1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Arrow IPC File and Stream Readers
//!
//! The `FileReader` and `StreamReader` have similar interfaces,
//! however the `FileReader` expects a reader that supports `Seek`ing

use flatbuffers::VectorIter;
use std::collections::HashMap;
use std::fmt;
use std::io::{BufReader, Read, Seek, SeekFrom};
use std::sync::Arc;

use arrow_array::*;
use arrow_buffer::{Buffer, MutableBuffer};
use arrow_data::ArrayData;
use arrow_schema::*;

use crate::compression::CompressionCodec;
use crate::{FieldNode, MetadataVersion, CONTINUATION_MARKER};
use DataType::*;

/// Read a buffer based on offset and length
/// From <https://github.com/apache/arrow/blob/6a936c4ff5007045e86f65f1a6b6c3c955ad5103/format/Message.fbs#L58>
/// Each constituent buffer is first compressed with the indicated
/// compressor, and then written with the uncompressed length in the first 8
/// bytes as a 64-bit little-endian signed integer followed by the compressed
/// buffer bytes (and then padding as required by the protocol). The
/// uncompressed length may be set to -1 to indicate that the data that
/// follows is not compressed, which can be useful for cases where
/// compression does not yield appreciable savings.
fn read_buffer(
    buf: &crate::Buffer,
    a_data: &Buffer,
    compression_codec: Option<CompressionCodec>,
) -> Result<Buffer, ArrowError> {
    let start_offset = buf.offset() as usize;
    let buf_data = a_data.slice_with_length(start_offset, buf.length() as usize);
    // corner case: empty buffer
    match (buf_data.is_empty(), compression_codec) {
        (true, _) | (_, None) => Ok(buf_data),
        (false, Some(decompressor)) => decompressor.decompress_to_buffer(&buf_data),
    }
}

/// Coordinates reading arrays based on data types.
///
/// Notes:
/// * In the IPC format, null buffers are always set, but may be empty. We discard them if an array has 0 nulls
/// * Numeric values inside list arrays are often stored as 64-bit values regardless of their data type size.
///   We thus:
///     - check if the bit width of non-64-bit numbers is 64, and
///     - read the buffer as 64-bit (signed integer or float), and
///     - cast the 64-bit array to the appropriate data type
fn create_array(reader: &mut ArrayReader, field: &Field) -> Result<ArrayRef, ArrowError> {
    let data_type = field.data_type();
    match data_type {
        Utf8 | Binary | LargeBinary | LargeUtf8 => create_primitive_array(
            reader.next_node(field)?,
            data_type,
            &[
                reader.next_buffer()?,
                reader.next_buffer()?,
                reader.next_buffer()?,
            ],
        ),
        FixedSizeBinary(_) => create_primitive_array(
            reader.next_node(field)?,
            data_type,
            &[reader.next_buffer()?, reader.next_buffer()?],
        ),
        List(ref list_field) | LargeList(ref list_field) | Map(ref list_field, _) => {
            let list_node = reader.next_node(field)?;
            let list_buffers = [reader.next_buffer()?, reader.next_buffer()?];
            let values = create_array(reader, list_field)?;
            create_list_array(list_node, data_type, &list_buffers, values)
        }
        FixedSizeList(ref list_field, _) => {
            let list_node = reader.next_node(field)?;
            let list_buffers = [reader.next_buffer()?];
            let values = create_array(reader, list_field)?;
            create_list_array(list_node, data_type, &list_buffers, values)
        }
        Struct(struct_fields) => {
            let struct_node = reader.next_node(field)?;
            let null_buffer = reader.next_buffer()?;

            // read the arrays for each field
            let mut struct_arrays = vec![];
            // TODO investigate whether just knowing the number of buffers could
            // still work
            for struct_field in struct_fields {
                let child = create_array(reader, struct_field)?;
                struct_arrays.push((struct_field.clone(), child));
            }
            let null_count = struct_node.null_count() as usize;
            let struct_array = if null_count > 0 {
                // create struct array from fields, arrays and null data
                StructArray::from((struct_arrays, null_buffer))
            } else {
                StructArray::from(struct_arrays)
            };
            Ok(Arc::new(struct_array))
        }
        RunEndEncoded(run_ends_field, values_field) => {
            let run_node = reader.next_node(field)?;
            let run_ends = create_array(reader, run_ends_field)?;
            let values = create_array(reader, values_field)?;

            let run_array_length = run_node.length() as usize;
            let data = ArrayData::builder(data_type.clone())
                .len(run_array_length)
                .offset(0)
                .add_child_data(run_ends.into_data())
                .add_child_data(values.into_data())
                .build_aligned()?;

            Ok(make_array(data))
        }
        // Create dictionary array from RecordBatch
        Dictionary(_, _) => {
            let index_node = reader.next_node(field)?;
            let index_buffers = [reader.next_buffer()?, reader.next_buffer()?];

            let dict_id = field.dict_id().ok_or_else(|| {
                ArrowError::ParseError(format!("Field {field} does not have dict id"))
            })?;

            let value_array = reader.dictionaries_by_id.get(&dict_id).ok_or_else(|| {
                ArrowError::ParseError(format!(
                    "Cannot find a dictionary batch with dict id: {dict_id}"
                ))
            })?;

            create_dictionary_array(index_node, data_type, &index_buffers, value_array.clone())
        }
        Union(fields, mode) => {
            let union_node = reader.next_node(field)?;
            let len = union_node.length() as usize;

            // In V4, union types has validity bitmap
            // In V5 and later, union types have no validity bitmap
            if reader.version < MetadataVersion::V5 {
                reader.next_buffer()?;
            }

            let type_ids: Buffer = reader.next_buffer()?[..len].into();

            let value_offsets = match mode {
                UnionMode::Dense => {
                    let buffer = reader.next_buffer()?;
                    Some(buffer[..len * 4].into())
                }
                UnionMode::Sparse => None,
            };

            let mut children = Vec::with_capacity(fields.len());
            let mut ids = Vec::with_capacity(fields.len());

            for (id, field) in fields.iter() {
                let child = create_array(reader, field)?;
                children.push((field.as_ref().clone(), child));
                ids.push(id);
            }

            let array = UnionArray::try_new(&ids, type_ids, value_offsets, children)?;
            Ok(Arc::new(array))
        }
        Null => {
            let node = reader.next_node(field)?;
            let length = node.length();
            let null_count = node.null_count();

            if length != null_count {
                return Err(ArrowError::SchemaError(format!(
                    "Field {field} of NullArray has unequal null_count {null_count} and len {length}"
                )));
            }

            let data = ArrayData::builder(data_type.clone())
                .len(length as usize)
                .offset(0)
                .build_aligned()
                .unwrap();
            // no buffer increases
            Ok(Arc::new(NullArray::from(data)))
        }
        _ => create_primitive_array(
            reader.next_node(field)?,
            data_type,
            &[reader.next_buffer()?, reader.next_buffer()?],
        ),
    }
}

/// Reads the correct number of buffers based on data type and null_count, and creates a
/// primitive array ref
fn create_primitive_array(
    field_node: &FieldNode,
    data_type: &DataType,
    buffers: &[Buffer],
) -> Result<ArrayRef, ArrowError> {
    let length = field_node.length() as usize;
    let null_buffer = (field_node.null_count() > 0).then_some(buffers[0].clone());
    let array_data = match data_type {
        Utf8 | Binary | LargeBinary | LargeUtf8 => {
            // read 3 buffers: null buffer (optional), offsets buffer and data buffer
            ArrayData::builder(data_type.clone())
                .len(length)
                .buffers(buffers[1..3].to_vec())
                .null_bit_buffer(null_buffer)
                .build_aligned()?
        }
        _ if data_type.is_primitive() || matches!(data_type, Boolean | FixedSizeBinary(_)) => {
            // read 2 buffers: null buffer (optional) and data buffer
            ArrayData::builder(data_type.clone())
                .len(length)
                .add_buffer(buffers[1].clone())
                .null_bit_buffer(null_buffer)
                .build_aligned()?
        }
        t => unreachable!("Data type {:?} either unsupported or not primitive", t),
    };

    Ok(make_array(array_data))
}

/// Reads the correct number of buffers based on list type and null_count, and creates a
/// list array ref
fn create_list_array(
    field_node: &FieldNode,
    data_type: &DataType,
    buffers: &[Buffer],
    child_array: ArrayRef,
) -> Result<ArrayRef, ArrowError> {
    let null_buffer = (field_node.null_count() > 0).then_some(buffers[0].clone());
    let length = field_node.length() as usize;
    let child_data = child_array.into_data();
    let builder = match data_type {
        List(_) | LargeList(_) | Map(_, _) => ArrayData::builder(data_type.clone())
            .len(length)
            .add_buffer(buffers[1].clone())
            .add_child_data(child_data)
            .null_bit_buffer(null_buffer),

        FixedSizeList(_, _) => ArrayData::builder(data_type.clone())
            .len(length)
            .add_child_data(child_data)
            .null_bit_buffer(null_buffer),

        _ => unreachable!("Cannot create list or map array from {:?}", data_type),
    };
    Ok(make_array(builder.build_aligned()?))
}

/// Reads the correct number of buffers based on list type and null_count, and creates a
/// list array ref
fn create_dictionary_array(
    field_node: &FieldNode,
    data_type: &DataType,
    buffers: &[Buffer],
    value_array: ArrayRef,
) -> Result<ArrayRef, ArrowError> {
    if let Dictionary(_, _) = *data_type {
        let null_buffer = (field_node.null_count() > 0).then_some(buffers[0].clone());
        let builder = ArrayData::builder(data_type.clone())
            .len(field_node.length() as usize)
            .add_buffer(buffers[1].clone())
            .add_child_data(value_array.into_data())
            .null_bit_buffer(null_buffer);

        Ok(make_array(builder.build_aligned()?))
    } else {
        unreachable!("Cannot create dictionary array from {:?}", data_type)
    }
}

/// State for decoding arrays from an encoded [`RecordBatch`]
struct ArrayReader<'a> {
    /// Decoded dictionaries indexed by dictionary id
    dictionaries_by_id: &'a HashMap<i64, ArrayRef>,
    /// Optional compression codec
    compression: Option<CompressionCodec>,
    /// The format version
    version: MetadataVersion,
    /// The raw data buffer
    data: &'a Buffer,
    /// The fields comprising this array
    nodes: VectorIter<'a, FieldNode>,
    /// The buffers comprising this array
    buffers: VectorIter<'a, crate::Buffer>,
}

impl<'a> ArrayReader<'a> {
    fn next_buffer(&mut self) -> Result<Buffer, ArrowError> {
        read_buffer(self.buffers.next().unwrap(), self.data, self.compression)
    }

    fn skip_buffer(&mut self) {
        self.buffers.next().unwrap();
    }

    fn next_node(&mut self, field: &Field) -> Result<&'a FieldNode, ArrowError> {
        self.nodes.next().ok_or_else(|| {
            ArrowError::SchemaError(format!(
                "Invalid data for schema. {} refers to node not found in schema",
                field
            ))
        })
    }

    fn skip_field(&mut self, field: &Field) -> Result<(), ArrowError> {
        self.next_node(field)?;

        match field.data_type() {
            Utf8 | Binary | LargeBinary | LargeUtf8 => {
                for _ in 0..3 {
                    self.skip_buffer()
                }
            }
            FixedSizeBinary(_) => {
                self.skip_buffer();
                self.skip_buffer();
            }
            List(list_field) | LargeList(list_field) | Map(list_field, _) => {
                self.skip_buffer();
                self.skip_buffer();
                self.skip_field(list_field)?;
            }
            FixedSizeList(list_field, _) => {
                self.skip_buffer();
                self.skip_field(list_field)?;
            }
            Struct(struct_fields) => {
                self.skip_buffer();

                // skip for each field
                for struct_field in struct_fields {
                    self.skip_field(struct_field)?
                }
            }
            RunEndEncoded(run_ends_field, values_field) => {
                self.skip_field(run_ends_field)?;
                self.skip_field(values_field)?;
            }
            Dictionary(_, _) => {
                self.skip_buffer(); // Nulls
                self.skip_buffer(); // Indices
            }
            Union(fields, mode) => {
                self.skip_buffer(); // Nulls

                match mode {
                    UnionMode::Dense => self.skip_buffer(),
                    UnionMode::Sparse => {}
                };

                for (_, field) in fields.iter() {
                    self.skip_field(field)?
                }
            }
            Null => {} // No buffer increases
            _ => {
                self.skip_buffer();
                self.skip_buffer();
            }
        };
        Ok(())
    }
}

/// Creates a record batch from binary data using the `crate::RecordBatch` indexes and the `Schema`
pub fn read_record_batch(
    buf: &Buffer,
    batch: crate::RecordBatch,
    schema: SchemaRef,
    dictionaries_by_id: &HashMap<i64, ArrayRef>,
    projection: Option<&[usize]>,
    metadata: &MetadataVersion,
) -> Result<RecordBatch, ArrowError> {
    let buffers = batch.buffers().ok_or_else(|| {
        ArrowError::IpcError("Unable to get buffers from IPC RecordBatch".to_string())
    })?;
    let field_nodes = batch.nodes().ok_or_else(|| {
        ArrowError::IpcError("Unable to get field nodes from IPC RecordBatch".to_string())
    })?;
    let batch_compression = batch.compression();
    let compression = batch_compression
        .map(|batch_compression| batch_compression.codec().try_into())
        .transpose()?;

    let mut reader = ArrayReader {
        dictionaries_by_id,
        compression,
        version: *metadata,
        data: buf,
        nodes: field_nodes.iter(),
        buffers: buffers.iter(),
    };

    let options = RecordBatchOptions::new().with_row_count(Some(batch.length() as usize));

    if let Some(projection) = projection {
        let mut arrays = vec![];
        // project fields
        for (idx, field) in schema.fields().iter().enumerate() {
            // Create array for projected field
            if let Some(proj_idx) = projection.iter().position(|p| p == &idx) {
                let child = create_array(&mut reader, field)?;
                arrays.push((proj_idx, child));
            } else {
                reader.skip_field(field)?;
            }
        }
        arrays.sort_by_key(|t| t.0);
        RecordBatch::try_new_with_options(
            Arc::new(schema.project(projection)?),
            arrays.into_iter().map(|t| t.1).collect(),
            &options,
        )
    } else {
        let mut children = vec![];
        // keep track of index as lists require more than one node
        for field in schema.fields() {
            let child = create_array(&mut reader, field)?;
            children.push(child);
        }
        RecordBatch::try_new_with_options(schema, children, &options)
    }
}

/// Read the dictionary from the buffer and provided metadata,
/// updating the `dictionaries_by_id` with the resulting dictionary
pub fn read_dictionary(
    buf: &Buffer,
    batch: crate::DictionaryBatch,
    schema: &Schema,
    dictionaries_by_id: &mut HashMap<i64, ArrayRef>,
    metadata: &crate::MetadataVersion,
) -> Result<(), ArrowError> {
    if batch.isDelta() {
        return Err(ArrowError::InvalidArgumentError(
            "delta dictionary batches not supported".to_string(),
        ));
    }

    let id = batch.id();
    let fields_using_this_dictionary = schema.fields_with_dict_id(id);
    let first_field = fields_using_this_dictionary.first().ok_or_else(|| {
        ArrowError::InvalidArgumentError("dictionary id not found in schema".to_string())
    })?;

    // As the dictionary batch does not contain the type of the
    // values array, we need to retrieve this from the schema.
    // Get an array representing this dictionary's values.
    let dictionary_values: ArrayRef = match first_field.data_type() {
        DataType::Dictionary(_, ref value_type) => {
            // Make a fake schema for the dictionary batch.
            let value = value_type.as_ref().clone();
            let schema = Schema::new(vec![Field::new("", value, true)]);
            // Read a single column
            let record_batch = read_record_batch(
                buf,
                batch.data().unwrap(),
                Arc::new(schema),
                dictionaries_by_id,
                None,
                metadata,
            )?;
            Some(record_batch.column(0).clone())
        }
        _ => None,
    }
    .ok_or_else(|| {
        ArrowError::InvalidArgumentError("dictionary id not found in schema".to_string())
    })?;

    // We don't currently record the isOrdered field. This could be general
    // attributes of arrays.
    // Add (possibly multiple) array refs to the dictionaries array.
    dictionaries_by_id.insert(id, dictionary_values.clone());

    Ok(())
}

/// Arrow File reader
pub struct FileReader<R: Read + Seek> {
    /// Buffered file reader that supports reading and seeking
    reader: BufReader<R>,

    /// The schema that is read from the file header
    schema: SchemaRef,

    /// The blocks in the file
    ///
    /// A block indicates the regions in the file to read to get data
    blocks: Vec<crate::Block>,

    /// A counter to keep track of the current block that should be read
    current_block: usize,

    /// The total number of blocks, which may contain record batches and other types
    total_blocks: usize,

    /// Optional dictionaries for each schema field.
    ///
    /// Dictionaries may be appended to in the streaming format.
    dictionaries_by_id: HashMap<i64, ArrayRef>,

    /// Metadata version
    metadata_version: crate::MetadataVersion,

    /// User defined metadata
    custom_metadata: HashMap<String, String>,

    /// Optional projection and projected_schema
    projection: Option<(Vec<usize>, Schema)>,
}

impl<R: Read + Seek> fmt::Debug for FileReader<R> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::result::Result<(), fmt::Error> {
        f.debug_struct("FileReader<R>")
            .field("reader", &"BufReader<..>")
            .field("schema", &self.schema)
            .field("blocks", &self.blocks)
            .field("current_block", &self.current_block)
            .field("total_blocks", &self.total_blocks)
            .field("dictionaries_by_id", &self.dictionaries_by_id)
            .field("metadata_version", &self.metadata_version)
            .field("projection", &self.projection)
            .finish()
    }
}

impl<R: Read + Seek> FileReader<R> {
    /// Try to create a new file reader
    ///
    /// Returns errors if the file does not meet the Arrow Format header and footer
    /// requirements
    pub fn try_new(reader: R, projection: Option<Vec<usize>>) -> Result<Self, ArrowError> {
        let mut reader = BufReader::new(reader);
        // check if header and footer contain correct magic bytes
        let mut magic_buffer: [u8; 6] = [0; 6];
        reader.read_exact(&mut magic_buffer)?;
        if magic_buffer != super::ARROW_MAGIC {
            return Err(ArrowError::ParseError(
                "Arrow file does not contain correct header".to_string(),
            ));
        }
        reader.seek(SeekFrom::End(-6))?;
        reader.read_exact(&mut magic_buffer)?;
        if magic_buffer != super::ARROW_MAGIC {
            return Err(ArrowError::ParseError(
                "Arrow file does not contain correct footer".to_string(),
            ));
        }
        // read footer length
        let mut footer_size: [u8; 4] = [0; 4];
        reader.seek(SeekFrom::End(-10))?;
        reader.read_exact(&mut footer_size)?;
        let footer_len = i32::from_le_bytes(footer_size);

        // read footer
        let mut footer_data = vec![0; footer_len as usize];
        reader.seek(SeekFrom::End(-10 - footer_len as i64))?;
        reader.read_exact(&mut footer_data)?;

        let footer = crate::root_as_footer(&footer_data[..]).map_err(|err| {
            ArrowError::ParseError(format!("Unable to get root as footer: {err:?}"))
        })?;

        let blocks = footer.recordBatches().ok_or_else(|| {
            ArrowError::ParseError("Unable to get record batches from IPC Footer".to_string())
        })?;

        let total_blocks = blocks.len();

        let ipc_schema = footer.schema().unwrap();
        let schema = crate::convert::fb_to_schema(ipc_schema);

        let mut custom_metadata = HashMap::new();
        if let Some(fb_custom_metadata) = footer.custom_metadata() {
            for kv in fb_custom_metadata.into_iter() {
                custom_metadata.insert(
                    kv.key().unwrap().to_string(),
                    kv.value().unwrap().to_string(),
                );
            }
        }

        // Create an array of optional dictionary value arrays, one per field.
        let mut dictionaries_by_id = HashMap::new();
        if let Some(dictionaries) = footer.dictionaries() {
            for block in dictionaries {
                // read length from end of offset
                let mut message_size: [u8; 4] = [0; 4];
                reader.seek(SeekFrom::Start(block.offset() as u64))?;
                reader.read_exact(&mut message_size)?;
                if message_size == CONTINUATION_MARKER {
                    reader.read_exact(&mut message_size)?;
                }
                let footer_len = i32::from_le_bytes(message_size);
                let mut block_data = vec![0; footer_len as usize];

                reader.read_exact(&mut block_data)?;

                let message = crate::root_as_message(&block_data[..]).map_err(|err| {
                    ArrowError::ParseError(format!("Unable to get root as message: {err:?}"))
                })?;

                match message.header_type() {
                    crate::MessageHeader::DictionaryBatch => {
                        let batch = message.header_as_dictionary_batch().unwrap();

                        // read the block that makes up the dictionary batch into a buffer
                        let mut buf = MutableBuffer::from_len_zeroed(message.bodyLength() as usize);
                        reader.seek(SeekFrom::Start(
                            block.offset() as u64 + block.metaDataLength() as u64,
                        ))?;
                        reader.read_exact(&mut buf)?;

                        read_dictionary(
                            &buf.into(),
                            batch,
                            &schema,
                            &mut dictionaries_by_id,
                            &message.version(),
                        )?;
                    }
                    t => {
                        return Err(ArrowError::ParseError(format!(
                            "Expecting DictionaryBatch in dictionary blocks, found {t:?}."
                        )));
                    }
                }
            }
        }
        let projection = match projection {
            Some(projection_indices) => {
                let schema = schema.project(&projection_indices)?;
                Some((projection_indices, schema))
            }
            _ => None,
        };

        Ok(Self {
            reader,
            schema: Arc::new(schema),
            blocks: blocks.iter().copied().collect(),
            current_block: 0,
            total_blocks,
            dictionaries_by_id,
            metadata_version: footer.version(),
            custom_metadata,
            projection,
        })
    }

    /// Return user defined customized metadata
    pub fn custom_metadata(&self) -> &HashMap<String, String> {
        &self.custom_metadata
    }

    /// Return the number of batches in the file
    pub fn num_batches(&self) -> usize {
        self.total_blocks
    }

    /// Return the schema of the file
    pub fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    /// Read a specific record batch
    ///
    /// Sets the current block to the index, allowing random reads
    pub fn set_index(&mut self, index: usize) -> Result<(), ArrowError> {
        if index >= self.total_blocks {
            Err(ArrowError::InvalidArgumentError(format!(
                "Cannot set batch to index {} from {} total batches",
                index, self.total_blocks
            )))
        } else {
            self.current_block = index;
            Ok(())
        }
    }

    fn maybe_next(&mut self) -> Result<Option<RecordBatch>, ArrowError> {
        let block = self.blocks[self.current_block];
        self.current_block += 1;

        // read length
        self.reader.seek(SeekFrom::Start(block.offset() as u64))?;
        let mut meta_buf = [0; 4];
        self.reader.read_exact(&mut meta_buf)?;
        if meta_buf == CONTINUATION_MARKER {
            // continuation marker encountered, read message next
            self.reader.read_exact(&mut meta_buf)?;
        }
        let meta_len = i32::from_le_bytes(meta_buf);

        let mut block_data = vec![0; meta_len as usize];
        self.reader.read_exact(&mut block_data)?;
        let message = crate::root_as_message(&block_data[..]).map_err(|err| {
            ArrowError::ParseError(format!("Unable to get root as footer: {err:?}"))
        })?;

        // some old test data's footer metadata is not set, so we account for that
        if self.metadata_version != crate::MetadataVersion::V1
            && message.version() != self.metadata_version
        {
            return Err(ArrowError::IpcError(
                "Could not read IPC message as metadata versions mismatch".to_string(),
            ));
        }

        match message.header_type() {
            crate::MessageHeader::Schema => Err(ArrowError::IpcError(
                "Not expecting a schema when messages are read".to_string(),
            )),
            crate::MessageHeader::RecordBatch => {
                let batch = message.header_as_record_batch().ok_or_else(|| {
                    ArrowError::IpcError("Unable to read IPC message as record batch".to_string())
                })?;
                // read the block that makes up the record batch into a buffer
                let mut buf = MutableBuffer::from_len_zeroed(message.bodyLength() as usize);
                self.reader.seek(SeekFrom::Start(
                    block.offset() as u64 + block.metaDataLength() as u64,
                ))?;
                self.reader.read_exact(&mut buf)?;

                read_record_batch(
                    &buf.into(),
                    batch,
                    self.schema(),
                    &self.dictionaries_by_id,
                    self.projection.as_ref().map(|x| x.0.as_ref()),
                    &message.version(),
                )
                .map(Some)
            }
            crate::MessageHeader::NONE => Ok(None),
            t => Err(ArrowError::InvalidArgumentError(format!(
                "Reading types other than record batches not yet supported, unable to read {t:?}"
            ))),
        }
    }

    /// Gets a reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    pub fn get_ref(&self) -> &R {
        self.reader.get_ref()
    }

    /// Gets a mutable reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    pub fn get_mut(&mut self) -> &mut R {
        self.reader.get_mut()
    }
}

impl<R: Read + Seek> Iterator for FileReader<R> {
    type Item = Result<RecordBatch, ArrowError>;

    fn next(&mut self) -> Option<Self::Item> {
        // get current block
        if self.current_block < self.total_blocks {
            self.maybe_next().transpose()
        } else {
            None
        }
    }
}

impl<R: Read + Seek> RecordBatchReader for FileReader<R> {
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

/// Arrow Stream reader
pub struct StreamReader<R: Read> {
    /// Stream reader
    reader: R,

    /// The schema that is read from the stream's first message
    schema: SchemaRef,

    /// Optional dictionaries for each schema field.
    ///
    /// Dictionaries may be appended to in the streaming format.
    dictionaries_by_id: HashMap<i64, ArrayRef>,

    /// An indicator of whether the stream is complete.
    ///
    /// This value is set to `true` the first time the reader's `next()` returns `None`.
    finished: bool,

    /// Optional projection
    projection: Option<(Vec<usize>, Schema)>,
}

impl<R: Read> fmt::Debug for StreamReader<R> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> std::result::Result<(), fmt::Error> {
        f.debug_struct("StreamReader<R>")
            .field("reader", &"BufReader<..>")
            .field("schema", &self.schema)
            .field("dictionaries_by_id", &self.dictionaries_by_id)
            .field("finished", &self.finished)
            .field("projection", &self.projection)
            .finish()
    }
}

impl<R: Read> StreamReader<BufReader<R>> {
    /// Try to create a new stream reader with the reader wrapped in a BufReader
    ///
    /// The first message in the stream is the schema, the reader will fail if it does not
    /// encounter a schema.
    /// To check if the reader is done, use `is_finished(self)`
    pub fn try_new(reader: R, projection: Option<Vec<usize>>) -> Result<Self, ArrowError> {
        Self::try_new_unbuffered(BufReader::new(reader), projection)
    }
}

impl<R: Read> StreamReader<R> {
    /// Try to create a new stream reader but do not wrap the reader in a BufReader.
    ///
    /// Unless you need the StreamReader to be unbuffered you likely want to use `StreamReader::try_new` instead.
    pub fn try_new_unbuffered(
        mut reader: R,
        projection: Option<Vec<usize>>,
    ) -> Result<StreamReader<R>, ArrowError> {
        // determine metadata length
        let mut meta_size: [u8; 4] = [0; 4];
        reader.read_exact(&mut meta_size)?;
        let meta_len = {
            // If a continuation marker is encountered, skip over it and read
            // the size from the next four bytes.
            if meta_size == CONTINUATION_MARKER {
                reader.read_exact(&mut meta_size)?;
            }
            i32::from_le_bytes(meta_size)
        };

        let mut meta_buffer = vec![0; meta_len as usize];
        reader.read_exact(&mut meta_buffer)?;

        let message = crate::root_as_message(meta_buffer.as_slice()).map_err(|err| {
            ArrowError::ParseError(format!("Unable to get root as message: {err:?}"))
        })?;
        // message header is a Schema, so read it
        let ipc_schema: crate::Schema = message.header_as_schema().ok_or_else(|| {
            ArrowError::ParseError("Unable to read IPC message as schema".to_string())
        })?;
        let schema = crate::convert::fb_to_schema(ipc_schema);

        // Create an array of optional dictionary value arrays, one per field.
        let dictionaries_by_id = HashMap::new();

        let projection = match projection {
            Some(projection_indices) => {
                let schema = schema.project(&projection_indices)?;
                Some((projection_indices, schema))
            }
            _ => None,
        };
        Ok(Self {
            reader,
            schema: Arc::new(schema),
            finished: false,
            dictionaries_by_id,
            projection,
        })
    }

    /// Return the schema of the stream
    pub fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    /// Check if the stream is finished
    pub fn is_finished(&self) -> bool {
        self.finished
    }

    fn maybe_next(&mut self) -> Result<Option<RecordBatch>, ArrowError> {
        if self.finished {
            return Ok(None);
        }
        // determine metadata length
        let mut meta_size: [u8; 4] = [0; 4];

        match self.reader.read_exact(&mut meta_size) {
            Ok(()) => (),
            Err(e) => {
                return if e.kind() == std::io::ErrorKind::UnexpectedEof {
                    // Handle EOF without the "0xFFFFFFFF 0x00000000"
                    // valid according to:
                    // https://arrow.apache.org/docs/format/Columnar.html#ipc-streaming-format
                    self.finished = true;
                    Ok(None)
                } else {
                    Err(ArrowError::from(e))
                };
            }
        }

        let meta_len = {
            // If a continuation marker is encountered, skip over it and read
            // the size from the next four bytes.
            if meta_size == CONTINUATION_MARKER {
                self.reader.read_exact(&mut meta_size)?;
            }
            i32::from_le_bytes(meta_size)
        };

        if meta_len == 0 {
            // the stream has ended, mark the reader as finished
            self.finished = true;
            return Ok(None);
        }

        let mut meta_buffer = vec![0; meta_len as usize];
        self.reader.read_exact(&mut meta_buffer)?;

        let vecs = &meta_buffer.to_vec();
        let message = crate::root_as_message(vecs).map_err(|err| {
            ArrowError::ParseError(format!("Unable to get root as message: {err:?}"))
        })?;

        match message.header_type() {
            crate::MessageHeader::Schema => Err(ArrowError::IpcError(
                "Not expecting a schema when messages are read".to_string(),
            )),
            crate::MessageHeader::RecordBatch => {
                let batch = message.header_as_record_batch().ok_or_else(|| {
                    ArrowError::IpcError("Unable to read IPC message as record batch".to_string())
                })?;
                // read the block that makes up the record batch into a buffer
                let mut buf = MutableBuffer::from_len_zeroed(message.bodyLength() as usize);
                self.reader.read_exact(&mut buf)?;

                read_record_batch(
                    &buf.into(),
                    batch,
                    self.schema(),
                    &self.dictionaries_by_id,
                    self.projection.as_ref().map(|x| x.0.as_ref()),
                    &message.version(),
                )
                .map(Some)
            }
            crate::MessageHeader::DictionaryBatch => {
                let batch = message.header_as_dictionary_batch().ok_or_else(|| {
                    ArrowError::IpcError(
                        "Unable to read IPC message as dictionary batch".to_string(),
                    )
                })?;
                // read the block that makes up the dictionary batch into a buffer
                let mut buf = MutableBuffer::from_len_zeroed(message.bodyLength() as usize);
                self.reader.read_exact(&mut buf)?;

                read_dictionary(
                    &buf.into(),
                    batch,
                    &self.schema,
                    &mut self.dictionaries_by_id,
                    &message.version(),
                )?;

                // read the next message until we encounter a RecordBatch
                self.maybe_next()
            }
            crate::MessageHeader::NONE => Ok(None),
            t => Err(ArrowError::InvalidArgumentError(format!(
                "Reading types other than record batches not yet supported, unable to read {t:?} "
            ))),
        }
    }

    /// Gets a reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    pub fn get_ref(&self) -> &R {
        &self.reader
    }

    /// Gets a mutable reference to the underlying reader.
    ///
    /// It is inadvisable to directly read from the underlying reader.
    pub fn get_mut(&mut self) -> &mut R {
        &mut self.reader
    }
}

impl<R: Read> Iterator for StreamReader<R> {
    type Item = Result<RecordBatch, ArrowError>;

    fn next(&mut self) -> Option<Self::Item> {
        self.maybe_next().transpose()
    }
}

impl<R: Read> RecordBatchReader for StreamReader<R> {
    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }
}

#[cfg(test)]
mod tests {
    use crate::writer::{unslice_run_array, DictionaryTracker, IpcDataGenerator};

    use super::*;

    use crate::root_as_message;
    use arrow_array::builder::{PrimitiveRunBuilder, UnionBuilder};
    use arrow_array::types::*;
    use arrow_buffer::ArrowNativeType;
    use arrow_data::ArrayDataBuilder;

    fn create_test_projection_schema() -> Schema {
        // define field types
        let list_data_type = DataType::List(Arc::new(Field::new("item", DataType::Int32, true)));

        let fixed_size_list_data_type =
            DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Int32, false)), 3);

        let union_fields = UnionFields::new(
            vec![0, 1],
            vec![
                Field::new("a", DataType::Int32, false),
                Field::new("b", DataType::Float64, false),
            ],
        );

        let union_data_type = DataType::Union(union_fields, UnionMode::Dense);

        let struct_fields = Fields::from(vec![
            Field::new("id", DataType::Int32, false),
            Field::new_list("list", Field::new("item", DataType::Int8, true), false),
        ]);
        let struct_data_type = DataType::Struct(struct_fields);

        let run_encoded_data_type = DataType::RunEndEncoded(
            Arc::new(Field::new("run_ends", DataType::Int16, false)),
            Arc::new(Field::new("values", DataType::Int32, true)),
        );

        // define schema
        Schema::new(vec![
            Field::new("f0", DataType::UInt32, false),
            Field::new("f1", DataType::Utf8, false),
            Field::new("f2", DataType::Boolean, false),
            Field::new("f3", union_data_type, true),
            Field::new("f4", DataType::Null, true),
            Field::new("f5", DataType::Float64, true),
            Field::new("f6", list_data_type, false),
            Field::new("f7", DataType::FixedSizeBinary(3), true),
            Field::new("f8", fixed_size_list_data_type, false),
            Field::new("f9", struct_data_type, false),
            Field::new("f10", run_encoded_data_type, false),
            Field::new("f11", DataType::Boolean, false),
            Field::new_dictionary("f12", DataType::Int8, DataType::Utf8, false),
            Field::new("f13", DataType::Utf8, false),
        ])
    }

    fn create_test_projection_batch_data(schema: &Schema) -> RecordBatch {
        // set test data for each column
        let array0 = UInt32Array::from(vec![1, 2, 3]);
        let array1 = StringArray::from(vec!["foo", "bar", "baz"]);
        let array2 = BooleanArray::from(vec![true, false, true]);

        let mut union_builder = UnionBuilder::new_dense();
        union_builder.append::<Int32Type>("a", 1).unwrap();
        union_builder.append::<Float64Type>("b", 10.1).unwrap();
        union_builder.append_null::<Float64Type>("b").unwrap();
        let array3 = union_builder.build().unwrap();

        let array4 = NullArray::new(3);
        let array5 = Float64Array::from(vec![Some(1.1), None, Some(3.3)]);
        let array6_values = vec![
            Some(vec![Some(10), Some(10), Some(10)]),
            Some(vec![Some(20), Some(20), Some(20)]),
            Some(vec![Some(30), Some(30)]),
        ];
        let array6 = ListArray::from_iter_primitive::<Int32Type, _, _>(array6_values);
        let array7_values = vec![vec![11, 12, 13], vec![22, 23, 24], vec![33, 34, 35]];
        let array7 = FixedSizeBinaryArray::try_from_iter(array7_values.into_iter()).unwrap();

        let array8_values = ArrayData::builder(DataType::Int32)
            .len(9)
            .add_buffer(Buffer::from_slice_ref([40, 41, 42, 43, 44, 45, 46, 47, 48]))
            .build()
            .unwrap();
        let array8_data = ArrayData::builder(schema.field(8).data_type().clone())
            .len(3)
            .add_child_data(array8_values)
            .build()
            .unwrap();
        let array8 = FixedSizeListArray::from(array8_data);

        let array9_id: ArrayRef = Arc::new(Int32Array::from(vec![1001, 1002, 1003]));
        let array9_list: ArrayRef =
            Arc::new(ListArray::from_iter_primitive::<Int8Type, _, _>(vec![
                Some(vec![Some(-10)]),
                Some(vec![Some(-20), Some(-20), Some(-20)]),
                Some(vec![Some(-30)]),
            ]));
        let array9 = ArrayDataBuilder::new(schema.field(9).data_type().clone())
            .add_child_data(array9_id.into_data())
            .add_child_data(array9_list.into_data())
            .len(3)
            .build()
            .unwrap();
        let array9: ArrayRef = Arc::new(StructArray::from(array9));

        let array10_input = vec![Some(1_i32), None, None];
        let mut array10_builder = PrimitiveRunBuilder::<Int16Type, Int32Type>::new();
        array10_builder.extend(array10_input);
        let array10 = array10_builder.finish();

        let array11 = BooleanArray::from(vec![false, false, true]);

        let array12_values = StringArray::from(vec!["x", "yy", "zzz"]);
        let array12_keys = Int8Array::from_iter_values([1, 1, 2]);
        let array12 = DictionaryArray::new(array12_keys, Arc::new(array12_values));

        let array13 = StringArray::from(vec!["a", "bb", "ccc"]);

        // create record batch
        RecordBatch::try_new(
            Arc::new(schema.clone()),
            vec![
                Arc::new(array0),
                Arc::new(array1),
                Arc::new(array2),
                Arc::new(array3),
                Arc::new(array4),
                Arc::new(array5),
                Arc::new(array6),
                Arc::new(array7),
                Arc::new(array8),
                Arc::new(array9),
                Arc::new(array10),
                Arc::new(array11),
                Arc::new(array12),
                Arc::new(array13),
            ],
        )
        .unwrap()
    }

    #[test]
    fn test_projection_array_values() {
        // define schema
        let schema = create_test_projection_schema();

        // create record batch with test data
        let batch = create_test_projection_batch_data(&schema);

        // write record batch in IPC format
        let mut buf = Vec::new();
        {
            let mut writer = crate::writer::FileWriter::try_new(&mut buf, &schema).unwrap();
            writer.write(&batch).unwrap();
            writer.finish().unwrap();
        }

        // read record batch with projection
        for index in 0..12 {
            let projection = vec![index];
            let reader = FileReader::try_new(std::io::Cursor::new(buf.clone()), Some(projection));
            let read_batch = reader.unwrap().next().unwrap().unwrap();
            let projected_column = read_batch.column(0);
            let expected_column = batch.column(index);

            // check the projected column equals the expected column
            assert_eq!(projected_column.as_ref(), expected_column.as_ref());
        }

        {
            // read record batch with reversed projection
            let reader =
                FileReader::try_new(std::io::Cursor::new(buf.clone()), Some(vec![3, 2, 1]));
            let read_batch = reader.unwrap().next().unwrap().unwrap();
            let expected_batch = batch.project(&[3, 2, 1]).unwrap();
            assert_eq!(read_batch, expected_batch);
        }
    }

    #[test]
    fn test_arrow_single_float_row() {
        let schema = Schema::new(vec![
            Field::new("a", DataType::Float32, false),
            Field::new("b", DataType::Float32, false),
            Field::new("c", DataType::Int32, false),
            Field::new("d", DataType::Int32, false),
        ]);
        let arrays = vec![
            Arc::new(Float32Array::from(vec![1.23])) as ArrayRef,
            Arc::new(Float32Array::from(vec![-6.50])) as ArrayRef,
            Arc::new(Int32Array::from(vec![2])) as ArrayRef,
            Arc::new(Int32Array::from(vec![1])) as ArrayRef,
        ];
        let batch = RecordBatch::try_new(Arc::new(schema.clone()), arrays).unwrap();
        // create stream writer
        let mut file = tempfile::tempfile().unwrap();
        let mut stream_writer = crate::writer::StreamWriter::try_new(&mut file, &schema).unwrap();
        stream_writer.write(&batch).unwrap();
        stream_writer.finish().unwrap();

        drop(stream_writer);

        file.rewind().unwrap();

        // read stream back
        let reader = StreamReader::try_new(&mut file, None).unwrap();

        reader.for_each(|batch| {
            let batch = batch.unwrap();
            assert!(
                batch
                    .column(0)
                    .as_any()
                    .downcast_ref::<Float32Array>()
                    .unwrap()
                    .value(0)
                    != 0.0
            );
            assert!(
                batch
                    .column(1)
                    .as_any()
                    .downcast_ref::<Float32Array>()
                    .unwrap()
                    .value(0)
                    != 0.0
            );
        });

        file.rewind().unwrap();

        // Read with projection
        let reader = StreamReader::try_new(file, Some(vec![0, 3])).unwrap();

        reader.for_each(|batch| {
            let batch = batch.unwrap();
            assert_eq!(batch.schema().fields().len(), 2);
            assert_eq!(batch.schema().fields()[0].data_type(), &DataType::Float32);
            assert_eq!(batch.schema().fields()[1].data_type(), &DataType::Int32);
        });
    }

    fn roundtrip_ipc(rb: &RecordBatch) -> RecordBatch {
        let mut buf = Vec::new();
        let mut writer = crate::writer::FileWriter::try_new(&mut buf, &rb.schema()).unwrap();
        writer.write(rb).unwrap();
        writer.finish().unwrap();
        drop(writer);

        let mut reader = FileReader::try_new(std::io::Cursor::new(buf), None).unwrap();
        reader.next().unwrap().unwrap()
    }

    fn roundtrip_ipc_stream(rb: &RecordBatch) -> RecordBatch {
        let mut buf = Vec::new();
        let mut writer = crate::writer::StreamWriter::try_new(&mut buf, &rb.schema()).unwrap();
        writer.write(rb).unwrap();
        writer.finish().unwrap();
        drop(writer);

        let mut reader =
            crate::reader::StreamReader::try_new(std::io::Cursor::new(buf), None).unwrap();
        reader.next().unwrap().unwrap()
    }

    #[test]
    fn test_roundtrip_with_custom_metadata() {
        let schema = Schema::new(vec![Field::new("dummy", DataType::Float64, false)]);
        let mut buf = Vec::new();
        let mut writer = crate::writer::FileWriter::try_new(&mut buf, &schema).unwrap();
        let mut test_metadata = HashMap::new();
        test_metadata.insert("abc".to_string(), "abc".to_string());
        test_metadata.insert("def".to_string(), "def".to_string());
        for (k, v) in &test_metadata {
            writer.write_metadata(k, v);
        }
        writer.finish().unwrap();
        drop(writer);

        let reader = crate::reader::FileReader::try_new(std::io::Cursor::new(buf), None).unwrap();
        assert_eq!(reader.custom_metadata(), &test_metadata);
    }

    #[test]
    fn test_roundtrip_nested_dict() {
        let inner: DictionaryArray<Int32Type> = vec!["a", "b", "a"].into_iter().collect();

        let array = Arc::new(inner) as ArrayRef;

        let dctfield = Arc::new(Field::new("dict", array.data_type().clone(), false));

        let s = StructArray::from(vec![(dctfield, array)]);
        let struct_array = Arc::new(s) as ArrayRef;

        let schema = Arc::new(Schema::new(vec![Field::new(
            "struct",
            struct_array.data_type().clone(),
            false,
        )]));

        let batch = RecordBatch::try_new(schema, vec![struct_array]).unwrap();

        assert_eq!(batch, roundtrip_ipc(&batch));
    }

    fn check_union_with_builder(mut builder: UnionBuilder) {
        builder.append::<Int32Type>("a", 1).unwrap();
        builder.append_null::<Int32Type>("a").unwrap();
        builder.append::<Float64Type>("c", 3.0).unwrap();
        builder.append::<Int32Type>("a", 4).unwrap();
        builder.append::<Int64Type>("d", 11).unwrap();
        let union = builder.build().unwrap();

        let schema = Arc::new(Schema::new(vec![Field::new(
            "union",
            union.data_type().clone(),
            false,
        )]));

        let union_array = Arc::new(union) as ArrayRef;

        let rb = RecordBatch::try_new(schema, vec![union_array]).unwrap();
        let rb2 = roundtrip_ipc(&rb);
        // TODO: equality not yet implemented for union, so we check that the length of the array is
        // the same and that all of the buffers are the same instead.
        assert_eq!(rb.schema(), rb2.schema());
        assert_eq!(rb.num_columns(), rb2.num_columns());
        assert_eq!(rb.num_rows(), rb2.num_rows());
        let union1 = rb.column(0);
        let union2 = rb2.column(0);

        assert_eq!(union1, union2);
    }

    #[test]
    fn test_roundtrip_dense_union() {
        check_union_with_builder(UnionBuilder::new_dense());
    }

    #[test]
    fn test_roundtrip_sparse_union() {
        check_union_with_builder(UnionBuilder::new_sparse());
    }

    #[test]
    fn test_roundtrip_stream_run_array_sliced() {
        let run_array_1: Int32RunArray = vec!["a", "a", "a", "b", "b", "c", "c", "c"]
            .into_iter()
            .collect();
        let run_array_1_sliced = run_array_1.slice(2, 5);

        let run_array_2_inupt = vec![Some(1_i32), None, None, Some(2), Some(2)];
        let mut run_array_2_builder = PrimitiveRunBuilder::<Int16Type, Int32Type>::new();
        run_array_2_builder.extend(run_array_2_inupt);
        let run_array_2 = run_array_2_builder.finish();

        let schema = Arc::new(Schema::new(vec![
            Field::new(
                "run_array_1_sliced",
                run_array_1_sliced.data_type().clone(),
                false,
            ),
            Field::new("run_array_2", run_array_2.data_type().clone(), false),
        ]));
        let input_batch = RecordBatch::try_new(
            schema,
            vec![Arc::new(run_array_1_sliced.clone()), Arc::new(run_array_2)],
        )
        .unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);

        // As partial comparison not yet supported for run arrays, the sliced run array
        // has to be unsliced before comparing with the output. the second run array
        // can be compared as such.
        assert_eq!(input_batch.column(1), output_batch.column(1));

        let run_array_1_unsliced = unslice_run_array(run_array_1_sliced.into_data()).unwrap();
        assert_eq!(run_array_1_unsliced, output_batch.column(0).into_data());
    }

    #[test]
    fn test_roundtrip_stream_nested_dict() {
        let xs = vec!["AA", "BB", "AA", "CC", "BB"];
        let dict = Arc::new(
            xs.clone()
                .into_iter()
                .collect::<DictionaryArray<Int8Type>>(),
        );
        let string_array: ArrayRef = Arc::new(StringArray::from(xs.clone()));
        let struct_array = StructArray::from(vec![
            (
                Arc::new(Field::new("f2.1", DataType::Utf8, false)),
                string_array,
            ),
            (
                Arc::new(Field::new("f2.2_struct", dict.data_type().clone(), false)),
                dict.clone() as ArrayRef,
            ),
        ]);
        let schema = Arc::new(Schema::new(vec![
            Field::new("f1_string", DataType::Utf8, false),
            Field::new("f2_struct", struct_array.data_type().clone(), false),
        ]));
        let input_batch = RecordBatch::try_new(
            schema,
            vec![
                Arc::new(StringArray::from(xs.clone())),
                Arc::new(struct_array),
            ],
        )
        .unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);
        assert_eq!(input_batch, output_batch);
    }

    #[test]
    fn test_roundtrip_stream_nested_dict_of_map_of_dict() {
        let values = StringArray::from(vec![Some("a"), None, Some("b"), Some("c")]);
        let values = Arc::new(values) as ArrayRef;
        let value_dict_keys = Int8Array::from_iter_values([0, 1, 1, 2, 3, 1]);
        let value_dict_array = DictionaryArray::new(value_dict_keys, values.clone());

        let key_dict_keys = Int8Array::from_iter_values([0, 0, 2, 1, 1, 3]);
        let key_dict_array = DictionaryArray::new(key_dict_keys, values);

        let keys_field = Arc::new(Field::new_dict(
            "keys",
            DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
            true, // It is technically not legal for this field to be null.
            1,
            false,
        ));
        let values_field = Arc::new(Field::new_dict(
            "values",
            DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
            true,
            1,
            false,
        ));
        let entry_struct = StructArray::from(vec![
            (keys_field, make_array(key_dict_array.into_data())),
            (values_field, make_array(value_dict_array.into_data())),
        ]);
        let map_data_type = DataType::Map(
            Arc::new(Field::new(
                "entries",
                entry_struct.data_type().clone(),
                false,
            )),
            false,
        );

        let entry_offsets = Buffer::from_slice_ref([0, 2, 4, 6]);
        let map_data = ArrayData::builder(map_data_type)
            .len(3)
            .add_buffer(entry_offsets)
            .add_child_data(entry_struct.into_data())
            .build()
            .unwrap();
        let map_array = MapArray::from(map_data);

        let dict_keys = Int8Array::from_iter_values([0, 1, 1, 2, 2, 1]);
        let dict_dict_array = DictionaryArray::new(dict_keys, Arc::new(map_array));

        let schema = Arc::new(Schema::new(vec![Field::new(
            "f1",
            dict_dict_array.data_type().clone(),
            false,
        )]));
        let input_batch = RecordBatch::try_new(schema, vec![Arc::new(dict_dict_array)]).unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);
        assert_eq!(input_batch, output_batch);
    }

    fn test_roundtrip_stream_dict_of_list_of_dict_impl<
        OffsetSize: OffsetSizeTrait,
        U: ArrowNativeType,
    >(
        list_data_type: DataType,
        offsets: &[U; 5],
    ) {
        let values = StringArray::from(vec![Some("a"), None, Some("c"), None]);
        let keys = Int8Array::from_iter_values([0, 0, 1, 2, 0, 1, 3]);
        let dict_array = DictionaryArray::new(keys, Arc::new(values));
        let dict_data = dict_array.to_data();

        let value_offsets = Buffer::from_slice_ref(offsets);

        let list_data = ArrayData::builder(list_data_type)
            .len(4)
            .add_buffer(value_offsets)
            .add_child_data(dict_data)
            .build()
            .unwrap();
        let list_array = GenericListArray::<OffsetSize>::from(list_data);

        let keys_for_dict = Int8Array::from_iter_values([0, 3, 0, 1, 1, 2, 0, 1, 3]);
        let dict_dict_array = DictionaryArray::new(keys_for_dict, Arc::new(list_array));

        let schema = Arc::new(Schema::new(vec![Field::new(
            "f1",
            dict_dict_array.data_type().clone(),
            false,
        )]));
        let input_batch = RecordBatch::try_new(schema, vec![Arc::new(dict_dict_array)]).unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);
        assert_eq!(input_batch, output_batch);
    }

    #[test]
    fn test_roundtrip_stream_dict_of_list_of_dict() {
        // list
        let list_data_type = DataType::List(Arc::new(Field::new_dict(
            "item",
            DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
            true,
            1,
            false,
        )));
        let offsets: &[i32; 5] = &[0, 2, 4, 4, 6];
        test_roundtrip_stream_dict_of_list_of_dict_impl::<i32, i32>(list_data_type, offsets);

        // large list
        let list_data_type = DataType::LargeList(Arc::new(Field::new_dict(
            "item",
            DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
            true,
            1,
            false,
        )));
        let offsets: &[i64; 5] = &[0, 2, 4, 4, 7];
        test_roundtrip_stream_dict_of_list_of_dict_impl::<i64, i64>(list_data_type, offsets);
    }

    #[test]
    fn test_roundtrip_stream_dict_of_fixed_size_list_of_dict() {
        let values = StringArray::from(vec![Some("a"), None, Some("c"), None]);
        let keys = Int8Array::from_iter_values([0, 0, 1, 2, 0, 1, 3, 1, 2]);
        let dict_array = DictionaryArray::new(keys, Arc::new(values));
        let dict_data = dict_array.into_data();

        let list_data_type = DataType::FixedSizeList(
            Arc::new(Field::new_dict(
                "item",
                DataType::Dictionary(Box::new(DataType::Int8), Box::new(DataType::Utf8)),
                true,
                1,
                false,
            )),
            3,
        );
        let list_data = ArrayData::builder(list_data_type)
            .len(3)
            .add_child_data(dict_data)
            .build()
            .unwrap();
        let list_array = FixedSizeListArray::from(list_data);

        let keys_for_dict = Int8Array::from_iter_values([0, 1, 0, 1, 1, 2, 0, 1, 2]);
        let dict_dict_array = DictionaryArray::new(keys_for_dict, Arc::new(list_array));

        let schema = Arc::new(Schema::new(vec![Field::new(
            "f1",
            dict_dict_array.data_type().clone(),
            false,
        )]));
        let input_batch = RecordBatch::try_new(schema, vec![Arc::new(dict_dict_array)]).unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);
        assert_eq!(input_batch, output_batch);
    }

    #[test]
    fn test_no_columns_batch() {
        let schema = Arc::new(Schema::empty());
        let options = RecordBatchOptions::new()
            .with_match_field_names(true)
            .with_row_count(Some(10));
        let input_batch = RecordBatch::try_new_with_options(schema, vec![], &options).unwrap();
        let output_batch = roundtrip_ipc_stream(&input_batch);
        assert_eq!(input_batch, output_batch);
    }

    #[test]
    fn test_unaligned() {
        let batch = RecordBatch::try_from_iter(vec![(
            "i32",
            Arc::new(Int32Array::from(vec![1, 2, 3, 4])) as _,
        )])
        .unwrap();

        let gen = IpcDataGenerator {};
        let mut dict_tracker = DictionaryTracker::new(false);
        let (_, encoded) = gen
            .encoded_batch(&batch, &mut dict_tracker, &Default::default())
            .unwrap();

        let message = root_as_message(&encoded.ipc_message).unwrap();

        // Construct an unaligned buffer
        let mut buffer = MutableBuffer::with_capacity(encoded.arrow_data.len() + 1);
        buffer.push(0_u8);
        buffer.extend_from_slice(&encoded.arrow_data);
        let b = Buffer::from(buffer).slice(1);
        assert_ne!(b.as_ptr().align_offset(8), 0);

        let ipc_batch = message.header_as_record_batch().unwrap();
        let roundtrip = read_record_batch(
            &b,
            ipc_batch,
            batch.schema(),
            &Default::default(),
            None,
            &message.version(),
        )
        .unwrap();
        assert_eq!(batch, roundtrip);
    }
}