arrow_ipc/
writer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Arrow IPC File and Stream Writers
//!
//! The `FileWriter` and `StreamWriter` have similar interfaces,
//! however the `FileWriter` expects a reader that supports `Seek`ing

use std::cmp::min;
use std::collections::HashMap;
use std::io::{BufWriter, Write};
use std::sync::Arc;

use flatbuffers::FlatBufferBuilder;

use arrow_array::builder::BufferBuilder;
use arrow_array::cast::*;
use arrow_array::types::{Int16Type, Int32Type, Int64Type, RunEndIndexType};
use arrow_array::*;
use arrow_buffer::bit_util;
use arrow_buffer::{ArrowNativeType, Buffer, MutableBuffer};
use arrow_data::{layout, ArrayData, ArrayDataBuilder, BufferSpec};
use arrow_schema::*;

use crate::compression::CompressionCodec;
use crate::convert::IpcSchemaEncoder;
use crate::CONTINUATION_MARKER;

/// IPC write options used to control the behaviour of the [`IpcDataGenerator`]
#[derive(Debug, Clone)]
pub struct IpcWriteOptions {
    /// Write padding after memory buffers to this multiple of bytes.
    /// Must be 8, 16, 32, or 64 - defaults to 64.
    alignment: u8,
    /// The legacy format is for releases before 0.15.0, and uses metadata V4
    write_legacy_ipc_format: bool,
    /// The metadata version to write. The Rust IPC writer supports V4+
    ///
    /// *Default versions per crate*
    ///
    /// When creating the default IpcWriteOptions, the following metadata versions are used:
    ///
    /// version 2.0.0: V4, with legacy format enabled
    /// version 4.0.0: V5
    metadata_version: crate::MetadataVersion,
    /// Compression, if desired. Will result in a runtime error
    /// if the corresponding feature is not enabled
    batch_compression_type: Option<crate::CompressionType>,
    /// Flag indicating whether the writer should preserve the dictionary IDs defined in the
    /// schema or generate unique dictionary IDs internally during encoding.
    ///
    /// Defaults to `true`
    preserve_dict_id: bool,
}

impl IpcWriteOptions {
    /// Configures compression when writing IPC files.
    ///
    /// Will result in a runtime error if the corresponding feature
    /// is not enabled
    pub fn try_with_compression(
        mut self,
        batch_compression_type: Option<crate::CompressionType>,
    ) -> Result<Self, ArrowError> {
        self.batch_compression_type = batch_compression_type;

        if self.batch_compression_type.is_some()
            && self.metadata_version < crate::MetadataVersion::V5
        {
            return Err(ArrowError::InvalidArgumentError(
                "Compression only supported in metadata v5 and above".to_string(),
            ));
        }
        Ok(self)
    }
    /// Try to create IpcWriteOptions, checking for incompatible settings
    pub fn try_new(
        alignment: usize,
        write_legacy_ipc_format: bool,
        metadata_version: crate::MetadataVersion,
    ) -> Result<Self, ArrowError> {
        let is_alignment_valid =
            alignment == 8 || alignment == 16 || alignment == 32 || alignment == 64;
        if !is_alignment_valid {
            return Err(ArrowError::InvalidArgumentError(
                "Alignment should be 8, 16, 32, or 64.".to_string(),
            ));
        }
        let alignment: u8 = u8::try_from(alignment).expect("range already checked");
        match metadata_version {
            crate::MetadataVersion::V1
            | crate::MetadataVersion::V2
            | crate::MetadataVersion::V3 => Err(ArrowError::InvalidArgumentError(
                "Writing IPC metadata version 3 and lower not supported".to_string(),
            )),
            crate::MetadataVersion::V4 => Ok(Self {
                alignment,
                write_legacy_ipc_format,
                metadata_version,
                batch_compression_type: None,
                preserve_dict_id: true,
            }),
            crate::MetadataVersion::V5 => {
                if write_legacy_ipc_format {
                    Err(ArrowError::InvalidArgumentError(
                        "Legacy IPC format only supported on metadata version 4".to_string(),
                    ))
                } else {
                    Ok(Self {
                        alignment,
                        write_legacy_ipc_format,
                        metadata_version,
                        batch_compression_type: None,
                        preserve_dict_id: true,
                    })
                }
            }
            z => Err(ArrowError::InvalidArgumentError(format!(
                "Unsupported crate::MetadataVersion {z:?}"
            ))),
        }
    }

    /// Return whether the writer is configured to preserve the dictionary IDs
    /// defined in the schema
    pub fn preserve_dict_id(&self) -> bool {
        self.preserve_dict_id
    }

    /// Set whether the IPC writer should preserve the dictionary IDs in the schema
    /// or auto-assign unique dictionary IDs during encoding (defaults to true)
    ///
    /// If this option is true,  the application must handle assigning ids
    /// to the dictionary batches in order to encode them correctly
    ///
    /// The default will change to `false`  in future releases
    pub fn with_preserve_dict_id(mut self, preserve_dict_id: bool) -> Self {
        self.preserve_dict_id = preserve_dict_id;
        self
    }
}

impl Default for IpcWriteOptions {
    fn default() -> Self {
        Self {
            alignment: 64,
            write_legacy_ipc_format: false,
            metadata_version: crate::MetadataVersion::V5,
            batch_compression_type: None,
            preserve_dict_id: true,
        }
    }
}

#[derive(Debug, Default)]
/// Handles low level details of encoding [`Array`] and [`Schema`] into the
/// [Arrow IPC Format].
///
/// # Example:
/// ```
/// # fn run() {
/// # use std::sync::Arc;
/// # use arrow_array::UInt64Array;
/// # use arrow_array::RecordBatch;
/// # use arrow_ipc::writer::{DictionaryTracker, IpcDataGenerator, IpcWriteOptions};
///
/// // Create a record batch
/// let batch = RecordBatch::try_from_iter(vec![
///  ("col2", Arc::new(UInt64Array::from_iter([10, 23, 33])) as _)
/// ]).unwrap();
///
/// // Error of dictionary ids are replaced.
/// let error_on_replacement = true;
/// let options = IpcWriteOptions::default();
/// let mut dictionary_tracker = DictionaryTracker::new(error_on_replacement);
///
/// // encode the batch into zero or more encoded dictionaries
/// // and the data for the actual array.
/// let data_gen = IpcDataGenerator::default();
/// let (encoded_dictionaries, encoded_message) = data_gen
///   .encoded_batch(&batch, &mut dictionary_tracker, &options)
///   .unwrap();
/// # }
/// ```
///
/// [Arrow IPC Format]: https://arrow.apache.org/docs/format/Columnar.html#serialization-and-interprocess-communication-ipc
pub struct IpcDataGenerator {}

impl IpcDataGenerator {
    /// Converts a schema to an IPC message along with `dictionary_tracker`
    /// and returns it encoded inside [EncodedData] as a flatbuffer
    ///
    /// Preferred method over [IpcDataGenerator::schema_to_bytes] since it's
    /// deprecated since Arrow v54.0.0
    pub fn schema_to_bytes_with_dictionary_tracker(
        &self,
        schema: &Schema,
        dictionary_tracker: &mut DictionaryTracker,
        write_options: &IpcWriteOptions,
    ) -> EncodedData {
        let mut fbb = FlatBufferBuilder::new();
        let schema = {
            let fb = IpcSchemaEncoder::new()
                .with_dictionary_tracker(dictionary_tracker)
                .schema_to_fb_offset(&mut fbb, schema);
            fb.as_union_value()
        };

        let mut message = crate::MessageBuilder::new(&mut fbb);
        message.add_version(write_options.metadata_version);
        message.add_header_type(crate::MessageHeader::Schema);
        message.add_bodyLength(0);
        message.add_header(schema);
        // TODO: custom metadata
        let data = message.finish();
        fbb.finish(data, None);

        let data = fbb.finished_data();
        EncodedData {
            ipc_message: data.to_vec(),
            arrow_data: vec![],
        }
    }

    #[deprecated(
        since = "54.0.0",
        note = "Use `schema_to_bytes_with_dictionary_tracker` instead. This function signature of `schema_to_bytes_with_dictionary_tracker` in the next release."
    )]
    /// Converts a schema to an IPC message and returns it encoded inside [EncodedData] as a flatbuffer
    pub fn schema_to_bytes(&self, schema: &Schema, write_options: &IpcWriteOptions) -> EncodedData {
        let mut fbb = FlatBufferBuilder::new();
        let schema = {
            #[allow(deprecated)]
            // This will be replaced with the IpcSchemaConverter in the next release.
            let fb = crate::convert::schema_to_fb_offset(&mut fbb, schema);
            fb.as_union_value()
        };

        let mut message = crate::MessageBuilder::new(&mut fbb);
        message.add_version(write_options.metadata_version);
        message.add_header_type(crate::MessageHeader::Schema);
        message.add_bodyLength(0);
        message.add_header(schema);
        // TODO: custom metadata
        let data = message.finish();
        fbb.finish(data, None);

        let data = fbb.finished_data();
        EncodedData {
            ipc_message: data.to_vec(),
            arrow_data: vec![],
        }
    }

    fn _encode_dictionaries<I: Iterator<Item = i64>>(
        &self,
        column: &ArrayRef,
        encoded_dictionaries: &mut Vec<EncodedData>,
        dictionary_tracker: &mut DictionaryTracker,
        write_options: &IpcWriteOptions,
        dict_id: &mut I,
    ) -> Result<(), ArrowError> {
        match column.data_type() {
            DataType::Struct(fields) => {
                let s = as_struct_array(column);
                for (field, column) in fields.iter().zip(s.columns()) {
                    self.encode_dictionaries(
                        field,
                        column,
                        encoded_dictionaries,
                        dictionary_tracker,
                        write_options,
                        dict_id,
                    )?;
                }
            }
            DataType::RunEndEncoded(_, values) => {
                let data = column.to_data();
                if data.child_data().len() != 2 {
                    return Err(ArrowError::InvalidArgumentError(format!(
                        "The run encoded array should have exactly two child arrays. Found {}",
                        data.child_data().len()
                    )));
                }
                // The run_ends array is not expected to be dictionary encoded. Hence encode dictionaries
                // only for values array.
                let values_array = make_array(data.child_data()[1].clone());
                self.encode_dictionaries(
                    values,
                    &values_array,
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;
            }
            DataType::List(field) => {
                let list = as_list_array(column);
                self.encode_dictionaries(
                    field,
                    list.values(),
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;
            }
            DataType::LargeList(field) => {
                let list = as_large_list_array(column);
                self.encode_dictionaries(
                    field,
                    list.values(),
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;
            }
            DataType::FixedSizeList(field, _) => {
                let list = column
                    .as_any()
                    .downcast_ref::<FixedSizeListArray>()
                    .expect("Unable to downcast to fixed size list array");
                self.encode_dictionaries(
                    field,
                    list.values(),
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;
            }
            DataType::Map(field, _) => {
                let map_array = as_map_array(column);

                let (keys, values) = match field.data_type() {
                    DataType::Struct(fields) if fields.len() == 2 => (&fields[0], &fields[1]),
                    _ => panic!("Incorrect field data type {:?}", field.data_type()),
                };

                // keys
                self.encode_dictionaries(
                    keys,
                    map_array.keys(),
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;

                // values
                self.encode_dictionaries(
                    values,
                    map_array.values(),
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id,
                )?;
            }
            DataType::Union(fields, _) => {
                let union = as_union_array(column);
                for (type_id, field) in fields.iter() {
                    let column = union.child(type_id);
                    self.encode_dictionaries(
                        field,
                        column,
                        encoded_dictionaries,
                        dictionary_tracker,
                        write_options,
                        dict_id,
                    )?;
                }
            }
            _ => (),
        }

        Ok(())
    }

    fn encode_dictionaries<I: Iterator<Item = i64>>(
        &self,
        field: &Field,
        column: &ArrayRef,
        encoded_dictionaries: &mut Vec<EncodedData>,
        dictionary_tracker: &mut DictionaryTracker,
        write_options: &IpcWriteOptions,
        dict_id_seq: &mut I,
    ) -> Result<(), ArrowError> {
        match column.data_type() {
            DataType::Dictionary(_key_type, _value_type) => {
                let dict_data = column.to_data();
                let dict_values = &dict_data.child_data()[0];

                let values = make_array(dict_data.child_data()[0].clone());

                self._encode_dictionaries(
                    &values,
                    encoded_dictionaries,
                    dictionary_tracker,
                    write_options,
                    dict_id_seq,
                )?;

                // It's importnat to only take the dict_id at this point, because the dict ID
                // sequence is assigned depth-first, so we need to first encode children and have
                // them take their assigned dict IDs before we take the dict ID for this field.
                let dict_id = dict_id_seq
                    .next()
                    .or_else(|| field.dict_id())
                    .ok_or_else(|| {
                        ArrowError::IpcError(format!("no dict id for field {}", field.name()))
                    })?;

                let emit = dictionary_tracker.insert(dict_id, column)?;

                if emit {
                    encoded_dictionaries.push(self.dictionary_batch_to_bytes(
                        dict_id,
                        dict_values,
                        write_options,
                    )?);
                }
            }
            _ => self._encode_dictionaries(
                column,
                encoded_dictionaries,
                dictionary_tracker,
                write_options,
                dict_id_seq,
            )?,
        }

        Ok(())
    }

    /// Encodes a batch to a number of [EncodedData] items (dictionary batches + the record batch).
    /// The [DictionaryTracker] keeps track of dictionaries with new `dict_id`s  (so they are only sent once)
    /// Make sure the [DictionaryTracker] is initialized at the start of the stream.
    pub fn encoded_batch(
        &self,
        batch: &RecordBatch,
        dictionary_tracker: &mut DictionaryTracker,
        write_options: &IpcWriteOptions,
    ) -> Result<(Vec<EncodedData>, EncodedData), ArrowError> {
        let schema = batch.schema();
        let mut encoded_dictionaries = Vec::with_capacity(schema.flattened_fields().len());

        let mut dict_id = dictionary_tracker.dict_ids.clone().into_iter();

        for (i, field) in schema.fields().iter().enumerate() {
            let column = batch.column(i);
            self.encode_dictionaries(
                field,
                column,
                &mut encoded_dictionaries,
                dictionary_tracker,
                write_options,
                &mut dict_id,
            )?;
        }

        let encoded_message = self.record_batch_to_bytes(batch, write_options)?;
        Ok((encoded_dictionaries, encoded_message))
    }

    /// Write a `RecordBatch` into two sets of bytes, one for the header (crate::Message) and the
    /// other for the batch's data
    fn record_batch_to_bytes(
        &self,
        batch: &RecordBatch,
        write_options: &IpcWriteOptions,
    ) -> Result<EncodedData, ArrowError> {
        let mut fbb = FlatBufferBuilder::new();

        let mut nodes: Vec<crate::FieldNode> = vec![];
        let mut buffers: Vec<crate::Buffer> = vec![];
        let mut arrow_data: Vec<u8> = vec![];
        let mut offset = 0;

        // get the type of compression
        let batch_compression_type = write_options.batch_compression_type;

        let compression = batch_compression_type.map(|batch_compression_type| {
            let mut c = crate::BodyCompressionBuilder::new(&mut fbb);
            c.add_method(crate::BodyCompressionMethod::BUFFER);
            c.add_codec(batch_compression_type);
            c.finish()
        });

        let compression_codec: Option<CompressionCodec> =
            batch_compression_type.map(TryInto::try_into).transpose()?;

        let mut variadic_buffer_counts = vec![];

        for array in batch.columns() {
            let array_data = array.to_data();
            offset = write_array_data(
                &array_data,
                &mut buffers,
                &mut arrow_data,
                &mut nodes,
                offset,
                array.len(),
                array.null_count(),
                compression_codec,
                write_options,
            )?;

            append_variadic_buffer_counts(&mut variadic_buffer_counts, &array_data);
        }
        // pad the tail of body data
        let len = arrow_data.len();
        let pad_len = pad_to_alignment(write_options.alignment, len);
        arrow_data.extend_from_slice(&PADDING[..pad_len]);

        // write data
        let buffers = fbb.create_vector(&buffers);
        let nodes = fbb.create_vector(&nodes);
        let variadic_buffer = if variadic_buffer_counts.is_empty() {
            None
        } else {
            Some(fbb.create_vector(&variadic_buffer_counts))
        };

        let root = {
            let mut batch_builder = crate::RecordBatchBuilder::new(&mut fbb);
            batch_builder.add_length(batch.num_rows() as i64);
            batch_builder.add_nodes(nodes);
            batch_builder.add_buffers(buffers);
            if let Some(c) = compression {
                batch_builder.add_compression(c);
            }

            if let Some(v) = variadic_buffer {
                batch_builder.add_variadicBufferCounts(v);
            }
            let b = batch_builder.finish();
            b.as_union_value()
        };
        // create an crate::Message
        let mut message = crate::MessageBuilder::new(&mut fbb);
        message.add_version(write_options.metadata_version);
        message.add_header_type(crate::MessageHeader::RecordBatch);
        message.add_bodyLength(arrow_data.len() as i64);
        message.add_header(root);
        let root = message.finish();
        fbb.finish(root, None);
        let finished_data = fbb.finished_data();

        Ok(EncodedData {
            ipc_message: finished_data.to_vec(),
            arrow_data,
        })
    }

    /// Write dictionary values into two sets of bytes, one for the header (crate::Message) and the
    /// other for the data
    fn dictionary_batch_to_bytes(
        &self,
        dict_id: i64,
        array_data: &ArrayData,
        write_options: &IpcWriteOptions,
    ) -> Result<EncodedData, ArrowError> {
        let mut fbb = FlatBufferBuilder::new();

        let mut nodes: Vec<crate::FieldNode> = vec![];
        let mut buffers: Vec<crate::Buffer> = vec![];
        let mut arrow_data: Vec<u8> = vec![];

        // get the type of compression
        let batch_compression_type = write_options.batch_compression_type;

        let compression = batch_compression_type.map(|batch_compression_type| {
            let mut c = crate::BodyCompressionBuilder::new(&mut fbb);
            c.add_method(crate::BodyCompressionMethod::BUFFER);
            c.add_codec(batch_compression_type);
            c.finish()
        });

        let compression_codec: Option<CompressionCodec> = batch_compression_type
            .map(|batch_compression_type| batch_compression_type.try_into())
            .transpose()?;

        write_array_data(
            array_data,
            &mut buffers,
            &mut arrow_data,
            &mut nodes,
            0,
            array_data.len(),
            array_data.null_count(),
            compression_codec,
            write_options,
        )?;

        let mut variadic_buffer_counts = vec![];
        append_variadic_buffer_counts(&mut variadic_buffer_counts, array_data);

        // pad the tail of body data
        let len = arrow_data.len();
        let pad_len = pad_to_alignment(write_options.alignment, len);
        arrow_data.extend_from_slice(&PADDING[..pad_len]);

        // write data
        let buffers = fbb.create_vector(&buffers);
        let nodes = fbb.create_vector(&nodes);
        let variadic_buffer = if variadic_buffer_counts.is_empty() {
            None
        } else {
            Some(fbb.create_vector(&variadic_buffer_counts))
        };

        let root = {
            let mut batch_builder = crate::RecordBatchBuilder::new(&mut fbb);
            batch_builder.add_length(array_data.len() as i64);
            batch_builder.add_nodes(nodes);
            batch_builder.add_buffers(buffers);
            if let Some(c) = compression {
                batch_builder.add_compression(c);
            }
            if let Some(v) = variadic_buffer {
                batch_builder.add_variadicBufferCounts(v);
            }
            batch_builder.finish()
        };

        let root = {
            let mut batch_builder = crate::DictionaryBatchBuilder::new(&mut fbb);
            batch_builder.add_id(dict_id);
            batch_builder.add_data(root);
            batch_builder.finish().as_union_value()
        };

        let root = {
            let mut message_builder = crate::MessageBuilder::new(&mut fbb);
            message_builder.add_version(write_options.metadata_version);
            message_builder.add_header_type(crate::MessageHeader::DictionaryBatch);
            message_builder.add_bodyLength(arrow_data.len() as i64);
            message_builder.add_header(root);
            message_builder.finish()
        };

        fbb.finish(root, None);
        let finished_data = fbb.finished_data();

        Ok(EncodedData {
            ipc_message: finished_data.to_vec(),
            arrow_data,
        })
    }
}

fn append_variadic_buffer_counts(counts: &mut Vec<i64>, array: &ArrayData) {
    match array.data_type() {
        DataType::BinaryView | DataType::Utf8View => {
            // The spec documents the counts only includes the variadic buffers, not the view/null buffers.
            // https://arrow.apache.org/docs/format/Columnar.html#variadic-buffers
            counts.push(array.buffers().len() as i64 - 1);
        }
        DataType::Dictionary(_, _) => {
            // Do nothing
            // Dictionary types are handled in `encode_dictionaries`.
        }
        _ => {
            for child in array.child_data() {
                append_variadic_buffer_counts(counts, child)
            }
        }
    }
}

pub(crate) fn unslice_run_array(arr: ArrayData) -> Result<ArrayData, ArrowError> {
    match arr.data_type() {
        DataType::RunEndEncoded(k, _) => match k.data_type() {
            DataType::Int16 => {
                Ok(into_zero_offset_run_array(RunArray::<Int16Type>::from(arr))?.into_data())
            }
            DataType::Int32 => {
                Ok(into_zero_offset_run_array(RunArray::<Int32Type>::from(arr))?.into_data())
            }
            DataType::Int64 => {
                Ok(into_zero_offset_run_array(RunArray::<Int64Type>::from(arr))?.into_data())
            }
            d => unreachable!("Unexpected data type {d}"),
        },
        d => Err(ArrowError::InvalidArgumentError(format!(
            "The given array is not a run array. Data type of given array: {d}"
        ))),
    }
}

// Returns a `RunArray` with zero offset and length matching the last value
// in run_ends array.
fn into_zero_offset_run_array<R: RunEndIndexType>(
    run_array: RunArray<R>,
) -> Result<RunArray<R>, ArrowError> {
    let run_ends = run_array.run_ends();
    if run_ends.offset() == 0 && run_ends.max_value() == run_ends.len() {
        return Ok(run_array);
    }

    // The physical index of original run_ends array from which the `ArrayData`is sliced.
    let start_physical_index = run_ends.get_start_physical_index();

    // The physical index of original run_ends array until which the `ArrayData`is sliced.
    let end_physical_index = run_ends.get_end_physical_index();

    let physical_length = end_physical_index - start_physical_index + 1;

    // build new run_ends array by subtracting offset from run ends.
    let offset = R::Native::usize_as(run_ends.offset());
    let mut builder = BufferBuilder::<R::Native>::new(physical_length);
    for run_end_value in &run_ends.values()[start_physical_index..end_physical_index] {
        builder.append(run_end_value.sub_wrapping(offset));
    }
    builder.append(R::Native::from_usize(run_array.len()).unwrap());
    let new_run_ends = unsafe {
        // Safety:
        // The function builds a valid run_ends array and hence need not be validated.
        ArrayDataBuilder::new(R::DATA_TYPE)
            .len(physical_length)
            .add_buffer(builder.finish())
            .build_unchecked()
    };

    // build new values by slicing physical indices.
    let new_values = run_array
        .values()
        .slice(start_physical_index, physical_length)
        .into_data();

    let builder = ArrayDataBuilder::new(run_array.data_type().clone())
        .len(run_array.len())
        .add_child_data(new_run_ends)
        .add_child_data(new_values);
    let array_data = unsafe {
        // Safety:
        //  This function builds a valid run array and hence can skip validation.
        builder.build_unchecked()
    };
    Ok(array_data.into())
}

/// Keeps track of dictionaries that have been written, to avoid emitting the same dictionary
/// multiple times.
///
/// Can optionally error if an update to an existing dictionary is attempted, which
/// isn't allowed in the `FileWriter`.
#[derive(Debug)]
pub struct DictionaryTracker {
    written: HashMap<i64, ArrayData>,
    dict_ids: Vec<i64>,
    error_on_replacement: bool,
    preserve_dict_id: bool,
}

impl DictionaryTracker {
    /// Create a new [`DictionaryTracker`].
    ///
    /// If `error_on_replacement`
    /// is true, an error will be generated if an update to an
    /// existing dictionary is attempted.
    ///
    /// If `preserve_dict_id` is true, the dictionary ID defined in the schema
    /// is used, otherwise a unique dictionary ID will be assigned by incrementing
    /// the last seen dictionary ID (or using `0` if no other dictionary IDs have been
    /// seen)
    pub fn new(error_on_replacement: bool) -> Self {
        Self {
            written: HashMap::new(),
            dict_ids: Vec::new(),
            error_on_replacement,
            preserve_dict_id: true,
        }
    }

    /// Create a new [`DictionaryTracker`].
    ///
    /// If `error_on_replacement`
    /// is true, an error will be generated if an update to an
    /// existing dictionary is attempted.
    pub fn new_with_preserve_dict_id(error_on_replacement: bool, preserve_dict_id: bool) -> Self {
        Self {
            written: HashMap::new(),
            dict_ids: Vec::new(),
            error_on_replacement,
            preserve_dict_id,
        }
    }

    /// Set the dictionary ID for `field`.
    ///
    /// If `preserve_dict_id` is true, this will return the `dict_id` in `field` (or panic if `field` does
    /// not have a `dict_id` defined).
    ///
    /// If `preserve_dict_id` is false, this will return the value of the last `dict_id` assigned incremented by 1
    /// or 0 in the case where no dictionary IDs have yet been assigned
    pub fn set_dict_id(&mut self, field: &Field) -> i64 {
        let next = if self.preserve_dict_id {
            field.dict_id().expect("no dict_id in field")
        } else {
            self.dict_ids
                .last()
                .copied()
                .map(|i| i + 1)
                .unwrap_or_default()
        };

        self.dict_ids.push(next);
        next
    }

    /// Return the sequence of dictionary IDs in the order they should be observed while
    /// traversing the schema
    pub fn dict_id(&mut self) -> &[i64] {
        &self.dict_ids
    }

    /// Keep track of the dictionary with the given ID and values. Behavior:
    ///
    /// * If this ID has been written already and has the same data, return `Ok(false)` to indicate
    ///   that the dictionary was not actually inserted (because it's already been seen).
    /// * If this ID has been written already but with different data, and this tracker is
    ///   configured to return an error, return an error.
    /// * If the tracker has not been configured to error on replacement or this dictionary
    ///   has never been seen before, return `Ok(true)` to indicate that the dictionary was just
    ///   inserted.
    pub fn insert(&mut self, dict_id: i64, column: &ArrayRef) -> Result<bool, ArrowError> {
        let dict_data = column.to_data();
        let dict_values = &dict_data.child_data()[0];

        // If a dictionary with this id was already emitted, check if it was the same.
        if let Some(last) = self.written.get(&dict_id) {
            if ArrayData::ptr_eq(&last.child_data()[0], dict_values) {
                // Same dictionary values => no need to emit it again
                return Ok(false);
            }
            if self.error_on_replacement {
                // If error on replacement perform a logical comparison
                if last.child_data()[0] == *dict_values {
                    // Same dictionary values => no need to emit it again
                    return Ok(false);
                }
                return Err(ArrowError::InvalidArgumentError(
                    "Dictionary replacement detected when writing IPC file format. \
                     Arrow IPC files only support a single dictionary for a given field \
                     across all batches."
                        .to_string(),
                ));
            }
        }

        self.written.insert(dict_id, dict_data);
        Ok(true)
    }
}

/// Writer for an IPC file
pub struct FileWriter<W> {
    /// The object to write to
    writer: W,
    /// IPC write options
    write_options: IpcWriteOptions,
    /// A reference to the schema, used in validating record batches
    schema: SchemaRef,
    /// The number of bytes between each block of bytes, as an offset for random access
    block_offsets: usize,
    /// Dictionary blocks that will be written as part of the IPC footer
    dictionary_blocks: Vec<crate::Block>,
    /// Record blocks that will be written as part of the IPC footer
    record_blocks: Vec<crate::Block>,
    /// Whether the writer footer has been written, and the writer is finished
    finished: bool,
    /// Keeps track of dictionaries that have been written
    dictionary_tracker: DictionaryTracker,
    /// User level customized metadata
    custom_metadata: HashMap<String, String>,

    data_gen: IpcDataGenerator,
}

impl<W: Write> FileWriter<BufWriter<W>> {
    /// Try to create a new file writer with the writer wrapped in a BufWriter.
    ///
    /// See [`FileWriter::try_new`] for an unbuffered version.
    pub fn try_new_buffered(writer: W, schema: &Schema) -> Result<Self, ArrowError> {
        Self::try_new(BufWriter::new(writer), schema)
    }
}

impl<W: Write> FileWriter<W> {
    /// Try to create a new writer, with the schema written as part of the header
    ///
    /// Note the created writer is not buffered. See [`FileWriter::try_new_buffered`] for details.
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if writing the header to the writer fails.
    pub fn try_new(writer: W, schema: &Schema) -> Result<Self, ArrowError> {
        let write_options = IpcWriteOptions::default();
        Self::try_new_with_options(writer, schema, write_options)
    }

    /// Try to create a new writer with IpcWriteOptions
    ///
    /// Note the created writer is not buffered. See [`FileWriter::try_new_buffered`] for details.
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if writing the header to the writer fails.
    pub fn try_new_with_options(
        mut writer: W,
        schema: &Schema,
        write_options: IpcWriteOptions,
    ) -> Result<Self, ArrowError> {
        let data_gen = IpcDataGenerator::default();
        // write magic to header aligned on alignment boundary
        let pad_len = pad_to_alignment(write_options.alignment, super::ARROW_MAGIC.len());
        let header_size = super::ARROW_MAGIC.len() + pad_len;
        writer.write_all(&super::ARROW_MAGIC)?;
        writer.write_all(&PADDING[..pad_len])?;
        // write the schema, set the written bytes to the schema + header
        let preserve_dict_id = write_options.preserve_dict_id;
        let mut dictionary_tracker =
            DictionaryTracker::new_with_preserve_dict_id(true, preserve_dict_id);
        let encoded_message = data_gen.schema_to_bytes_with_dictionary_tracker(
            schema,
            &mut dictionary_tracker,
            &write_options,
        );
        let (meta, data) = write_message(&mut writer, encoded_message, &write_options)?;
        Ok(Self {
            writer,
            write_options,
            schema: Arc::new(schema.clone()),
            block_offsets: meta + data + header_size,
            dictionary_blocks: vec![],
            record_blocks: vec![],
            finished: false,
            dictionary_tracker,
            custom_metadata: HashMap::new(),
            data_gen,
        })
    }

    /// Adds a key-value pair to the [FileWriter]'s custom metadata
    pub fn write_metadata(&mut self, key: impl Into<String>, value: impl Into<String>) {
        self.custom_metadata.insert(key.into(), value.into());
    }

    /// Write a record batch to the file
    pub fn write(&mut self, batch: &RecordBatch) -> Result<(), ArrowError> {
        if self.finished {
            return Err(ArrowError::IpcError(
                "Cannot write record batch to file writer as it is closed".to_string(),
            ));
        }

        let (encoded_dictionaries, encoded_message) = self.data_gen.encoded_batch(
            batch,
            &mut self.dictionary_tracker,
            &self.write_options,
        )?;

        for encoded_dictionary in encoded_dictionaries {
            let (meta, data) =
                write_message(&mut self.writer, encoded_dictionary, &self.write_options)?;

            let block = crate::Block::new(self.block_offsets as i64, meta as i32, data as i64);
            self.dictionary_blocks.push(block);
            self.block_offsets += meta + data;
        }

        let (meta, data) = write_message(&mut self.writer, encoded_message, &self.write_options)?;
        // add a record block for the footer
        let block = crate::Block::new(
            self.block_offsets as i64,
            meta as i32, // TODO: is this still applicable?
            data as i64,
        );
        self.record_blocks.push(block);
        self.block_offsets += meta + data;
        Ok(())
    }

    /// Write footer and closing tag, then mark the writer as done
    pub fn finish(&mut self) -> Result<(), ArrowError> {
        if self.finished {
            return Err(ArrowError::IpcError(
                "Cannot write footer to file writer as it is closed".to_string(),
            ));
        }

        // write EOS
        write_continuation(&mut self.writer, &self.write_options, 0)?;

        let mut fbb = FlatBufferBuilder::new();
        let dictionaries = fbb.create_vector(&self.dictionary_blocks);
        let record_batches = fbb.create_vector(&self.record_blocks);
        let preserve_dict_id = self.write_options.preserve_dict_id;
        let mut dictionary_tracker =
            DictionaryTracker::new_with_preserve_dict_id(true, preserve_dict_id);
        let schema = IpcSchemaEncoder::new()
            .with_dictionary_tracker(&mut dictionary_tracker)
            .schema_to_fb_offset(&mut fbb, &self.schema);
        let fb_custom_metadata = (!self.custom_metadata.is_empty())
            .then(|| crate::convert::metadata_to_fb(&mut fbb, &self.custom_metadata));

        let root = {
            let mut footer_builder = crate::FooterBuilder::new(&mut fbb);
            footer_builder.add_version(self.write_options.metadata_version);
            footer_builder.add_schema(schema);
            footer_builder.add_dictionaries(dictionaries);
            footer_builder.add_recordBatches(record_batches);
            if let Some(fb_custom_metadata) = fb_custom_metadata {
                footer_builder.add_custom_metadata(fb_custom_metadata);
            }
            footer_builder.finish()
        };
        fbb.finish(root, None);
        let footer_data = fbb.finished_data();
        self.writer.write_all(footer_data)?;
        self.writer
            .write_all(&(footer_data.len() as i32).to_le_bytes())?;
        self.writer.write_all(&super::ARROW_MAGIC)?;
        self.writer.flush()?;
        self.finished = true;

        Ok(())
    }

    /// Returns the arrow [`SchemaRef`] for this arrow file.
    pub fn schema(&self) -> &SchemaRef {
        &self.schema
    }

    /// Gets a reference to the underlying writer.
    pub fn get_ref(&self) -> &W {
        &self.writer
    }

    /// Gets a mutable reference to the underlying writer.
    ///
    /// It is inadvisable to directly write to the underlying writer.
    pub fn get_mut(&mut self) -> &mut W {
        &mut self.writer
    }

    /// Flush the underlying writer.
    ///
    /// Both the BufWriter and the underlying writer are flushed.
    pub fn flush(&mut self) -> Result<(), ArrowError> {
        self.writer.flush()?;
        Ok(())
    }

    /// Unwraps the the underlying writer.
    ///
    /// The writer is flushed and the FileWriter is finished before returning.
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if an error occurs while finishing the StreamWriter
    /// or while flushing the writer.
    pub fn into_inner(mut self) -> Result<W, ArrowError> {
        if !self.finished {
            // `finish` flushes the writer.
            self.finish()?;
        }
        Ok(self.writer)
    }
}

impl<W: Write> RecordBatchWriter for FileWriter<W> {
    fn write(&mut self, batch: &RecordBatch) -> Result<(), ArrowError> {
        self.write(batch)
    }

    fn close(mut self) -> Result<(), ArrowError> {
        self.finish()
    }
}

/// Writer for an IPC stream
pub struct StreamWriter<W> {
    /// The object to write to
    writer: W,
    /// IPC write options
    write_options: IpcWriteOptions,
    /// Whether the writer footer has been written, and the writer is finished
    finished: bool,
    /// Keeps track of dictionaries that have been written
    dictionary_tracker: DictionaryTracker,

    data_gen: IpcDataGenerator,
}

impl<W: Write> StreamWriter<BufWriter<W>> {
    /// Try to create a new stream writer with the writer wrapped in a BufWriter.
    ///
    /// See [`StreamWriter::try_new`] for an unbuffered version.
    pub fn try_new_buffered(writer: W, schema: &Schema) -> Result<Self, ArrowError> {
        Self::try_new(BufWriter::new(writer), schema)
    }
}

impl<W: Write> StreamWriter<W> {
    /// Try to create a new writer, with the schema written as part of the header.
    ///
    /// Note that there is no internal buffering. See also [`StreamWriter::try_new_buffered`].
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if writing the header to the writer fails.
    pub fn try_new(writer: W, schema: &Schema) -> Result<Self, ArrowError> {
        let write_options = IpcWriteOptions::default();
        Self::try_new_with_options(writer, schema, write_options)
    }

    /// Try to create a new writer with [`IpcWriteOptions`].
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if writing the header to the writer fails.
    pub fn try_new_with_options(
        mut writer: W,
        schema: &Schema,
        write_options: IpcWriteOptions,
    ) -> Result<Self, ArrowError> {
        let data_gen = IpcDataGenerator::default();
        let preserve_dict_id = write_options.preserve_dict_id;
        let mut dictionary_tracker =
            DictionaryTracker::new_with_preserve_dict_id(false, preserve_dict_id);

        // write the schema, set the written bytes to the schema
        let encoded_message = data_gen.schema_to_bytes_with_dictionary_tracker(
            schema,
            &mut dictionary_tracker,
            &write_options,
        );
        write_message(&mut writer, encoded_message, &write_options)?;
        Ok(Self {
            writer,
            write_options,
            finished: false,
            dictionary_tracker,
            data_gen,
        })
    }

    /// Write a record batch to the stream
    pub fn write(&mut self, batch: &RecordBatch) -> Result<(), ArrowError> {
        if self.finished {
            return Err(ArrowError::IpcError(
                "Cannot write record batch to stream writer as it is closed".to_string(),
            ));
        }

        let (encoded_dictionaries, encoded_message) = self
            .data_gen
            .encoded_batch(batch, &mut self.dictionary_tracker, &self.write_options)
            .expect("StreamWriter is configured to not error on dictionary replacement");

        for encoded_dictionary in encoded_dictionaries {
            write_message(&mut self.writer, encoded_dictionary, &self.write_options)?;
        }

        write_message(&mut self.writer, encoded_message, &self.write_options)?;
        Ok(())
    }

    /// Write continuation bytes, and mark the stream as done
    pub fn finish(&mut self) -> Result<(), ArrowError> {
        if self.finished {
            return Err(ArrowError::IpcError(
                "Cannot write footer to stream writer as it is closed".to_string(),
            ));
        }

        write_continuation(&mut self.writer, &self.write_options, 0)?;

        self.finished = true;

        Ok(())
    }

    /// Gets a reference to the underlying writer.
    pub fn get_ref(&self) -> &W {
        &self.writer
    }

    /// Gets a mutable reference to the underlying writer.
    ///
    /// It is inadvisable to directly write to the underlying writer.
    pub fn get_mut(&mut self) -> &mut W {
        &mut self.writer
    }

    /// Flush the underlying writer.
    ///
    /// Both the BufWriter and the underlying writer are flushed.
    pub fn flush(&mut self) -> Result<(), ArrowError> {
        self.writer.flush()?;
        Ok(())
    }

    /// Unwraps the the underlying writer.
    ///
    /// The writer is flushed and the StreamWriter is finished before returning.
    ///
    /// # Errors
    ///
    /// An ['Err'](Result::Err) may be returned if an error occurs while finishing the StreamWriter
    /// or while flushing the writer.
    ///
    /// # Example
    ///
    /// ```
    /// # use arrow_ipc::writer::{StreamWriter, IpcWriteOptions};
    /// # use arrow_ipc::MetadataVersion;
    /// # use arrow_schema::{ArrowError, Schema};
    /// # fn main() -> Result<(), ArrowError> {
    /// // The result we expect from an empty schema
    /// let expected = vec![
    ///     255, 255, 255, 255,  48,   0,   0,   0,
    ///      16,   0,   0,   0,   0,   0,  10,   0,
    ///      12,   0,  10,   0,   9,   0,   4,   0,
    ///      10,   0,   0,   0,  16,   0,   0,   0,
    ///       0,   1,   4,   0,   8,   0,   8,   0,
    ///       0,   0,   4,   0,   8,   0,   0,   0,
    ///       4,   0,   0,   0,   0,   0,   0,   0,
    ///     255, 255, 255, 255,   0,   0,   0,   0
    /// ];
    ///
    /// let schema = Schema::empty();
    /// let buffer: Vec<u8> = Vec::new();
    /// let options = IpcWriteOptions::try_new(8, false, MetadataVersion::V5)?;
    /// let stream_writer = StreamWriter::try_new_with_options(buffer, &schema, options)?;
    ///
    /// assert_eq!(stream_writer.into_inner()?, expected);
    /// # Ok(())
    /// # }
    /// ```
    pub fn into_inner(mut self) -> Result<W, ArrowError> {
        if !self.finished {
            // `finish` flushes.
            self.finish()?;
        }
        Ok(self.writer)
    }
}

impl<W: Write> RecordBatchWriter for StreamWriter<W> {
    fn write(&mut self, batch: &RecordBatch) -> Result<(), ArrowError> {
        self.write(batch)
    }

    fn close(mut self) -> Result<(), ArrowError> {
        self.finish()
    }
}

/// Stores the encoded data, which is an crate::Message, and optional Arrow data
pub struct EncodedData {
    /// An encoded crate::Message
    pub ipc_message: Vec<u8>,
    /// Arrow buffers to be written, should be an empty vec for schema messages
    pub arrow_data: Vec<u8>,
}
/// Write a message's IPC data and buffers, returning metadata and buffer data lengths written
pub fn write_message<W: Write>(
    mut writer: W,
    encoded: EncodedData,
    write_options: &IpcWriteOptions,
) -> Result<(usize, usize), ArrowError> {
    let arrow_data_len = encoded.arrow_data.len();
    if arrow_data_len % usize::from(write_options.alignment) != 0 {
        return Err(ArrowError::MemoryError(
            "Arrow data not aligned".to_string(),
        ));
    }

    let a = usize::from(write_options.alignment - 1);
    let buffer = encoded.ipc_message;
    let flatbuf_size = buffer.len();
    let prefix_size = if write_options.write_legacy_ipc_format {
        4
    } else {
        8
    };
    let aligned_size = (flatbuf_size + prefix_size + a) & !a;
    let padding_bytes = aligned_size - flatbuf_size - prefix_size;

    write_continuation(
        &mut writer,
        write_options,
        (aligned_size - prefix_size) as i32,
    )?;

    // write the flatbuf
    if flatbuf_size > 0 {
        writer.write_all(&buffer)?;
    }
    // write padding
    writer.write_all(&PADDING[..padding_bytes])?;

    // write arrow data
    let body_len = if arrow_data_len > 0 {
        write_body_buffers(&mut writer, &encoded.arrow_data, write_options.alignment)?
    } else {
        0
    };

    Ok((aligned_size, body_len))
}

fn write_body_buffers<W: Write>(
    mut writer: W,
    data: &[u8],
    alignment: u8,
) -> Result<usize, ArrowError> {
    let len = data.len();
    let pad_len = pad_to_alignment(alignment, len);
    let total_len = len + pad_len;

    // write body buffer
    writer.write_all(data)?;
    if pad_len > 0 {
        writer.write_all(&PADDING[..pad_len])?;
    }

    writer.flush()?;
    Ok(total_len)
}

/// Write a record batch to the writer, writing the message size before the message
/// if the record batch is being written to a stream
fn write_continuation<W: Write>(
    mut writer: W,
    write_options: &IpcWriteOptions,
    total_len: i32,
) -> Result<usize, ArrowError> {
    let mut written = 8;

    // the version of the writer determines whether continuation markers should be added
    match write_options.metadata_version {
        crate::MetadataVersion::V1 | crate::MetadataVersion::V2 | crate::MetadataVersion::V3 => {
            unreachable!("Options with the metadata version cannot be created")
        }
        crate::MetadataVersion::V4 => {
            if !write_options.write_legacy_ipc_format {
                // v0.15.0 format
                writer.write_all(&CONTINUATION_MARKER)?;
                written = 4;
            }
            writer.write_all(&total_len.to_le_bytes()[..])?;
        }
        crate::MetadataVersion::V5 => {
            // write continuation marker and message length
            writer.write_all(&CONTINUATION_MARKER)?;
            writer.write_all(&total_len.to_le_bytes()[..])?;
        }
        z => panic!("Unsupported crate::MetadataVersion {z:?}"),
    };

    writer.flush()?;

    Ok(written)
}

/// In V4, null types have no validity bitmap
/// In V5 and later, null and union types have no validity bitmap
/// Run end encoded type has no validity bitmap.
fn has_validity_bitmap(data_type: &DataType, write_options: &IpcWriteOptions) -> bool {
    if write_options.metadata_version < crate::MetadataVersion::V5 {
        !matches!(data_type, DataType::Null)
    } else {
        !matches!(
            data_type,
            DataType::Null | DataType::Union(_, _) | DataType::RunEndEncoded(_, _)
        )
    }
}

/// Whether to truncate the buffer
#[inline]
fn buffer_need_truncate(
    array_offset: usize,
    buffer: &Buffer,
    spec: &BufferSpec,
    min_length: usize,
) -> bool {
    spec != &BufferSpec::AlwaysNull && (array_offset != 0 || min_length < buffer.len())
}

/// Returns byte width for a buffer spec. Only for `BufferSpec::FixedWidth`.
#[inline]
fn get_buffer_element_width(spec: &BufferSpec) -> usize {
    match spec {
        BufferSpec::FixedWidth { byte_width, .. } => *byte_width,
        _ => 0,
    }
}

/// Common functionality for re-encoding offsets. Returns the new offsets as well as
/// original start offset and length for use in slicing child data.
fn reencode_offsets<O: OffsetSizeTrait>(
    offsets: &Buffer,
    data: &ArrayData,
) -> (Buffer, usize, usize) {
    let offsets_slice: &[O] = offsets.typed_data::<O>();
    let offset_slice = &offsets_slice[data.offset()..data.offset() + data.len() + 1];

    let start_offset = offset_slice.first().unwrap();
    let end_offset = offset_slice.last().unwrap();

    let offsets = match start_offset.as_usize() {
        0 => offsets.clone(),
        _ => offset_slice.iter().map(|x| *x - *start_offset).collect(),
    };

    let start_offset = start_offset.as_usize();
    let end_offset = end_offset.as_usize();

    (offsets, start_offset, end_offset - start_offset)
}

/// Returns the values and offsets [`Buffer`] for a ByteArray with offset type `O`
///
/// In particular, this handles re-encoding the offsets if they don't start at `0`,
/// slicing the values buffer as appropriate. This helps reduce the encoded
/// size of sliced arrays, as values that have been sliced away are not encoded
fn get_byte_array_buffers<O: OffsetSizeTrait>(data: &ArrayData) -> (Buffer, Buffer) {
    if data.is_empty() {
        return (MutableBuffer::new(0).into(), MutableBuffer::new(0).into());
    }

    let (offsets, original_start_offset, len) = reencode_offsets::<O>(&data.buffers()[0], data);
    let values = data.buffers()[1].slice_with_length(original_start_offset, len);
    (offsets, values)
}

/// Similar logic as [`get_byte_array_buffers()`] but slices the child array instead
/// of a values buffer.
fn get_list_array_buffers<O: OffsetSizeTrait>(data: &ArrayData) -> (Buffer, ArrayData) {
    if data.is_empty() {
        return (
            MutableBuffer::new(0).into(),
            data.child_data()[0].slice(0, 0),
        );
    }

    let (offsets, original_start_offset, len) = reencode_offsets::<O>(&data.buffers()[0], data);
    let child_data = data.child_data()[0].slice(original_start_offset, len);
    (offsets, child_data)
}

/// Write array data to a vector of bytes
#[allow(clippy::too_many_arguments)]
fn write_array_data(
    array_data: &ArrayData,
    buffers: &mut Vec<crate::Buffer>,
    arrow_data: &mut Vec<u8>,
    nodes: &mut Vec<crate::FieldNode>,
    offset: i64,
    num_rows: usize,
    null_count: usize,
    compression_codec: Option<CompressionCodec>,
    write_options: &IpcWriteOptions,
) -> Result<i64, ArrowError> {
    let mut offset = offset;
    if !matches!(array_data.data_type(), DataType::Null) {
        nodes.push(crate::FieldNode::new(num_rows as i64, null_count as i64));
    } else {
        // NullArray's null_count equals to len, but the `null_count` passed in is from ArrayData
        // where null_count is always 0.
        nodes.push(crate::FieldNode::new(num_rows as i64, num_rows as i64));
    }
    if has_validity_bitmap(array_data.data_type(), write_options) {
        // write null buffer if exists
        let null_buffer = match array_data.nulls() {
            None => {
                // create a buffer and fill it with valid bits
                let num_bytes = bit_util::ceil(num_rows, 8);
                let buffer = MutableBuffer::new(num_bytes);
                let buffer = buffer.with_bitset(num_bytes, true);
                buffer.into()
            }
            Some(buffer) => buffer.inner().sliced(),
        };

        offset = write_buffer(
            null_buffer.as_slice(),
            buffers,
            arrow_data,
            offset,
            compression_codec,
            write_options.alignment,
        )?;
    }

    let data_type = array_data.data_type();
    if matches!(data_type, DataType::Binary | DataType::Utf8) {
        let (offsets, values) = get_byte_array_buffers::<i32>(array_data);
        for buffer in [offsets, values] {
            offset = write_buffer(
                buffer.as_slice(),
                buffers,
                arrow_data,
                offset,
                compression_codec,
                write_options.alignment,
            )?;
        }
    } else if matches!(data_type, DataType::BinaryView | DataType::Utf8View) {
        // Slicing the views buffer is safe and easy,
        // but pruning unneeded data buffers is much more nuanced since it's complicated to prove that no views reference the pruned buffers
        //
        // Current implementation just serialize the raw arrays as given and not try to optimize anything.
        // If users wants to "compact" the arrays prior to sending them over IPC,
        // they should consider the gc API suggested in #5513
        for buffer in array_data.buffers() {
            offset = write_buffer(
                buffer.as_slice(),
                buffers,
                arrow_data,
                offset,
                compression_codec,
                write_options.alignment,
            )?;
        }
    } else if matches!(data_type, DataType::LargeBinary | DataType::LargeUtf8) {
        let (offsets, values) = get_byte_array_buffers::<i64>(array_data);
        for buffer in [offsets, values] {
            offset = write_buffer(
                buffer.as_slice(),
                buffers,
                arrow_data,
                offset,
                compression_codec,
                write_options.alignment,
            )?;
        }
    } else if DataType::is_numeric(data_type)
        || DataType::is_temporal(data_type)
        || matches!(
            array_data.data_type(),
            DataType::FixedSizeBinary(_) | DataType::Dictionary(_, _)
        )
    {
        // Truncate values
        assert_eq!(array_data.buffers().len(), 1);

        let buffer = &array_data.buffers()[0];
        let layout = layout(data_type);
        let spec = &layout.buffers[0];

        let byte_width = get_buffer_element_width(spec);
        let min_length = array_data.len() * byte_width;
        let buffer_slice = if buffer_need_truncate(array_data.offset(), buffer, spec, min_length) {
            let byte_offset = array_data.offset() * byte_width;
            let buffer_length = min(min_length, buffer.len() - byte_offset);
            &buffer.as_slice()[byte_offset..(byte_offset + buffer_length)]
        } else {
            buffer.as_slice()
        };
        offset = write_buffer(
            buffer_slice,
            buffers,
            arrow_data,
            offset,
            compression_codec,
            write_options.alignment,
        )?;
    } else if matches!(data_type, DataType::Boolean) {
        // Bools are special because the payload (= 1 bit) is smaller than the physical container elements (= bytes).
        // The array data may not start at the physical boundary of the underlying buffer, so we need to shift bits around.
        assert_eq!(array_data.buffers().len(), 1);

        let buffer = &array_data.buffers()[0];
        let buffer = buffer.bit_slice(array_data.offset(), array_data.len());
        offset = write_buffer(
            &buffer,
            buffers,
            arrow_data,
            offset,
            compression_codec,
            write_options.alignment,
        )?;
    } else if matches!(
        data_type,
        DataType::List(_) | DataType::LargeList(_) | DataType::Map(_, _)
    ) {
        assert_eq!(array_data.buffers().len(), 1);
        assert_eq!(array_data.child_data().len(), 1);

        // Truncate offsets and the child data to avoid writing unnecessary data
        let (offsets, sliced_child_data) = match data_type {
            DataType::List(_) => get_list_array_buffers::<i32>(array_data),
            DataType::Map(_, _) => get_list_array_buffers::<i32>(array_data),
            DataType::LargeList(_) => get_list_array_buffers::<i64>(array_data),
            _ => unreachable!(),
        };
        offset = write_buffer(
            offsets.as_slice(),
            buffers,
            arrow_data,
            offset,
            compression_codec,
            write_options.alignment,
        )?;
        offset = write_array_data(
            &sliced_child_data,
            buffers,
            arrow_data,
            nodes,
            offset,
            sliced_child_data.len(),
            sliced_child_data.null_count(),
            compression_codec,
            write_options,
        )?;
        return Ok(offset);
    } else {
        for buffer in array_data.buffers() {
            offset = write_buffer(
                buffer,
                buffers,
                arrow_data,
                offset,
                compression_codec,
                write_options.alignment,
            )?;
        }
    }

    match array_data.data_type() {
        DataType::Dictionary(_, _) => {}
        DataType::RunEndEncoded(_, _) => {
            // unslice the run encoded array.
            let arr = unslice_run_array(array_data.clone())?;
            // recursively write out nested structures
            for data_ref in arr.child_data() {
                // write the nested data (e.g list data)
                offset = write_array_data(
                    data_ref,
                    buffers,
                    arrow_data,
                    nodes,
                    offset,
                    data_ref.len(),
                    data_ref.null_count(),
                    compression_codec,
                    write_options,
                )?;
            }
        }
        _ => {
            // recursively write out nested structures
            for data_ref in array_data.child_data() {
                // write the nested data (e.g list data)
                offset = write_array_data(
                    data_ref,
                    buffers,
                    arrow_data,
                    nodes,
                    offset,
                    data_ref.len(),
                    data_ref.null_count(),
                    compression_codec,
                    write_options,
                )?;
            }
        }
    }
    Ok(offset)
}

/// Write a buffer into `arrow_data`, a vector of bytes, and adds its
/// [`crate::Buffer`] to `buffers`. Returns the new offset in `arrow_data`
///
///
/// From <https://github.com/apache/arrow/blob/6a936c4ff5007045e86f65f1a6b6c3c955ad5103/format/Message.fbs#L58>
/// Each constituent buffer is first compressed with the indicated
/// compressor, and then written with the uncompressed length in the first 8
/// bytes as a 64-bit little-endian signed integer followed by the compressed
/// buffer bytes (and then padding as required by the protocol). The
/// uncompressed length may be set to -1 to indicate that the data that
/// follows is not compressed, which can be useful for cases where
/// compression does not yield appreciable savings.
fn write_buffer(
    buffer: &[u8],                    // input
    buffers: &mut Vec<crate::Buffer>, // output buffer descriptors
    arrow_data: &mut Vec<u8>,         // output stream
    offset: i64,                      // current output stream offset
    compression_codec: Option<CompressionCodec>,
    alignment: u8,
) -> Result<i64, ArrowError> {
    let len: i64 = match compression_codec {
        Some(compressor) => compressor.compress_to_vec(buffer, arrow_data)?,
        None => {
            arrow_data.extend_from_slice(buffer);
            buffer.len()
        }
    }
    .try_into()
    .map_err(|e| {
        ArrowError::InvalidArgumentError(format!("Could not convert compressed size to i64: {e}"))
    })?;

    // make new index entry
    buffers.push(crate::Buffer::new(offset, len));
    // padding and make offset aligned
    let pad_len = pad_to_alignment(alignment, len as usize);
    arrow_data.extend_from_slice(&PADDING[..pad_len]);

    Ok(offset + len + (pad_len as i64))
}

const PADDING: [u8; 64] = [0; 64];

/// Calculate an alignment boundary and return the number of bytes needed to pad to the alignment boundary
#[inline]
fn pad_to_alignment(alignment: u8, len: usize) -> usize {
    let a = usize::from(alignment - 1);
    ((len + a) & !a) - len
}

#[cfg(test)]
mod tests {
    use std::io::Cursor;
    use std::io::Seek;

    use arrow_array::builder::GenericListBuilder;
    use arrow_array::builder::MapBuilder;
    use arrow_array::builder::UnionBuilder;
    use arrow_array::builder::{PrimitiveRunBuilder, UInt32Builder};
    use arrow_array::types::*;
    use arrow_buffer::ScalarBuffer;

    use crate::convert::fb_to_schema;
    use crate::reader::*;
    use crate::root_as_footer;
    use crate::MetadataVersion;

    use super::*;

    fn serialize_file(rb: &RecordBatch) -> Vec<u8> {
        let mut writer = FileWriter::try_new(vec![], rb.schema_ref()).unwrap();
        writer.write(rb).unwrap();
        writer.finish().unwrap();
        writer.into_inner().unwrap()
    }

    fn deserialize_file(bytes: Vec<u8>) -> RecordBatch {
        let mut reader = FileReader::try_new(Cursor::new(bytes), None).unwrap();
        reader.next().unwrap().unwrap()
    }

    fn serialize_stream(record: &RecordBatch) -> Vec<u8> {
        // Use 8-byte alignment so that the various `truncate_*` tests can be compactly written,
        // without needing to construct a giant array to spill over the 64-byte default alignment
        // boundary.
        const IPC_ALIGNMENT: usize = 8;

        let mut stream_writer = StreamWriter::try_new_with_options(
            vec![],
            record.schema_ref(),
            IpcWriteOptions::try_new(IPC_ALIGNMENT, false, MetadataVersion::V5).unwrap(),
        )
        .unwrap();
        stream_writer.write(record).unwrap();
        stream_writer.finish().unwrap();
        stream_writer.into_inner().unwrap()
    }

    fn deserialize_stream(bytes: Vec<u8>) -> RecordBatch {
        let mut stream_reader = StreamReader::try_new(Cursor::new(bytes), None).unwrap();
        stream_reader.next().unwrap().unwrap()
    }

    #[test]
    #[cfg(feature = "lz4")]
    fn test_write_empty_record_batch_lz4_compression() {
        let schema = Schema::new(vec![Field::new("field1", DataType::Int32, true)]);
        let values: Vec<Option<i32>> = vec![];
        let array = Int32Array::from(values);
        let record_batch =
            RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(array)]).unwrap();

        let mut file = tempfile::tempfile().unwrap();

        {
            let write_option = IpcWriteOptions::try_new(8, false, crate::MetadataVersion::V5)
                .unwrap()
                .try_with_compression(Some(crate::CompressionType::LZ4_FRAME))
                .unwrap();

            let mut writer =
                FileWriter::try_new_with_options(&mut file, &schema, write_option).unwrap();
            writer.write(&record_batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();
        {
            // read file
            let reader = FileReader::try_new(file, None).unwrap();
            for read_batch in reader {
                read_batch
                    .unwrap()
                    .columns()
                    .iter()
                    .zip(record_batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            }
        }
    }

    #[test]
    #[cfg(feature = "lz4")]
    fn test_write_file_with_lz4_compression() {
        let schema = Schema::new(vec![Field::new("field1", DataType::Int32, true)]);
        let values: Vec<Option<i32>> = vec![Some(12), Some(1)];
        let array = Int32Array::from(values);
        let record_batch =
            RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(array)]).unwrap();

        let mut file = tempfile::tempfile().unwrap();
        {
            let write_option = IpcWriteOptions::try_new(8, false, crate::MetadataVersion::V5)
                .unwrap()
                .try_with_compression(Some(crate::CompressionType::LZ4_FRAME))
                .unwrap();

            let mut writer =
                FileWriter::try_new_with_options(&mut file, &schema, write_option).unwrap();
            writer.write(&record_batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();
        {
            // read file
            let reader = FileReader::try_new(file, None).unwrap();
            for read_batch in reader {
                read_batch
                    .unwrap()
                    .columns()
                    .iter()
                    .zip(record_batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            }
        }
    }

    #[test]
    #[cfg(feature = "zstd")]
    fn test_write_file_with_zstd_compression() {
        let schema = Schema::new(vec![Field::new("field1", DataType::Int32, true)]);
        let values: Vec<Option<i32>> = vec![Some(12), Some(1)];
        let array = Int32Array::from(values);
        let record_batch =
            RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(array)]).unwrap();
        let mut file = tempfile::tempfile().unwrap();
        {
            let write_option = IpcWriteOptions::try_new(8, false, crate::MetadataVersion::V5)
                .unwrap()
                .try_with_compression(Some(crate::CompressionType::ZSTD))
                .unwrap();

            let mut writer =
                FileWriter::try_new_with_options(&mut file, &schema, write_option).unwrap();
            writer.write(&record_batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();
        {
            // read file
            let reader = FileReader::try_new(file, None).unwrap();
            for read_batch in reader {
                read_batch
                    .unwrap()
                    .columns()
                    .iter()
                    .zip(record_batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            }
        }
    }

    #[test]
    fn test_write_file() {
        let schema = Schema::new(vec![Field::new("field1", DataType::UInt32, true)]);
        let values: Vec<Option<u32>> = vec![
            Some(999),
            None,
            Some(235),
            Some(123),
            None,
            None,
            None,
            None,
            None,
        ];
        let array1 = UInt32Array::from(values);
        let batch =
            RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(array1) as ArrayRef])
                .unwrap();
        let mut file = tempfile::tempfile().unwrap();
        {
            let mut writer = FileWriter::try_new(&mut file, &schema).unwrap();

            writer.write(&batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();

        {
            let mut reader = FileReader::try_new(file, None).unwrap();
            while let Some(Ok(read_batch)) = reader.next() {
                read_batch
                    .columns()
                    .iter()
                    .zip(batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            }
        }
    }

    fn write_null_file(options: IpcWriteOptions) {
        let schema = Schema::new(vec![
            Field::new("nulls", DataType::Null, true),
            Field::new("int32s", DataType::Int32, false),
            Field::new("nulls2", DataType::Null, true),
            Field::new("f64s", DataType::Float64, false),
        ]);
        let array1 = NullArray::new(32);
        let array2 = Int32Array::from(vec![1; 32]);
        let array3 = NullArray::new(32);
        let array4 = Float64Array::from(vec![f64::NAN; 32]);
        let batch = RecordBatch::try_new(
            Arc::new(schema.clone()),
            vec![
                Arc::new(array1) as ArrayRef,
                Arc::new(array2) as ArrayRef,
                Arc::new(array3) as ArrayRef,
                Arc::new(array4) as ArrayRef,
            ],
        )
        .unwrap();
        let mut file = tempfile::tempfile().unwrap();
        {
            let mut writer = FileWriter::try_new_with_options(&mut file, &schema, options).unwrap();

            writer.write(&batch).unwrap();
            writer.finish().unwrap();
        }

        file.rewind().unwrap();

        {
            let reader = FileReader::try_new(file, None).unwrap();
            reader.for_each(|maybe_batch| {
                maybe_batch
                    .unwrap()
                    .columns()
                    .iter()
                    .zip(batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            });
        }
    }
    #[test]
    fn test_write_null_file_v4() {
        write_null_file(IpcWriteOptions::try_new(8, false, MetadataVersion::V4).unwrap());
        write_null_file(IpcWriteOptions::try_new(8, true, MetadataVersion::V4).unwrap());
        write_null_file(IpcWriteOptions::try_new(64, false, MetadataVersion::V4).unwrap());
        write_null_file(IpcWriteOptions::try_new(64, true, MetadataVersion::V4).unwrap());
    }

    #[test]
    fn test_write_null_file_v5() {
        write_null_file(IpcWriteOptions::try_new(8, false, MetadataVersion::V5).unwrap());
        write_null_file(IpcWriteOptions::try_new(64, false, MetadataVersion::V5).unwrap());
    }

    #[test]
    fn track_union_nested_dict() {
        let inner: DictionaryArray<Int32Type> = vec!["a", "b", "a"].into_iter().collect();

        let array = Arc::new(inner) as ArrayRef;

        // Dict field with id 2
        let dctfield = Field::new_dict("dict", array.data_type().clone(), false, 2, false);
        let union_fields = [(0, Arc::new(dctfield))].into_iter().collect();

        let types = [0, 0, 0].into_iter().collect::<ScalarBuffer<i8>>();
        let offsets = [0, 1, 2].into_iter().collect::<ScalarBuffer<i32>>();

        let union = UnionArray::try_new(union_fields, types, Some(offsets), vec![array]).unwrap();

        let schema = Arc::new(Schema::new(vec![Field::new(
            "union",
            union.data_type().clone(),
            false,
        )]));

        let batch = RecordBatch::try_new(schema, vec![Arc::new(union)]).unwrap();

        let gen = IpcDataGenerator {};
        let mut dict_tracker = DictionaryTracker::new_with_preserve_dict_id(false, true);
        gen.encoded_batch(&batch, &mut dict_tracker, &Default::default())
            .unwrap();

        // The encoder will assign dict IDs itself to ensure uniqueness and ignore the dict ID in the schema
        // so we expect the dict will be keyed to 0
        assert!(dict_tracker.written.contains_key(&2));
    }

    #[test]
    fn track_struct_nested_dict() {
        let inner: DictionaryArray<Int32Type> = vec!["a", "b", "a"].into_iter().collect();

        let array = Arc::new(inner) as ArrayRef;

        // Dict field with id 2
        let dctfield = Arc::new(Field::new_dict(
            "dict",
            array.data_type().clone(),
            false,
            2,
            false,
        ));

        let s = StructArray::from(vec![(dctfield, array)]);
        let struct_array = Arc::new(s) as ArrayRef;

        let schema = Arc::new(Schema::new(vec![Field::new(
            "struct",
            struct_array.data_type().clone(),
            false,
        )]));

        let batch = RecordBatch::try_new(schema, vec![struct_array]).unwrap();

        let gen = IpcDataGenerator {};
        let mut dict_tracker = DictionaryTracker::new_with_preserve_dict_id(false, true);
        gen.encoded_batch(&batch, &mut dict_tracker, &Default::default())
            .unwrap();

        assert!(dict_tracker.written.contains_key(&2));
    }

    fn write_union_file(options: IpcWriteOptions) {
        let schema = Schema::new(vec![Field::new_union(
            "union",
            vec![0, 1],
            vec![
                Field::new("a", DataType::Int32, false),
                Field::new("c", DataType::Float64, false),
            ],
            UnionMode::Sparse,
        )]);
        let mut builder = UnionBuilder::with_capacity_sparse(5);
        builder.append::<Int32Type>("a", 1).unwrap();
        builder.append_null::<Int32Type>("a").unwrap();
        builder.append::<Float64Type>("c", 3.0).unwrap();
        builder.append_null::<Float64Type>("c").unwrap();
        builder.append::<Int32Type>("a", 4).unwrap();
        let union = builder.build().unwrap();

        let batch =
            RecordBatch::try_new(Arc::new(schema.clone()), vec![Arc::new(union) as ArrayRef])
                .unwrap();

        let mut file = tempfile::tempfile().unwrap();
        {
            let mut writer = FileWriter::try_new_with_options(&mut file, &schema, options).unwrap();

            writer.write(&batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();

        {
            let reader = FileReader::try_new(file, None).unwrap();
            reader.for_each(|maybe_batch| {
                maybe_batch
                    .unwrap()
                    .columns()
                    .iter()
                    .zip(batch.columns())
                    .for_each(|(a, b)| {
                        assert_eq!(a.data_type(), b.data_type());
                        assert_eq!(a.len(), b.len());
                        assert_eq!(a.null_count(), b.null_count());
                    });
            });
        }
    }

    #[test]
    fn test_write_union_file_v4_v5() {
        write_union_file(IpcWriteOptions::try_new(8, false, MetadataVersion::V4).unwrap());
        write_union_file(IpcWriteOptions::try_new(8, false, MetadataVersion::V5).unwrap());
    }

    #[test]
    fn test_write_view_types() {
        const LONG_TEST_STRING: &str =
            "This is a long string to make sure binary view array handles it";
        let schema = Schema::new(vec![
            Field::new("field1", DataType::BinaryView, true),
            Field::new("field2", DataType::Utf8View, true),
        ]);
        let values: Vec<Option<&[u8]>> = vec![
            Some(b"foo"),
            Some(b"bar"),
            Some(LONG_TEST_STRING.as_bytes()),
        ];
        let binary_array = BinaryViewArray::from_iter(values);
        let utf8_array =
            StringViewArray::from_iter(vec![Some("foo"), Some("bar"), Some(LONG_TEST_STRING)]);
        let record_batch = RecordBatch::try_new(
            Arc::new(schema.clone()),
            vec![Arc::new(binary_array), Arc::new(utf8_array)],
        )
        .unwrap();

        let mut file = tempfile::tempfile().unwrap();
        {
            let mut writer = FileWriter::try_new(&mut file, &schema).unwrap();
            writer.write(&record_batch).unwrap();
            writer.finish().unwrap();
        }
        file.rewind().unwrap();
        {
            let mut reader = FileReader::try_new(&file, None).unwrap();
            let read_batch = reader.next().unwrap().unwrap();
            read_batch
                .columns()
                .iter()
                .zip(record_batch.columns())
                .for_each(|(a, b)| {
                    assert_eq!(a, b);
                });
        }
        file.rewind().unwrap();
        {
            let mut reader = FileReader::try_new(&file, Some(vec![0])).unwrap();
            let read_batch = reader.next().unwrap().unwrap();
            assert_eq!(read_batch.num_columns(), 1);
            let read_array = read_batch.column(0);
            let write_array = record_batch.column(0);
            assert_eq!(read_array, write_array);
        }
    }

    #[test]
    fn truncate_ipc_record_batch() {
        fn create_batch(rows: usize) -> RecordBatch {
            let schema = Schema::new(vec![
                Field::new("a", DataType::Int32, false),
                Field::new("b", DataType::Utf8, false),
            ]);

            let a = Int32Array::from_iter_values(0..rows as i32);
            let b = StringArray::from_iter_values((0..rows).map(|i| i.to_string()));

            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a), Arc::new(b)]).unwrap()
        }

        let big_record_batch = create_batch(65536);

        let length = 5;
        let small_record_batch = create_batch(length);

        let offset = 2;
        let record_batch_slice = big_record_batch.slice(offset, length);
        assert!(
            serialize_stream(&big_record_batch).len() > serialize_stream(&small_record_batch).len()
        );
        assert_eq!(
            serialize_stream(&small_record_batch).len(),
            serialize_stream(&record_batch_slice).len()
        );

        assert_eq!(
            deserialize_stream(serialize_stream(&record_batch_slice)),
            record_batch_slice
        );
    }

    #[test]
    fn truncate_ipc_record_batch_with_nulls() {
        fn create_batch() -> RecordBatch {
            let schema = Schema::new(vec![
                Field::new("a", DataType::Int32, true),
                Field::new("b", DataType::Utf8, true),
            ]);

            let a = Int32Array::from(vec![Some(1), None, Some(1), None, Some(1)]);
            let b = StringArray::from(vec![None, Some("a"), Some("a"), None, Some("a")]);

            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a), Arc::new(b)]).unwrap()
        }

        let record_batch = create_batch();
        let record_batch_slice = record_batch.slice(1, 2);
        let deserialized_batch = deserialize_stream(serialize_stream(&record_batch_slice));

        assert!(
            serialize_stream(&record_batch).len() > serialize_stream(&record_batch_slice).len()
        );

        assert!(deserialized_batch.column(0).is_null(0));
        assert!(deserialized_batch.column(0).is_valid(1));
        assert!(deserialized_batch.column(1).is_valid(0));
        assert!(deserialized_batch.column(1).is_valid(1));

        assert_eq!(record_batch_slice, deserialized_batch);
    }

    #[test]
    fn truncate_ipc_dictionary_array() {
        fn create_batch() -> RecordBatch {
            let values: StringArray = [Some("foo"), Some("bar"), Some("baz")]
                .into_iter()
                .collect();
            let keys: Int32Array = [Some(0), Some(2), None, Some(1)].into_iter().collect();

            let array = DictionaryArray::new(keys, Arc::new(values));

            let schema = Schema::new(vec![Field::new("dict", array.data_type().clone(), true)]);

            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(array)]).unwrap()
        }

        let record_batch = create_batch();
        let record_batch_slice = record_batch.slice(1, 2);
        let deserialized_batch = deserialize_stream(serialize_stream(&record_batch_slice));

        assert!(
            serialize_stream(&record_batch).len() > serialize_stream(&record_batch_slice).len()
        );

        assert!(deserialized_batch.column(0).is_valid(0));
        assert!(deserialized_batch.column(0).is_null(1));

        assert_eq!(record_batch_slice, deserialized_batch);
    }

    #[test]
    fn truncate_ipc_struct_array() {
        fn create_batch() -> RecordBatch {
            let strings: StringArray = [Some("foo"), None, Some("bar"), Some("baz")]
                .into_iter()
                .collect();
            let ints: Int32Array = [Some(0), Some(2), None, Some(1)].into_iter().collect();

            let struct_array = StructArray::from(vec![
                (
                    Arc::new(Field::new("s", DataType::Utf8, true)),
                    Arc::new(strings) as ArrayRef,
                ),
                (
                    Arc::new(Field::new("c", DataType::Int32, true)),
                    Arc::new(ints) as ArrayRef,
                ),
            ]);

            let schema = Schema::new(vec![Field::new(
                "struct_array",
                struct_array.data_type().clone(),
                true,
            )]);

            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(struct_array)]).unwrap()
        }

        let record_batch = create_batch();
        let record_batch_slice = record_batch.slice(1, 2);
        let deserialized_batch = deserialize_stream(serialize_stream(&record_batch_slice));

        assert!(
            serialize_stream(&record_batch).len() > serialize_stream(&record_batch_slice).len()
        );

        let structs = deserialized_batch
            .column(0)
            .as_any()
            .downcast_ref::<StructArray>()
            .unwrap();

        assert!(structs.column(0).is_null(0));
        assert!(structs.column(0).is_valid(1));
        assert!(structs.column(1).is_valid(0));
        assert!(structs.column(1).is_null(1));
        assert_eq!(record_batch_slice, deserialized_batch);
    }

    #[test]
    fn truncate_ipc_string_array_with_all_empty_string() {
        fn create_batch() -> RecordBatch {
            let schema = Schema::new(vec![Field::new("a", DataType::Utf8, true)]);
            let a = StringArray::from(vec![Some(""), Some(""), Some(""), Some(""), Some("")]);
            RecordBatch::try_new(Arc::new(schema), vec![Arc::new(a)]).unwrap()
        }

        let record_batch = create_batch();
        let record_batch_slice = record_batch.slice(0, 1);
        let deserialized_batch = deserialize_stream(serialize_stream(&record_batch_slice));

        assert!(
            serialize_stream(&record_batch).len() > serialize_stream(&record_batch_slice).len()
        );
        assert_eq!(record_batch_slice, deserialized_batch);
    }

    #[test]
    fn test_stream_writer_writes_array_slice() {
        let array = UInt32Array::from(vec![Some(1), Some(2), Some(3)]);
        assert_eq!(
            vec![Some(1), Some(2), Some(3)],
            array.iter().collect::<Vec<_>>()
        );

        let sliced = array.slice(1, 2);
        assert_eq!(vec![Some(2), Some(3)], sliced.iter().collect::<Vec<_>>());

        let batch = RecordBatch::try_new(
            Arc::new(Schema::new(vec![Field::new("a", DataType::UInt32, true)])),
            vec![Arc::new(sliced)],
        )
        .expect("new batch");

        let mut writer = StreamWriter::try_new(vec![], batch.schema_ref()).expect("new writer");
        writer.write(&batch).expect("write");
        let outbuf = writer.into_inner().expect("inner");

        let mut reader = StreamReader::try_new(&outbuf[..], None).expect("new reader");
        let read_batch = reader.next().unwrap().expect("read batch");

        let read_array: &UInt32Array = read_batch.column(0).as_primitive();
        assert_eq!(
            vec![Some(2), Some(3)],
            read_array.iter().collect::<Vec<_>>()
        );
    }

    #[test]
    fn encode_bools_slice() {
        // Test case for https://github.com/apache/arrow-rs/issues/3496
        assert_bool_roundtrip([true, false], 1, 1);

        // slice somewhere in the middle
        assert_bool_roundtrip(
            [
                true, false, true, true, false, false, true, true, true, false, false, false, true,
                true, true, true, false, false, false, false, true, true, true, true, true, false,
                false, false, false, false,
            ],
            13,
            17,
        );

        // start at byte boundary, end in the middle
        assert_bool_roundtrip(
            [
                true, false, true, true, false, false, true, true, true, false, false, false,
            ],
            8,
            2,
        );

        // start and stop and byte boundary
        assert_bool_roundtrip(
            [
                true, false, true, true, false, false, true, true, true, false, false, false, true,
                true, true, true, true, false, false, false, false, false,
            ],
            8,
            8,
        );
    }

    fn assert_bool_roundtrip<const N: usize>(bools: [bool; N], offset: usize, length: usize) {
        let val_bool_field = Field::new("val", DataType::Boolean, false);

        let schema = Arc::new(Schema::new(vec![val_bool_field]));

        let bools = BooleanArray::from(bools.to_vec());

        let batch = RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(bools)]).unwrap();
        let batch = batch.slice(offset, length);

        let data = serialize_stream(&batch);
        let batch2 = deserialize_stream(data);
        assert_eq!(batch, batch2);
    }

    #[test]
    fn test_run_array_unslice() {
        let total_len = 80;
        let vals: Vec<Option<i32>> = vec![Some(1), None, Some(2), Some(3), Some(4), None, Some(5)];
        let repeats: Vec<usize> = vec![3, 4, 1, 2];
        let mut input_array: Vec<Option<i32>> = Vec::with_capacity(total_len);
        for ix in 0_usize..32 {
            let repeat: usize = repeats[ix % repeats.len()];
            let val: Option<i32> = vals[ix % vals.len()];
            input_array.resize(input_array.len() + repeat, val);
        }

        // Encode the input_array to run array
        let mut builder =
            PrimitiveRunBuilder::<Int16Type, Int32Type>::with_capacity(input_array.len());
        builder.extend(input_array.iter().copied());
        let run_array = builder.finish();

        // test for all slice lengths.
        for slice_len in 1..=total_len {
            // test for offset = 0, slice length = slice_len
            let sliced_run_array: RunArray<Int16Type> =
                run_array.slice(0, slice_len).into_data().into();

            // Create unsliced run array.
            let unsliced_run_array = into_zero_offset_run_array(sliced_run_array).unwrap();
            let typed = unsliced_run_array
                .downcast::<PrimitiveArray<Int32Type>>()
                .unwrap();
            let expected: Vec<Option<i32>> = input_array.iter().take(slice_len).copied().collect();
            let actual: Vec<Option<i32>> = typed.into_iter().collect();
            assert_eq!(expected, actual);

            // test for offset = total_len - slice_len, length = slice_len
            let sliced_run_array: RunArray<Int16Type> = run_array
                .slice(total_len - slice_len, slice_len)
                .into_data()
                .into();

            // Create unsliced run array.
            let unsliced_run_array = into_zero_offset_run_array(sliced_run_array).unwrap();
            let typed = unsliced_run_array
                .downcast::<PrimitiveArray<Int32Type>>()
                .unwrap();
            let expected: Vec<Option<i32>> = input_array
                .iter()
                .skip(total_len - slice_len)
                .copied()
                .collect();
            let actual: Vec<Option<i32>> = typed.into_iter().collect();
            assert_eq!(expected, actual);
        }
    }

    fn generate_list_data<O: OffsetSizeTrait>() -> GenericListArray<O> {
        let mut ls = GenericListBuilder::<O, _>::new(UInt32Builder::new());

        for i in 0..100_000 {
            for value in [i, i, i] {
                ls.values().append_value(value);
            }
            ls.append(true)
        }

        ls.finish()
    }

    fn generate_nested_list_data<O: OffsetSizeTrait>() -> GenericListArray<O> {
        let mut ls =
            GenericListBuilder::<O, _>::new(GenericListBuilder::<O, _>::new(UInt32Builder::new()));

        for _i in 0..10_000 {
            for j in 0..10 {
                for value in [j, j, j, j] {
                    ls.values().values().append_value(value);
                }
                ls.values().append(true)
            }
            ls.append(true);
        }

        ls.finish()
    }

    fn generate_map_array_data() -> MapArray {
        let keys_builder = UInt32Builder::new();
        let values_builder = UInt32Builder::new();

        let mut builder = MapBuilder::new(None, keys_builder, values_builder);

        for i in 0..100_000 {
            for _j in 0..3 {
                builder.keys().append_value(i);
                builder.values().append_value(i * 2);
            }
            builder.append(true).unwrap();
        }

        builder.finish()
    }

    /// Ensure when serde full & sliced versions they are equal to original input.
    /// Also ensure serialized sliced version is significantly smaller than serialized full.
    fn roundtrip_ensure_sliced_smaller(in_batch: RecordBatch, expected_size_factor: usize) {
        // test both full and sliced versions
        let in_sliced = in_batch.slice(999, 1);

        let bytes_batch = serialize_file(&in_batch);
        let bytes_sliced = serialize_file(&in_sliced);

        // serializing 1 row should be significantly smaller than serializing 100,000
        assert!(bytes_sliced.len() < (bytes_batch.len() / expected_size_factor));

        // ensure both are still valid and equal to originals
        let out_batch = deserialize_file(bytes_batch);
        assert_eq!(in_batch, out_batch);

        let out_sliced = deserialize_file(bytes_sliced);
        assert_eq!(in_sliced, out_sliced);
    }

    #[test]
    fn encode_lists() {
        let val_inner = Field::new("item", DataType::UInt32, true);
        let val_list_field = Field::new("val", DataType::List(Arc::new(val_inner)), false);
        let schema = Arc::new(Schema::new(vec![val_list_field]));

        let values = Arc::new(generate_list_data::<i32>());

        let in_batch = RecordBatch::try_new(schema, vec![values]).unwrap();
        roundtrip_ensure_sliced_smaller(in_batch, 1000);
    }

    #[test]
    fn encode_empty_list() {
        let val_inner = Field::new("item", DataType::UInt32, true);
        let val_list_field = Field::new("val", DataType::List(Arc::new(val_inner)), false);
        let schema = Arc::new(Schema::new(vec![val_list_field]));

        let values = Arc::new(generate_list_data::<i32>());

        let in_batch = RecordBatch::try_new(schema, vec![values])
            .unwrap()
            .slice(999, 0);
        let out_batch = deserialize_file(serialize_file(&in_batch));
        assert_eq!(in_batch, out_batch);
    }

    #[test]
    fn encode_large_lists() {
        let val_inner = Field::new("item", DataType::UInt32, true);
        let val_list_field = Field::new("val", DataType::LargeList(Arc::new(val_inner)), false);
        let schema = Arc::new(Schema::new(vec![val_list_field]));

        let values = Arc::new(generate_list_data::<i64>());

        // ensure when serde full & sliced versions they are equal to original input
        // also ensure serialized sliced version is significantly smaller than serialized full
        let in_batch = RecordBatch::try_new(schema, vec![values]).unwrap();
        roundtrip_ensure_sliced_smaller(in_batch, 1000);
    }

    #[test]
    fn encode_nested_lists() {
        let inner_int = Arc::new(Field::new("item", DataType::UInt32, true));
        let inner_list_field = Arc::new(Field::new("item", DataType::List(inner_int), true));
        let list_field = Field::new("val", DataType::List(inner_list_field), true);
        let schema = Arc::new(Schema::new(vec![list_field]));

        let values = Arc::new(generate_nested_list_data::<i32>());

        let in_batch = RecordBatch::try_new(schema, vec![values]).unwrap();
        roundtrip_ensure_sliced_smaller(in_batch, 1000);
    }

    #[test]
    fn encode_map_array() {
        let keys = Arc::new(Field::new("keys", DataType::UInt32, false));
        let values = Arc::new(Field::new("values", DataType::UInt32, true));
        let map_field = Field::new_map("map", "entries", keys, values, false, true);
        let schema = Arc::new(Schema::new(vec![map_field]));

        let values = Arc::new(generate_map_array_data());

        let in_batch = RecordBatch::try_new(schema, vec![values]).unwrap();
        roundtrip_ensure_sliced_smaller(in_batch, 1000);
    }

    #[test]
    fn test_decimal128_alignment16_is_sufficient() {
        const IPC_ALIGNMENT: usize = 16;

        // Test a bunch of different dimensions to ensure alignment is never an issue.
        // For example, if we only test `num_cols = 1` then even with alignment 8 this
        // test would _happen_ to pass, even though for different dimensions like
        // `num_cols = 2` it would fail.
        for num_cols in [1, 2, 3, 17, 50, 73, 99] {
            let num_rows = (num_cols * 7 + 11) % 100; // Deterministic swizzle

            let mut fields = Vec::new();
            let mut arrays = Vec::new();
            for i in 0..num_cols {
                let field = Field::new(format!("col_{}", i), DataType::Decimal128(38, 10), true);
                let array = Decimal128Array::from(vec![num_cols as i128; num_rows]);
                fields.push(field);
                arrays.push(Arc::new(array) as Arc<dyn Array>);
            }
            let schema = Schema::new(fields);
            let batch = RecordBatch::try_new(Arc::new(schema), arrays).unwrap();

            let mut writer = FileWriter::try_new_with_options(
                Vec::new(),
                batch.schema_ref(),
                IpcWriteOptions::try_new(IPC_ALIGNMENT, false, MetadataVersion::V5).unwrap(),
            )
            .unwrap();
            writer.write(&batch).unwrap();
            writer.finish().unwrap();

            let out: Vec<u8> = writer.into_inner().unwrap();

            let buffer = Buffer::from_vec(out);
            let trailer_start = buffer.len() - 10;
            let footer_len =
                read_footer_length(buffer[trailer_start..].try_into().unwrap()).unwrap();
            let footer =
                root_as_footer(&buffer[trailer_start - footer_len..trailer_start]).unwrap();

            let schema = fb_to_schema(footer.schema().unwrap());

            // Importantly we set `require_alignment`, checking that 16-byte alignment is sufficient
            // for `read_record_batch` later on to read the data in a zero-copy manner.
            let decoder =
                FileDecoder::new(Arc::new(schema), footer.version()).with_require_alignment(true);

            let batches = footer.recordBatches().unwrap();

            let block = batches.get(0);
            let block_len = block.bodyLength() as usize + block.metaDataLength() as usize;
            let data = buffer.slice_with_length(block.offset() as _, block_len);

            let batch2 = decoder.read_record_batch(block, &data).unwrap().unwrap();

            assert_eq!(batch, batch2);
        }
    }

    #[test]
    fn test_decimal128_alignment8_is_unaligned() {
        const IPC_ALIGNMENT: usize = 8;

        let num_cols = 2;
        let num_rows = 1;

        let mut fields = Vec::new();
        let mut arrays = Vec::new();
        for i in 0..num_cols {
            let field = Field::new(format!("col_{}", i), DataType::Decimal128(38, 10), true);
            let array = Decimal128Array::from(vec![num_cols as i128; num_rows]);
            fields.push(field);
            arrays.push(Arc::new(array) as Arc<dyn Array>);
        }
        let schema = Schema::new(fields);
        let batch = RecordBatch::try_new(Arc::new(schema), arrays).unwrap();

        let mut writer = FileWriter::try_new_with_options(
            Vec::new(),
            batch.schema_ref(),
            IpcWriteOptions::try_new(IPC_ALIGNMENT, false, MetadataVersion::V5).unwrap(),
        )
        .unwrap();
        writer.write(&batch).unwrap();
        writer.finish().unwrap();

        let out: Vec<u8> = writer.into_inner().unwrap();

        let buffer = Buffer::from_vec(out);
        let trailer_start = buffer.len() - 10;
        let footer_len = read_footer_length(buffer[trailer_start..].try_into().unwrap()).unwrap();
        let footer = root_as_footer(&buffer[trailer_start - footer_len..trailer_start]).unwrap();

        let schema = fb_to_schema(footer.schema().unwrap());

        // Importantly we set `require_alignment`, otherwise the error later is suppressed due to copying
        // to an aligned buffer in `ArrayDataBuilder.build_aligned`.
        let decoder =
            FileDecoder::new(Arc::new(schema), footer.version()).with_require_alignment(true);

        let batches = footer.recordBatches().unwrap();

        let block = batches.get(0);
        let block_len = block.bodyLength() as usize + block.metaDataLength() as usize;
        let data = buffer.slice_with_length(block.offset() as _, block_len);

        let result = decoder.read_record_batch(block, &data);

        let error = result.unwrap_err();
        assert_eq!(
            error.to_string(),
            "Invalid argument error: Misaligned buffers[0] in array of type Decimal128(38, 10), \
             offset from expected alignment of 16 by 8"
        );
    }

    #[test]
    fn test_flush() {
        // We write a schema which is small enough to fit into a buffer and not get flushed,
        // and then force the write with .flush().
        let num_cols = 2;
        let mut fields = Vec::new();
        let options = IpcWriteOptions::try_new(8, false, MetadataVersion::V5).unwrap();
        for i in 0..num_cols {
            let field = Field::new(format!("col_{}", i), DataType::Decimal128(38, 10), true);
            fields.push(field);
        }
        let schema = Schema::new(fields);
        let inner_stream_writer = BufWriter::with_capacity(1024, Vec::new());
        let inner_file_writer = BufWriter::with_capacity(1024, Vec::new());
        let mut stream_writer =
            StreamWriter::try_new_with_options(inner_stream_writer, &schema, options.clone())
                .unwrap();
        let mut file_writer =
            FileWriter::try_new_with_options(inner_file_writer, &schema, options).unwrap();

        let stream_bytes_written_on_new = stream_writer.get_ref().get_ref().len();
        let file_bytes_written_on_new = file_writer.get_ref().get_ref().len();
        stream_writer.flush().unwrap();
        file_writer.flush().unwrap();
        let stream_bytes_written_on_flush = stream_writer.get_ref().get_ref().len();
        let file_bytes_written_on_flush = file_writer.get_ref().get_ref().len();
        let stream_out = stream_writer.into_inner().unwrap().into_inner().unwrap();
        // Finishing a stream writes the continuation bytes in MetadataVersion::V5 (4 bytes)
        // and then a length of 0 (4 bytes) for a total of 8 bytes.
        // Everything before that should have been flushed in the .flush() call.
        let expected_stream_flushed_bytes = stream_out.len() - 8;
        // A file write is the same as the stream write except for the leading magic string
        // ARROW1 plus padding, which is 8 bytes.
        let expected_file_flushed_bytes = expected_stream_flushed_bytes + 8;

        assert!(
            stream_bytes_written_on_new < stream_bytes_written_on_flush,
            "this test makes no sense if flush is not actually required"
        );
        assert!(
            file_bytes_written_on_new < file_bytes_written_on_flush,
            "this test makes no sense if flush is not actually required"
        );
        assert_eq!(stream_bytes_written_on_flush, expected_stream_flushed_bytes);
        assert_eq!(file_bytes_written_on_flush, expected_file_flushed_bytes);
    }
}