arrow_ord/
cmp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Comparison kernels for `Array`s.
//!
//! These kernels can leverage SIMD if available on your system.  Currently no runtime
//! detection is provided, you should enable the specific SIMD intrinsics using
//! `RUSTFLAGS="-C target-feature=+avx2"` for example.  See the documentation
//! [here](https://doc.rust-lang.org/stable/core/arch/) for more information.
//!

use arrow_array::cast::AsArray;
use arrow_array::types::{ByteArrayType, ByteViewType};
use arrow_array::{
    downcast_primitive_array, AnyDictionaryArray, Array, ArrowNativeTypeOp, BooleanArray, Datum,
    FixedSizeBinaryArray, GenericByteArray, GenericByteViewArray,
};
use arrow_buffer::bit_util::ceil;
use arrow_buffer::{BooleanBuffer, MutableBuffer, NullBuffer};
use arrow_schema::ArrowError;
use arrow_select::take::take;
use std::ops::Not;

#[derive(Debug, Copy, Clone)]
enum Op {
    Equal,
    NotEqual,
    Less,
    LessEqual,
    Greater,
    GreaterEqual,
    Distinct,
    NotDistinct,
}

impl std::fmt::Display for Op {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            Op::Equal => write!(f, "=="),
            Op::NotEqual => write!(f, "!="),
            Op::Less => write!(f, "<"),
            Op::LessEqual => write!(f, "<="),
            Op::Greater => write!(f, ">"),
            Op::GreaterEqual => write!(f, ">="),
            Op::Distinct => write!(f, "IS DISTINCT FROM"),
            Op::NotDistinct => write!(f, "IS NOT DISTINCT FROM"),
        }
    }
}

/// Perform `left == right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::Equal, lhs, rhs)
}

/// Perform `left != right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn neq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::NotEqual, lhs, rhs)
}

/// Perform `left < right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn lt(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::Less, lhs, rhs)
}

/// Perform `left <= right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn lt_eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::LessEqual, lhs, rhs)
}

/// Perform `left > right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn gt(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::Greater, lhs, rhs)
}

/// Perform `left >= right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn gt_eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::GreaterEqual, lhs, rhs)
}

/// Perform `left IS DISTINCT FROM right` operation on two [`Datum`]
///
/// [`distinct`] is similar to [`neq`], only differing in null handling. In particular, two
/// operands are considered DISTINCT if they have a different value or if one of them is NULL
/// and the other isn't. The result of [`distinct`] is never NULL.
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn distinct(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::Distinct, lhs, rhs)
}

/// Perform `left IS NOT DISTINCT FROM right` operation on two [`Datum`]
///
/// [`not_distinct`] is similar to [`eq`], only differing in null handling. In particular, two
/// operands are considered `NOT DISTINCT` if they have the same value or if both of them
/// is NULL. The result of [`not_distinct`] is never NULL.
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn not_distinct(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    compare_op(Op::NotDistinct, lhs, rhs)
}

/// Perform `op` on the provided `Datum`
#[inline(never)]
fn compare_op(op: Op, lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
    use arrow_schema::DataType::*;
    let (l, l_s) = lhs.get();
    let (r, r_s) = rhs.get();

    let l_len = l.len();
    let r_len = r.len();

    if l_len != r_len && !l_s && !r_s {
        return Err(ArrowError::InvalidArgumentError(format!(
            "Cannot compare arrays of different lengths, got {l_len} vs {r_len}"
        )));
    }

    let len = match l_s {
        true => r_len,
        false => l_len,
    };

    let l_nulls = l.logical_nulls();
    let r_nulls = r.logical_nulls();

    let l_v = l.as_any_dictionary_opt();
    let l = l_v.map(|x| x.values().as_ref()).unwrap_or(l);
    let l_t = l.data_type();

    let r_v = r.as_any_dictionary_opt();
    let r = r_v.map(|x| x.values().as_ref()).unwrap_or(r);
    let r_t = r.data_type();

    if r_t.is_nested() || l_t.is_nested() {
        return Err(ArrowError::InvalidArgumentError(format!(
            "Nested comparison: {l_t} {op} {r_t} (hint: use make_comparator instead)"
        )));
    } else if l_t != r_t {
        return Err(ArrowError::InvalidArgumentError(format!(
            "Invalid comparison operation: {l_t} {op} {r_t}"
        )));
    }

    // Defer computation as may not be necessary
    let values = || -> BooleanBuffer {
        let d = downcast_primitive_array! {
            (l, r) => apply(op, l.values().as_ref(), l_s, l_v, r.values().as_ref(), r_s, r_v),
            (Boolean, Boolean) => apply(op, l.as_boolean(), l_s, l_v, r.as_boolean(), r_s, r_v),
            (Utf8, Utf8) => apply(op, l.as_string::<i32>(), l_s, l_v, r.as_string::<i32>(), r_s, r_v),
            (Utf8View, Utf8View) => apply(op, l.as_string_view(), l_s, l_v, r.as_string_view(), r_s, r_v),
            (LargeUtf8, LargeUtf8) => apply(op, l.as_string::<i64>(), l_s, l_v, r.as_string::<i64>(), r_s, r_v),
            (Binary, Binary) => apply(op, l.as_binary::<i32>(), l_s, l_v, r.as_binary::<i32>(), r_s, r_v),
            (BinaryView, BinaryView) => apply(op, l.as_binary_view(), l_s, l_v, r.as_binary_view(), r_s, r_v),
            (LargeBinary, LargeBinary) => apply(op, l.as_binary::<i64>(), l_s, l_v, r.as_binary::<i64>(), r_s, r_v),
            (FixedSizeBinary(_), FixedSizeBinary(_)) => apply(op, l.as_fixed_size_binary(), l_s, l_v, r.as_fixed_size_binary(), r_s, r_v),
            (Null, Null) => None,
            _ => unreachable!(),
        };
        d.unwrap_or_else(|| BooleanBuffer::new_unset(len))
    };

    let l_nulls = l_nulls.filter(|n| n.null_count() > 0);
    let r_nulls = r_nulls.filter(|n| n.null_count() > 0);
    Ok(match (l_nulls, l_s, r_nulls, r_s) {
        (Some(l), true, Some(r), true) | (Some(l), false, Some(r), false) => {
            // Either both sides are scalar or neither side is scalar
            match op {
                Op::Distinct => {
                    let values = values();
                    let l = l.inner().bit_chunks().iter_padded();
                    let r = r.inner().bit_chunks().iter_padded();
                    let ne = values.bit_chunks().iter_padded();

                    let c = |((l, r), n)| ((l ^ r) | (l & r & n));
                    let buffer = l.zip(r).zip(ne).map(c).collect();
                    BooleanBuffer::new(buffer, 0, len).into()
                }
                Op::NotDistinct => {
                    let values = values();
                    let l = l.inner().bit_chunks().iter_padded();
                    let r = r.inner().bit_chunks().iter_padded();
                    let e = values.bit_chunks().iter_padded();

                    let c = |((l, r), e)| u64::not(l | r) | (l & r & e);
                    let buffer = l.zip(r).zip(e).map(c).collect();
                    BooleanBuffer::new(buffer, 0, len).into()
                }
                _ => BooleanArray::new(values(), NullBuffer::union(Some(&l), Some(&r))),
            }
        }
        (Some(_), true, Some(a), false) | (Some(a), false, Some(_), true) => {
            // Scalar is null, other side is non-scalar and nullable
            match op {
                Op::Distinct => a.into_inner().into(),
                Op::NotDistinct => a.into_inner().not().into(),
                _ => BooleanArray::new_null(len),
            }
        }
        (Some(nulls), is_scalar, None, _) | (None, _, Some(nulls), is_scalar) => {
            // Only one side is nullable
            match is_scalar {
                true => match op {
                    // Scalar is null, other side is not nullable
                    Op::Distinct => BooleanBuffer::new_set(len).into(),
                    Op::NotDistinct => BooleanBuffer::new_unset(len).into(),
                    _ => BooleanArray::new_null(len),
                },
                false => match op {
                    Op::Distinct => {
                        let values = values();
                        let l = nulls.inner().bit_chunks().iter_padded();
                        let ne = values.bit_chunks().iter_padded();
                        let c = |(l, n)| u64::not(l) | n;
                        let buffer = l.zip(ne).map(c).collect();
                        BooleanBuffer::new(buffer, 0, len).into()
                    }
                    Op::NotDistinct => (nulls.inner() & &values()).into(),
                    _ => BooleanArray::new(values(), Some(nulls)),
                },
            }
        }
        // Neither side is nullable
        (None, _, None, _) => BooleanArray::new(values(), None),
    })
}

/// Perform a potentially vectored `op` on the provided `ArrayOrd`
fn apply<T: ArrayOrd>(
    op: Op,
    l: T,
    l_s: bool,
    l_v: Option<&dyn AnyDictionaryArray>,
    r: T,
    r_s: bool,
    r_v: Option<&dyn AnyDictionaryArray>,
) -> Option<BooleanBuffer> {
    if l.len() == 0 || r.len() == 0 {
        return None; // Handle empty dictionaries
    }

    if !l_s && !r_s && (l_v.is_some() || r_v.is_some()) {
        // Not scalar and at least one side has a dictionary, need to perform vectored comparison
        let l_v = l_v
            .map(|x| x.normalized_keys())
            .unwrap_or_else(|| (0..l.len()).collect());

        let r_v = r_v
            .map(|x| x.normalized_keys())
            .unwrap_or_else(|| (0..r.len()).collect());

        assert_eq!(l_v.len(), r_v.len()); // Sanity check

        Some(match op {
            Op::Equal | Op::NotDistinct => apply_op_vectored(l, &l_v, r, &r_v, false, T::is_eq),
            Op::NotEqual | Op::Distinct => apply_op_vectored(l, &l_v, r, &r_v, true, T::is_eq),
            Op::Less => apply_op_vectored(l, &l_v, r, &r_v, false, T::is_lt),
            Op::LessEqual => apply_op_vectored(r, &r_v, l, &l_v, true, T::is_lt),
            Op::Greater => apply_op_vectored(r, &r_v, l, &l_v, false, T::is_lt),
            Op::GreaterEqual => apply_op_vectored(l, &l_v, r, &r_v, true, T::is_lt),
        })
    } else {
        let l_s = l_s.then(|| l_v.map(|x| x.normalized_keys()[0]).unwrap_or_default());
        let r_s = r_s.then(|| r_v.map(|x| x.normalized_keys()[0]).unwrap_or_default());

        let buffer = match op {
            Op::Equal | Op::NotDistinct => apply_op(l, l_s, r, r_s, false, T::is_eq),
            Op::NotEqual | Op::Distinct => apply_op(l, l_s, r, r_s, true, T::is_eq),
            Op::Less => apply_op(l, l_s, r, r_s, false, T::is_lt),
            Op::LessEqual => apply_op(r, r_s, l, l_s, true, T::is_lt),
            Op::Greater => apply_op(r, r_s, l, l_s, false, T::is_lt),
            Op::GreaterEqual => apply_op(l, l_s, r, r_s, true, T::is_lt),
        };

        // If a side had a dictionary, and was not scalar, we need to materialize this
        Some(match (l_v, r_v) {
            (Some(l_v), _) if l_s.is_none() => take_bits(l_v, buffer),
            (_, Some(r_v)) if r_s.is_none() => take_bits(r_v, buffer),
            _ => buffer,
        })
    }
}

/// Perform a take operation on `buffer` with the given dictionary
fn take_bits(v: &dyn AnyDictionaryArray, buffer: BooleanBuffer) -> BooleanBuffer {
    let array = take(&BooleanArray::new(buffer, None), v.keys(), None).unwrap();
    array.as_boolean().values().clone()
}

/// Invokes `f` with values `0..len` collecting the boolean results into a new `BooleanBuffer`
///
/// This is similar to [`MutableBuffer::collect_bool`] but with
/// the option to efficiently negate the result
fn collect_bool(len: usize, neg: bool, f: impl Fn(usize) -> bool) -> BooleanBuffer {
    let mut buffer = MutableBuffer::new(ceil(len, 64) * 8);

    let chunks = len / 64;
    let remainder = len % 64;
    for chunk in 0..chunks {
        let mut packed = 0;
        for bit_idx in 0..64 {
            let i = bit_idx + chunk * 64;
            packed |= (f(i) as u64) << bit_idx;
        }
        if neg {
            packed = !packed
        }

        // SAFETY: Already allocated sufficient capacity
        unsafe { buffer.push_unchecked(packed) }
    }

    if remainder != 0 {
        let mut packed = 0;
        for bit_idx in 0..remainder {
            let i = bit_idx + chunks * 64;
            packed |= (f(i) as u64) << bit_idx;
        }
        if neg {
            packed = !packed
        }

        // SAFETY: Already allocated sufficient capacity
        unsafe { buffer.push_unchecked(packed) }
    }
    BooleanBuffer::new(buffer.into(), 0, len)
}

/// Applies `op` to possibly scalar `ArrayOrd`
///
/// If l is scalar `l_s` will be `Some(idx)` where `idx` is the index of the scalar value in `l`
/// If r is scalar `r_s` will be `Some(idx)` where `idx` is the index of the scalar value in `r`
///
/// If `neg` is true the result of `op` will be negated
fn apply_op<T: ArrayOrd>(
    l: T,
    l_s: Option<usize>,
    r: T,
    r_s: Option<usize>,
    neg: bool,
    op: impl Fn(T::Item, T::Item) -> bool,
) -> BooleanBuffer {
    match (l_s, r_s) {
        (None, None) => {
            assert_eq!(l.len(), r.len());
            collect_bool(l.len(), neg, |idx| unsafe {
                op(l.value_unchecked(idx), r.value_unchecked(idx))
            })
        }
        (Some(l_s), Some(r_s)) => {
            let a = l.value(l_s);
            let b = r.value(r_s);
            std::iter::once(op(a, b) ^ neg).collect()
        }
        (Some(l_s), None) => {
            let v = l.value(l_s);
            collect_bool(r.len(), neg, |idx| op(v, unsafe { r.value_unchecked(idx) }))
        }
        (None, Some(r_s)) => {
            let v = r.value(r_s);
            collect_bool(l.len(), neg, |idx| op(unsafe { l.value_unchecked(idx) }, v))
        }
    }
}

/// Applies `op` to possibly scalar `ArrayOrd` with the given indices
fn apply_op_vectored<T: ArrayOrd>(
    l: T,
    l_v: &[usize],
    r: T,
    r_v: &[usize],
    neg: bool,
    op: impl Fn(T::Item, T::Item) -> bool,
) -> BooleanBuffer {
    assert_eq!(l_v.len(), r_v.len());
    collect_bool(l_v.len(), neg, |idx| unsafe {
        let l_idx = *l_v.get_unchecked(idx);
        let r_idx = *r_v.get_unchecked(idx);
        op(l.value_unchecked(l_idx), r.value_unchecked(r_idx))
    })
}

trait ArrayOrd {
    type Item: Copy;

    fn len(&self) -> usize;

    fn value(&self, idx: usize) -> Self::Item {
        assert!(idx < self.len());
        unsafe { self.value_unchecked(idx) }
    }

    /// # Safety
    ///
    /// Safe if `idx < self.len()`
    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item;

    fn is_eq(l: Self::Item, r: Self::Item) -> bool;

    fn is_lt(l: Self::Item, r: Self::Item) -> bool;
}

impl ArrayOrd for &BooleanArray {
    type Item = bool;

    fn len(&self) -> usize {
        Array::len(self)
    }

    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
        BooleanArray::value_unchecked(self, idx)
    }

    fn is_eq(l: Self::Item, r: Self::Item) -> bool {
        l == r
    }

    fn is_lt(l: Self::Item, r: Self::Item) -> bool {
        !l & r
    }
}

impl<T: ArrowNativeTypeOp> ArrayOrd for &[T] {
    type Item = T;

    fn len(&self) -> usize {
        (*self).len()
    }

    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
        *self.get_unchecked(idx)
    }

    fn is_eq(l: Self::Item, r: Self::Item) -> bool {
        l.is_eq(r)
    }

    fn is_lt(l: Self::Item, r: Self::Item) -> bool {
        l.is_lt(r)
    }
}

impl<'a, T: ByteArrayType> ArrayOrd for &'a GenericByteArray<T> {
    type Item = &'a [u8];

    fn len(&self) -> usize {
        Array::len(self)
    }

    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
        GenericByteArray::value_unchecked(self, idx).as_ref()
    }

    fn is_eq(l: Self::Item, r: Self::Item) -> bool {
        l == r
    }

    fn is_lt(l: Self::Item, r: Self::Item) -> bool {
        l < r
    }
}

impl<'a, T: ByteViewType> ArrayOrd for &'a GenericByteViewArray<T> {
    /// This is the item type for the GenericByteViewArray::compare
    /// Item.0 is the array, Item.1 is the index
    type Item = (&'a GenericByteViewArray<T>, usize);

    fn is_eq(l: Self::Item, r: Self::Item) -> bool {
        // # Safety
        // The index is within bounds as it is checked in value()
        let l_view = unsafe { l.0.views().get_unchecked(l.1) };
        let l_len = *l_view as u32;

        let r_view = unsafe { r.0.views().get_unchecked(r.1) };
        let r_len = *r_view as u32;
        // This is a fast path for equality check.
        // We don't need to look at the actual bytes to determine if they are equal.
        if l_len != r_len {
            return false;
        }

        unsafe { GenericByteViewArray::compare_unchecked(l.0, l.1, r.0, r.1).is_eq() }
    }

    fn is_lt(l: Self::Item, r: Self::Item) -> bool {
        // # Safety
        // The index is within bounds as it is checked in value()
        unsafe { GenericByteViewArray::compare_unchecked(l.0, l.1, r.0, r.1).is_lt() }
    }

    fn len(&self) -> usize {
        Array::len(self)
    }

    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
        (self, idx)
    }
}

impl<'a> ArrayOrd for &'a FixedSizeBinaryArray {
    type Item = &'a [u8];

    fn len(&self) -> usize {
        Array::len(self)
    }

    unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
        FixedSizeBinaryArray::value_unchecked(self, idx)
    }

    fn is_eq(l: Self::Item, r: Self::Item) -> bool {
        l == r
    }

    fn is_lt(l: Self::Item, r: Self::Item) -> bool {
        l < r
    }
}

/// Compares two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
pub fn compare_byte_view<T: ByteViewType>(
    left: &GenericByteViewArray<T>,
    left_idx: usize,
    right: &GenericByteViewArray<T>,
    right_idx: usize,
) -> std::cmp::Ordering {
    assert!(left_idx < left.len());
    assert!(right_idx < right.len());
    unsafe { GenericByteViewArray::compare_unchecked(left, left_idx, right, right_idx) }
}

/// Comparing two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
///
/// Comparing two ByteView types are non-trivial.
/// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
///
/// ByteView types give us the following two advantages, and we need to be careful not to lose them:
/// (1) For string/byte smaller than 12 bytes, the entire data is inlined in the view.
///     Meaning that reading one array element requires only one memory access
///     (two memory access required for StringArray, one for offset buffer, the other for value buffer).
///
/// (2) For string/byte larger than 12 bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
///     thanks to the inlined 4 bytes.
///     Consider equality check:
///     If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
///
/// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
/// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
///   e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
///
/// # Order check flow
/// (1) if both string are smaller than 12 bytes, we can directly compare the data inlined to the view.
/// (2) if any of the string is larger than 12 bytes, we need to compare the full string.
///     (2.1) if the inlined 4 bytes are different, we can return the result immediately.
///     (2.2) o.w., we need to compare the full string.
///
/// # Safety
/// The left/right_idx must within range of each array
#[deprecated(note = "Use `GenericByteViewArray::compare_unchecked` instead")]
pub unsafe fn compare_byte_view_unchecked<T: ByteViewType>(
    left: &GenericByteViewArray<T>,
    left_idx: usize,
    right: &GenericByteViewArray<T>,
    right_idx: usize,
) -> std::cmp::Ordering {
    let l_view = left.views().get_unchecked(left_idx);
    let l_len = *l_view as u32;

    let r_view = right.views().get_unchecked(right_idx);
    let r_len = *r_view as u32;

    if l_len <= 12 && r_len <= 12 {
        let l_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, l_len as usize) };
        let r_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, r_len as usize) };
        return l_data.cmp(r_data);
    }

    // one of the string is larger than 12 bytes,
    // we then try to compare the inlined data first
    let l_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, 4) };
    let r_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, 4) };
    if r_inlined_data != l_inlined_data {
        return l_inlined_data.cmp(r_inlined_data);
    }

    // unfortunately, we need to compare the full data
    let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
    let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };

    l_full_data.cmp(r_full_data)
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use arrow_array::{DictionaryArray, Int32Array, Scalar, StringArray};

    use super::*;

    #[test]
    fn test_null_dict() {
        let a = DictionaryArray::new(Int32Array::new_null(10), Arc::new(Int32Array::new_null(0)));
        let r = eq(&a, &a).unwrap();
        assert_eq!(r.null_count(), 10);

        let a = DictionaryArray::new(
            Int32Array::from(vec![1, 2, 3, 4, 5, 6]),
            Arc::new(Int32Array::new_null(10)),
        );
        let r = eq(&a, &a).unwrap();
        assert_eq!(r.null_count(), 6);

        let scalar =
            DictionaryArray::new(Int32Array::new_null(1), Arc::new(Int32Array::new_null(0)));
        let r = eq(&a, &Scalar::new(&scalar)).unwrap();
        assert_eq!(r.null_count(), 6);

        let scalar =
            DictionaryArray::new(Int32Array::new_null(1), Arc::new(Int32Array::new_null(0)));
        let r = eq(&Scalar::new(&scalar), &Scalar::new(&scalar)).unwrap();
        assert_eq!(r.null_count(), 1);

        let a = DictionaryArray::new(
            Int32Array::from(vec![0, 1, 2]),
            Arc::new(Int32Array::from(vec![3, 2, 1])),
        );
        let r = eq(&a, &Scalar::new(&scalar)).unwrap();
        assert_eq!(r.null_count(), 3);
    }

    #[test]
    fn is_distinct_from_non_nulls() {
        let left_int_array = Int32Array::from(vec![0, 1, 2, 3, 4]);
        let right_int_array = Int32Array::from(vec![4, 3, 2, 1, 0]);

        assert_eq!(
            BooleanArray::from(vec![true, true, false, true, true,]),
            distinct(&left_int_array, &right_int_array).unwrap()
        );
        assert_eq!(
            BooleanArray::from(vec![false, false, true, false, false,]),
            not_distinct(&left_int_array, &right_int_array).unwrap()
        );
    }

    #[test]
    fn is_distinct_from_nulls() {
        // [0, 0, NULL, 0, 0, 0]
        let left_int_array = Int32Array::new(
            vec![0, 0, 1, 3, 0, 0].into(),
            Some(NullBuffer::from(vec![true, true, false, true, true, true])),
        );
        // [0, NULL, NULL, NULL, 0, NULL]
        let right_int_array = Int32Array::new(
            vec![0; 6].into(),
            Some(NullBuffer::from(vec![
                true, false, false, false, true, false,
            ])),
        );

        assert_eq!(
            BooleanArray::from(vec![false, true, false, true, false, true,]),
            distinct(&left_int_array, &right_int_array).unwrap()
        );

        assert_eq!(
            BooleanArray::from(vec![true, false, true, false, true, false,]),
            not_distinct(&left_int_array, &right_int_array).unwrap()
        );
    }

    #[test]
    fn test_distinct_scalar() {
        let a = Int32Array::new_scalar(12);
        let b = Int32Array::new_scalar(12);
        assert!(!distinct(&a, &b).unwrap().value(0));
        assert!(not_distinct(&a, &b).unwrap().value(0));

        let a = Int32Array::new_scalar(12);
        let b = Int32Array::new_null(1);
        assert!(distinct(&a, &b).unwrap().value(0));
        assert!(!not_distinct(&a, &b).unwrap().value(0));
        assert!(distinct(&b, &a).unwrap().value(0));
        assert!(!not_distinct(&b, &a).unwrap().value(0));

        let b = Scalar::new(b);
        assert!(distinct(&a, &b).unwrap().value(0));
        assert!(!not_distinct(&a, &b).unwrap().value(0));

        assert!(!distinct(&b, &b).unwrap().value(0));
        assert!(not_distinct(&b, &b).unwrap().value(0));

        let a = Int32Array::new(
            vec![0, 1, 2, 3].into(),
            Some(vec![false, false, true, true].into()),
        );
        let expected = BooleanArray::from(vec![false, false, true, true]);
        assert_eq!(distinct(&a, &b).unwrap(), expected);
        assert_eq!(distinct(&b, &a).unwrap(), expected);

        let expected = BooleanArray::from(vec![true, true, false, false]);
        assert_eq!(not_distinct(&a, &b).unwrap(), expected);
        assert_eq!(not_distinct(&b, &a).unwrap(), expected);

        let b = Int32Array::new_scalar(1);
        let expected = BooleanArray::from(vec![true; 4]);
        assert_eq!(distinct(&a, &b).unwrap(), expected);
        assert_eq!(distinct(&b, &a).unwrap(), expected);
        let expected = BooleanArray::from(vec![false; 4]);
        assert_eq!(not_distinct(&a, &b).unwrap(), expected);
        assert_eq!(not_distinct(&b, &a).unwrap(), expected);

        let b = Int32Array::new_scalar(3);
        let expected = BooleanArray::from(vec![true, true, true, false]);
        assert_eq!(distinct(&a, &b).unwrap(), expected);
        assert_eq!(distinct(&b, &a).unwrap(), expected);
        let expected = BooleanArray::from(vec![false, false, false, true]);
        assert_eq!(not_distinct(&a, &b).unwrap(), expected);
        assert_eq!(not_distinct(&b, &a).unwrap(), expected);
    }

    #[test]
    fn test_scalar_negation() {
        let a = Int32Array::new_scalar(54);
        let b = Int32Array::new_scalar(54);
        let r = eq(&a, &b).unwrap();
        assert!(r.value(0));

        let r = neq(&a, &b).unwrap();
        assert!(!r.value(0))
    }

    #[test]
    fn test_scalar_empty() {
        let a = Int32Array::new_null(0);
        let b = Int32Array::new_scalar(23);
        let r = eq(&a, &b).unwrap();
        assert_eq!(r.len(), 0);
        let r = eq(&b, &a).unwrap();
        assert_eq!(r.len(), 0);
    }

    #[test]
    fn test_dictionary_nulls() {
        let values = StringArray::from(vec![Some("us-west"), Some("us-east")]);
        let nulls = NullBuffer::from(vec![false, true, true]);

        let key_values = vec![100i32, 1i32, 0i32].into();
        let keys = Int32Array::new(key_values, Some(nulls));
        let col = DictionaryArray::try_new(keys, Arc::new(values)).unwrap();

        neq(&col.slice(0, col.len() - 1), &col.slice(1, col.len() - 1)).unwrap();
    }
}