &UInt32Array::from(vec![4, 5]));
assert!(csv.next().is_none());
}
#[test]
fn test_empty_projection() {
let schema = Schema::new(vec![Field::new("int", DataType::UInt32, false)]);
let data = vec![vec!["0"], vec!["1"]];
let data = data
.iter()
.map(|x| x.join(","))
.collect::<Vec<_>>()
.join("\n");
let mut csv = ReaderBuilder::new(Arc::new(schema))
.with_batch_size(2)
.with_projection(vec![])
.build_buffered(Cursor::new(data.as_bytes()))
.unwrap();
let batch = csv.next().unwrap().unwrap();
assert_eq!(batch.columns().len(), 0);
assert_eq!(batch.num_rows(), 2);
assert!(csv.next().is_none());
}
#[test]
fn test_parsing_bool() {
assert_eq!(Some(true), parse_bool("true"));
assert_eq!(Some(true), parse_bool("tRUe"));
assert_eq!(Some(true), parse_bool("True"));
assert_eq!(Some(true), parse_bool("TRUE"));
assert_eq!(None, parse_bool("t"));
assert_eq!(None, parse_bool("T"));
assert_eq!(None, parse_bool(""));
assert_eq!(Some(false), parse_bool("false"));
assert_eq!(Some(false), parse_bool("fALse"));
assert_eq!(Some(false), parse_bool("False"));
assert_eq!(Some(false), parse_bool("FALSE"));
assert_eq!(None, parse_bool("f"));
assert_eq!(None, parse_bool("F"));
assert_eq!(None, parse_bool(""));
}
#[test]
fn test_parsing_float() {
assert_eq!(Some(12.34), Float64Type::parse("12.34"));
assert_eq!(Some(-12.34), Float64Type::parse("-12.34"));
assert_eq!(Some(12.0), Float64Type::parse("12"));
assert_eq!(Some(0.0), Float64Type::parse("0"));
assert_eq!(Some(2.0), Float64Type::parse("2."));
assert_eq!(Some(0.2), Float64Type::parse(".2"));
assert!(Float64Type::parse("nan").unwrap().is_nan());
assert!(Float64Type::parse("NaN").unwrap().is_nan());
assert!(Float64Type::parse("inf").unwrap().is_infinite());
assert!(Float64Type::parse("inf").unwrap().is_sign_positive());
assert!(Float64Type::parse("-inf").unwrap().is_infinite());
assert!(Float64Type::parse("-inf").unwrap().is_sign_negative());
assert_eq!(None, Float64Type::parse(""));
assert_eq!(None, Float64Type::parse("dd"));
assert_eq!(None, Float64Type::parse("12.34.56"));
}
#[test]
fn test_non_std_quote() {
let schema = Schema::new(vec![
Field::new("text1", DataType::Utf8, false),
Field::new("text2", DataType::Utf8, false),
]);
let builder = ReaderBuilder::new(Arc::new(schema))
.with_header(false)
.with_quote(b'~'); let mut csv_text = Vec::new();
let mut csv_writer = std::io::Cursor::new(&mut csv_text);
for index in 0..10 {
let text1 = format!("id{index:}");
let text2 = format!("value{index:}");
csv_writer
.write_fmt(format_args!("~{text1}~,~{text2}~\r\n"))
.unwrap();
}
let mut csv_reader = std::io::Cursor::new(&csv_text);
let mut reader = builder.build(&mut csv_reader).unwrap();
let batch = reader.next().unwrap().unwrap();
let col0 = batch.column(0);
assert_eq!(col0.len(), 10);
let col0_arr = col0.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col0_arr.value(0), "id0");
let col1 = batch.column(1);
assert_eq!(col1.len(), 10);
let col1_arr = col1.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col1_arr.value(5), "value5");
}
#[test]
fn test_non_std_escape() {
let schema = Schema::new(vec![
Field::new("text1", DataType::Utf8, false),
Field::new("text2", DataType::Utf8, false),
]);
let builder = ReaderBuilder::new(Arc::new(schema))
.with_header(false)
.with_escape(b'\\'); let mut csv_text = Vec::new();
let mut csv_writer = std::io::Cursor::new(&mut csv_text);
for index in 0..10 {
let text1 = format!("id{index:}");
let text2 = format!("value\\\"{index:}");
csv_writer
.write_fmt(format_args!("\"{text1}\",\"{text2}\"\r\n"))
.unwrap();
}
let mut csv_reader = std::io::Cursor::new(&csv_text);
let mut reader = builder.build(&mut csv_reader).unwrap();
let batch = reader.next().unwrap().unwrap();
let col0 = batch.column(0);
assert_eq!(col0.len(), 10);
let col0_arr = col0.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col0_arr.value(0), "id0");
let col1 = batch.column(1);
assert_eq!(col1.len(), 10);
let col1_arr = col1.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col1_arr.value(5), "value\"5");
}
#[test]
fn test_non_std_terminator() {
let schema = Schema::new(vec![
Field::new("text1", DataType::Utf8, false),
Field::new("text2", DataType::Utf8, false),
]);
let builder = ReaderBuilder::new(Arc::new(schema))
.with_header(false)
.with_terminator(b'\n'); let mut csv_text = Vec::new();
let mut csv_writer = std::io::Cursor::new(&mut csv_text);
for index in 0..10 {
let text1 = format!("id{index:}");
let text2 = format!("value{index:}");
csv_writer
.write_fmt(format_args!("\"{text1}\",\"{text2}\"\n"))
.unwrap();
}
let mut csv_reader = std::io::Cursor::new(&csv_text);
let mut reader = builder.build(&mut csv_reader).unwrap();
let batch = reader.next().unwrap().unwrap();
let col0 = batch.column(0);
assert_eq!(col0.len(), 10);
let col0_arr = col0.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col0_arr.value(0), "id0");
let col1 = batch.column(1);
assert_eq!(col1.len(), 10);
let col1_arr = col1.as_any().downcast_ref::<StringArray>().unwrap();
assert_eq!(col1_arr.value(5), "value5");
}
#[test]
fn test_header_bounds() {
let csv = "a,b\na,b\na,b\na,b\na,b\n";
let tests = [
(None, false, 5),
(None, true, 4),
(Some((0, 4)), false, 4),
(Some((1, 4)), false, 3),
(Some((0, 4)), true, 4),
(Some((1, 4)), true, 3),
];
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Utf8, false),
Field::new("a", DataType::Utf8, false),
]));
for (idx, (bounds, has_header, expected)) in tests.into_iter().enumerate() {
let mut reader = ReaderBuilder::new(schema.clone()).with_header(has_header);
if let Some((start, end)) = bounds {
reader = reader.with_bounds(start, end);
}
let b = reader
.build_buffered(Cursor::new(csv.as_bytes()))
.unwrap()
.next()
.unwrap()
.unwrap();
assert_eq!(b.num_rows(), expected, "{idx}");
}
}
#[test]
fn test_null_boolean() {
let csv = "true,false\nFalse,True\n,True\nFalse,";
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Boolean, true),
Field::new("a", DataType::Boolean, true),
]));
let b = ReaderBuilder::new(schema)
.build_buffered(Cursor::new(csv.as_bytes()))
.unwrap()
.next()
.unwrap()
.unwrap();
assert_eq!(b.num_rows(), 4);
assert_eq!(b.num_columns(), 2);
let c = b.column(0).as_boolean();
assert_eq!(c.null_count(), 1);
assert!(c.value(0));
assert!(!c.value(1));
assert!(c.is_null(2));
assert!(!c.value(3));
let c = b.column(1).as_boolean();
assert_eq!(c.null_count(), 1);
assert!(!c.value(0));
assert!(c.value(1));
assert!(c.value(2));
assert!(c.is_null(3));
}
#[test]
fn test_buffered() {
let tests = [
("test/data/uk_cities.csv", false, 37),
("test/data/various_types.csv", true, 7),
("test/data/decimal_test.csv", false, 10),
];
for (path, has_header, expected_rows) in tests {
let (schema, _) = Format::default()
.infer_schema(File::open(path).unwrap(), None)
.unwrap();
let schema = Arc::new(schema);
for batch_size in [1, 4] {
for capacity in [1, 3, 7, 100] {
let reader = ReaderBuilder::new(schema.clone())
.with_batch_size(batch_size)
.with_header(has_header)
.build(File::open(path).unwrap())
.unwrap();
let expected = reader.collect::<Result<Vec<_>, _>>().unwrap();
assert_eq!(
expected.iter().map(|x| x.num_rows()).sum::<usize>(),
expected_rows
);
let buffered =
std::io::BufReader::with_capacity(capacity, File::open(path).unwrap());
let reader = ReaderBuilder::new(schema.clone())
.with_batch_size(batch_size)
.with_header(has_header)
.build_buffered(buffered)
.unwrap();
let actual = reader.collect::<Result<Vec<_>, _>>().unwrap();
assert_eq!(expected, actual)
}
}
}
}
fn err_test(csv: &[u8], expected: &str) {
let schema = Arc::new(Schema::new(vec![
Field::new("text1", DataType::Utf8, true),
Field::new("text2", DataType::Utf8, true),
]));
let buffer = std::io::BufReader::with_capacity(2, Cursor::new(csv));
let b = ReaderBuilder::new(schema)
.with_batch_size(2)
.build_buffered(buffer)
.unwrap();
let err = b.collect::<Result<Vec<_>, _>>().unwrap_err().to_string();
assert_eq!(err, expected)
}
#[test]
fn test_invalid_utf8() {
err_test(
b"sdf,dsfg\ndfd,hgh\xFFue\n,sds\nFalhghse,",
"Csv error: Encountered invalid UTF-8 data for line 2 and field 2",
);
err_test(
b"sdf,dsfg\ndksdk,jf\nd\xFFfd,hghue\n,sds\nFalhghse,",
"Csv error: Encountered invalid UTF-8 data for line 3 and field 1",
);
err_test(
b"sdf,dsfg\ndksdk,jf\ndsdsfd,hghue\n,sds\nFalhghse,\xFF",
"Csv error: Encountered invalid UTF-8 data for line 5 and field 2",
);
err_test(
b"\xFFsdf,dsfg\ndksdk,jf\ndsdsfd,hghue\n,sds\nFalhghse,\xFF",
"Csv error: Encountered invalid UTF-8 data for line 1 and field 1",
);
}
struct InstrumentedRead<R> {
r: R,
fill_count: usize,
fill_sizes: Vec<usize>,
}
impl<R> InstrumentedRead<R> {
fn new(r: R) -> Self {
Self {
r,
fill_count: 0,
fill_sizes: vec![],
}
}
}
impl<R: Seek> Seek for InstrumentedRead<R> {
fn seek(&mut self, pos: SeekFrom) -> std::io::Result<u64> {
self.r.seek(pos)
}
}
impl<R: BufRead> Read for InstrumentedRead<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
self.r.read(buf)
}
}
impl<R: BufRead> BufRead for InstrumentedRead<R> {
fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
self.fill_count += 1;
let buf = self.r.fill_buf()?;
self.fill_sizes.push(buf.len());
Ok(buf)
}
fn consume(&mut self, amt: usize) {
self.r.consume(amt)
}
}
#[test]
fn test_io() {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Utf8, false),
Field::new("b", DataType::Utf8, false),
]));
let csv = "foo,bar\nbaz,foo\na,b\nc,d";
let mut read = InstrumentedRead::new(Cursor::new(csv.as_bytes()));
let reader = ReaderBuilder::new(schema)
.with_batch_size(3)
.build_buffered(&mut read)
.unwrap();
let batches = reader.collect::<Result<Vec<_>, _>>().unwrap();
assert_eq!(batches.len(), 2);
assert_eq!(batches[0].num_rows(), 3);
assert_eq!(batches[1].num_rows(), 1);
assert_eq!(&read.fill_sizes, &[23, 3, 0, 0]);
assert_eq!(read.fill_count, 4);
}
#[test]
fn test_inference() {
let cases: &[(&[&str], DataType)] = &[
(&[], DataType::Null),
(&["false", "12"], DataType::Utf8),
(&["12", "cupcakes"], DataType::Utf8),
(&["12", "12.4"], DataType::Float64),
(&["14050", "24332"], DataType::Int64),
(&["14050.0", "true"], DataType::Utf8),
(&["14050", "2020-03-19 00:00:00"], DataType::Utf8),
(&["14050", "2340.0", "2020-03-19 00:00:00"], DataType::Utf8),
(
&["2020-03-19 02:00:00", "2020-03-19 00:00:00"],
DataType::Timestamp(TimeUnit::Second, None),
),
(&["2020-03-19", "2020-03-20"], DataType::Date32),
(
&["2020-03-19", "2020-03-19 02:00:00", "2020-03-19 00:00:00"],
DataType::Timestamp(TimeUnit::Second, None),
),
(
&[
"2020-03-19",
"2020-03-19 02:00:00",
"2020-03-19 00:00:00.000",
],
DataType::Timestamp(TimeUnit::Millisecond, None),
),
(
&[
"2020-03-19",
"2020-03-19 02:00:00",
"2020-03-19 00:00:00.000000",
],
DataType::Timestamp(TimeUnit::Microsecond, None),
),
(
&["2020-03-19 02:00:00+02:00", "2020-03-19 02:00:00Z"],
DataType::Timestamp(TimeUnit::Second, None),
),
(
&[
"2020-03-19",
"2020-03-19 02:00:00+02:00",
"2020-03-19 02:00:00Z",
"2020-03-19 02:00:00.12Z",
],
DataType::Timestamp(TimeUnit::Millisecond, None),
),
(
&[
"2020-03-19",
"2020-03-19 02:00:00.000000000",
"2020-03-19 00:00:00.000000",
],
DataType::Timestamp(TimeUnit::Nanosecond, None),
),
];
for (values, expected) in cases {
let mut t = InferredDataType::default();
for v in *values {
t.update(v)
}
assert_eq!(&t.get(), expected, "{values:?}")
}
}
}