arrow_ord/cmp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Comparison kernels for `Array`s.
//!
//! These kernels can leverage SIMD if available on your system. Currently no runtime
//! detection is provided, you should enable the specific SIMD intrinsics using
//! `RUSTFLAGS="-C target-feature=+avx2"` for example. See the documentation
//! [here](https://doc.rust-lang.org/stable/core/arch/) for more information.
//!
use arrow_array::cast::AsArray;
use arrow_array::types::{ByteArrayType, ByteViewType};
use arrow_array::{
downcast_primitive_array, AnyDictionaryArray, Array, ArrowNativeTypeOp, BooleanArray, Datum,
FixedSizeBinaryArray, GenericByteArray, GenericByteViewArray,
};
use arrow_buffer::bit_util::ceil;
use arrow_buffer::{BooleanBuffer, MutableBuffer, NullBuffer};
use arrow_schema::ArrowError;
use arrow_select::take::take;
use std::ops::Not;
#[derive(Debug, Copy, Clone)]
enum Op {
Equal,
NotEqual,
Less,
LessEqual,
Greater,
GreaterEqual,
Distinct,
NotDistinct,
}
impl std::fmt::Display for Op {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Op::Equal => write!(f, "=="),
Op::NotEqual => write!(f, "!="),
Op::Less => write!(f, "<"),
Op::LessEqual => write!(f, "<="),
Op::Greater => write!(f, ">"),
Op::GreaterEqual => write!(f, ">="),
Op::Distinct => write!(f, "IS DISTINCT FROM"),
Op::NotDistinct => write!(f, "IS NOT DISTINCT FROM"),
}
}
}
/// Perform `left == right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::Equal, lhs, rhs)
}
/// Perform `left != right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn neq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::NotEqual, lhs, rhs)
}
/// Perform `left < right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn lt(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::Less, lhs, rhs)
}
/// Perform `left <= right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn lt_eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::LessEqual, lhs, rhs)
}
/// Perform `left > right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn gt(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::Greater, lhs, rhs)
}
/// Perform `left >= right` operation on two [`Datum`].
///
/// Comparing null values on either side will yield a null in the corresponding
/// slot of the resulting [`BooleanArray`].
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn gt_eq(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::GreaterEqual, lhs, rhs)
}
/// Perform `left IS DISTINCT FROM right` operation on two [`Datum`]
///
/// [`distinct`] is similar to [`neq`], only differing in null handling. In particular, two
/// operands are considered DISTINCT if they have a different value or if one of them is NULL
/// and the other isn't. The result of [`distinct`] is never NULL.
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn distinct(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::Distinct, lhs, rhs)
}
/// Perform `left IS NOT DISTINCT FROM right` operation on two [`Datum`]
///
/// [`not_distinct`] is similar to [`eq`], only differing in null handling. In particular, two
/// operands are considered `NOT DISTINCT` if they have the same value or if both of them
/// is NULL. The result of [`not_distinct`] is never NULL.
///
/// For floating values like f32 and f64, this comparison produces an ordering in accordance to
/// the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard.
/// Note that totalOrder treats positive and negative zeros as different. If it is necessary
/// to treat them as equal, please normalize zeros before calling this kernel. See
/// [`f32::total_cmp`] and [`f64::total_cmp`].
///
/// Nested types, such as lists, are not supported as the null semantics are not well-defined.
/// For comparisons involving nested types see [`crate::ord::make_comparator`]
pub fn not_distinct(lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
compare_op(Op::NotDistinct, lhs, rhs)
}
/// Perform `op` on the provided `Datum`
#[inline(never)]
fn compare_op(op: Op, lhs: &dyn Datum, rhs: &dyn Datum) -> Result<BooleanArray, ArrowError> {
use arrow_schema::DataType::*;
let (l, l_s) = lhs.get();
let (r, r_s) = rhs.get();
let l_len = l.len();
let r_len = r.len();
if l_len != r_len && !l_s && !r_s {
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot compare arrays of different lengths, got {l_len} vs {r_len}"
)));
}
let len = match l_s {
true => r_len,
false => l_len,
};
let l_nulls = l.logical_nulls();
let r_nulls = r.logical_nulls();
let l_v = l.as_any_dictionary_opt();
let l = l_v.map(|x| x.values().as_ref()).unwrap_or(l);
let l_t = l.data_type();
let r_v = r.as_any_dictionary_opt();
let r = r_v.map(|x| x.values().as_ref()).unwrap_or(r);
let r_t = r.data_type();
if r_t.is_nested() || l_t.is_nested() {
return Err(ArrowError::InvalidArgumentError(format!(
"Nested comparison: {l_t} {op} {r_t} (hint: use make_comparator instead)"
)));
} else if l_t != r_t {
return Err(ArrowError::InvalidArgumentError(format!(
"Invalid comparison operation: {l_t} {op} {r_t}"
)));
}
// Defer computation as may not be necessary
let values = || -> BooleanBuffer {
let d = downcast_primitive_array! {
(l, r) => apply(op, l.values().as_ref(), l_s, l_v, r.values().as_ref(), r_s, r_v),
(Boolean, Boolean) => apply(op, l.as_boolean(), l_s, l_v, r.as_boolean(), r_s, r_v),
(Utf8, Utf8) => apply(op, l.as_string::<i32>(), l_s, l_v, r.as_string::<i32>(), r_s, r_v),
(Utf8View, Utf8View) => apply(op, l.as_string_view(), l_s, l_v, r.as_string_view(), r_s, r_v),
(LargeUtf8, LargeUtf8) => apply(op, l.as_string::<i64>(), l_s, l_v, r.as_string::<i64>(), r_s, r_v),
(Binary, Binary) => apply(op, l.as_binary::<i32>(), l_s, l_v, r.as_binary::<i32>(), r_s, r_v),
(BinaryView, BinaryView) => apply(op, l.as_binary_view(), l_s, l_v, r.as_binary_view(), r_s, r_v),
(LargeBinary, LargeBinary) => apply(op, l.as_binary::<i64>(), l_s, l_v, r.as_binary::<i64>(), r_s, r_v),
(FixedSizeBinary(_), FixedSizeBinary(_)) => apply(op, l.as_fixed_size_binary(), l_s, l_v, r.as_fixed_size_binary(), r_s, r_v),
(Null, Null) => None,
_ => unreachable!(),
};
d.unwrap_or_else(|| BooleanBuffer::new_unset(len))
};
let l_nulls = l_nulls.filter(|n| n.null_count() > 0);
let r_nulls = r_nulls.filter(|n| n.null_count() > 0);
Ok(match (l_nulls, l_s, r_nulls, r_s) {
(Some(l), true, Some(r), true) | (Some(l), false, Some(r), false) => {
// Either both sides are scalar or neither side is scalar
match op {
Op::Distinct => {
let values = values();
let l = l.inner().bit_chunks().iter_padded();
let r = r.inner().bit_chunks().iter_padded();
let ne = values.bit_chunks().iter_padded();
let c = |((l, r), n)| ((l ^ r) | (l & r & n));
let buffer = l.zip(r).zip(ne).map(c).collect();
BooleanBuffer::new(buffer, 0, len).into()
}
Op::NotDistinct => {
let values = values();
let l = l.inner().bit_chunks().iter_padded();
let r = r.inner().bit_chunks().iter_padded();
let e = values.bit_chunks().iter_padded();
let c = |((l, r), e)| u64::not(l | r) | (l & r & e);
let buffer = l.zip(r).zip(e).map(c).collect();
BooleanBuffer::new(buffer, 0, len).into()
}
_ => BooleanArray::new(values(), NullBuffer::union(Some(&l), Some(&r))),
}
}
(Some(_), true, Some(a), false) | (Some(a), false, Some(_), true) => {
// Scalar is null, other side is non-scalar and nullable
match op {
Op::Distinct => a.into_inner().into(),
Op::NotDistinct => a.into_inner().not().into(),
_ => BooleanArray::new_null(len),
}
}
(Some(nulls), is_scalar, None, _) | (None, _, Some(nulls), is_scalar) => {
// Only one side is nullable
match is_scalar {
true => match op {
// Scalar is null, other side is not nullable
Op::Distinct => BooleanBuffer::new_set(len).into(),
Op::NotDistinct => BooleanBuffer::new_unset(len).into(),
_ => BooleanArray::new_null(len),
},
false => match op {
Op::Distinct => {
let values = values();
let l = nulls.inner().bit_chunks().iter_padded();
let ne = values.bit_chunks().iter_padded();
let c = |(l, n)| u64::not(l) | n;
let buffer = l.zip(ne).map(c).collect();
BooleanBuffer::new(buffer, 0, len).into()
}
Op::NotDistinct => (nulls.inner() & &values()).into(),
_ => BooleanArray::new(values(), Some(nulls)),
},
}
}
// Neither side is nullable
(None, _, None, _) => BooleanArray::new(values(), None),
})
}
/// Perform a potentially vectored `op` on the provided `ArrayOrd`
fn apply<T: ArrayOrd>(
op: Op,
l: T,
l_s: bool,
l_v: Option<&dyn AnyDictionaryArray>,
r: T,
r_s: bool,
r_v: Option<&dyn AnyDictionaryArray>,
) -> Option<BooleanBuffer> {
if l.len() == 0 || r.len() == 0 {
return None; // Handle empty dictionaries
}
if !l_s && !r_s && (l_v.is_some() || r_v.is_some()) {
// Not scalar and at least one side has a dictionary, need to perform vectored comparison
let l_v = l_v
.map(|x| x.normalized_keys())
.unwrap_or_else(|| (0..l.len()).collect());
let r_v = r_v
.map(|x| x.normalized_keys())
.unwrap_or_else(|| (0..r.len()).collect());
assert_eq!(l_v.len(), r_v.len()); // Sanity check
Some(match op {
Op::Equal | Op::NotDistinct => apply_op_vectored(l, &l_v, r, &r_v, false, T::is_eq),
Op::NotEqual | Op::Distinct => apply_op_vectored(l, &l_v, r, &r_v, true, T::is_eq),
Op::Less => apply_op_vectored(l, &l_v, r, &r_v, false, T::is_lt),
Op::LessEqual => apply_op_vectored(r, &r_v, l, &l_v, true, T::is_lt),
Op::Greater => apply_op_vectored(r, &r_v, l, &l_v, false, T::is_lt),
Op::GreaterEqual => apply_op_vectored(l, &l_v, r, &r_v, true, T::is_lt),
})
} else {
let l_s = l_s.then(|| l_v.map(|x| x.normalized_keys()[0]).unwrap_or_default());
let r_s = r_s.then(|| r_v.map(|x| x.normalized_keys()[0]).unwrap_or_default());
let buffer = match op {
Op::Equal | Op::NotDistinct => apply_op(l, l_s, r, r_s, false, T::is_eq),
Op::NotEqual | Op::Distinct => apply_op(l, l_s, r, r_s, true, T::is_eq),
Op::Less => apply_op(l, l_s, r, r_s, false, T::is_lt),
Op::LessEqual => apply_op(r, r_s, l, l_s, true, T::is_lt),
Op::Greater => apply_op(r, r_s, l, l_s, false, T::is_lt),
Op::GreaterEqual => apply_op(l, l_s, r, r_s, true, T::is_lt),
};
// If a side had a dictionary, and was not scalar, we need to materialize this
Some(match (l_v, r_v) {
(Some(l_v), _) if l_s.is_none() => take_bits(l_v, buffer),
(_, Some(r_v)) if r_s.is_none() => take_bits(r_v, buffer),
_ => buffer,
})
}
}
/// Perform a take operation on `buffer` with the given dictionary
fn take_bits(v: &dyn AnyDictionaryArray, buffer: BooleanBuffer) -> BooleanBuffer {
let array = take(&BooleanArray::new(buffer, None), v.keys(), None).unwrap();
array.as_boolean().values().clone()
}
/// Invokes `f` with values `0..len` collecting the boolean results into a new `BooleanBuffer`
///
/// This is similar to [`MutableBuffer::collect_bool`] but with
/// the option to efficiently negate the result
fn collect_bool(len: usize, neg: bool, f: impl Fn(usize) -> bool) -> BooleanBuffer {
let mut buffer = MutableBuffer::new(ceil(len, 64) * 8);
let chunks = len / 64;
let remainder = len % 64;
for chunk in 0..chunks {
let mut packed = 0;
for bit_idx in 0..64 {
let i = bit_idx + chunk * 64;
packed |= (f(i) as u64) << bit_idx;
}
if neg {
packed = !packed
}
// SAFETY: Already allocated sufficient capacity
unsafe { buffer.push_unchecked(packed) }
}
if remainder != 0 {
let mut packed = 0;
for bit_idx in 0..remainder {
let i = bit_idx + chunks * 64;
packed |= (f(i) as u64) << bit_idx;
}
if neg {
packed = !packed
}
// SAFETY: Already allocated sufficient capacity
unsafe { buffer.push_unchecked(packed) }
}
BooleanBuffer::new(buffer.into(), 0, len)
}
/// Applies `op` to possibly scalar `ArrayOrd`
///
/// If l is scalar `l_s` will be `Some(idx)` where `idx` is the index of the scalar value in `l`
/// If r is scalar `r_s` will be `Some(idx)` where `idx` is the index of the scalar value in `r`
///
/// If `neg` is true the result of `op` will be negated
fn apply_op<T: ArrayOrd>(
l: T,
l_s: Option<usize>,
r: T,
r_s: Option<usize>,
neg: bool,
op: impl Fn(T::Item, T::Item) -> bool,
) -> BooleanBuffer {
match (l_s, r_s) {
(None, None) => {
assert_eq!(l.len(), r.len());
collect_bool(l.len(), neg, |idx| unsafe {
op(l.value_unchecked(idx), r.value_unchecked(idx))
})
}
(Some(l_s), Some(r_s)) => {
let a = l.value(l_s);
let b = r.value(r_s);
std::iter::once(op(a, b) ^ neg).collect()
}
(Some(l_s), None) => {
let v = l.value(l_s);
collect_bool(r.len(), neg, |idx| op(v, unsafe { r.value_unchecked(idx) }))
}
(None, Some(r_s)) => {
let v = r.value(r_s);
collect_bool(l.len(), neg, |idx| op(unsafe { l.value_unchecked(idx) }, v))
}
}
}
/// Applies `op` to possibly scalar `ArrayOrd` with the given indices
fn apply_op_vectored<T: ArrayOrd>(
l: T,
l_v: &[usize],
r: T,
r_v: &[usize],
neg: bool,
op: impl Fn(T::Item, T::Item) -> bool,
) -> BooleanBuffer {
assert_eq!(l_v.len(), r_v.len());
collect_bool(l_v.len(), neg, |idx| unsafe {
let l_idx = *l_v.get_unchecked(idx);
let r_idx = *r_v.get_unchecked(idx);
op(l.value_unchecked(l_idx), r.value_unchecked(r_idx))
})
}
trait ArrayOrd {
type Item: Copy;
fn len(&self) -> usize;
fn value(&self, idx: usize) -> Self::Item {
assert!(idx < self.len());
unsafe { self.value_unchecked(idx) }
}
/// # Safety
///
/// Safe if `idx < self.len()`
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item;
fn is_eq(l: Self::Item, r: Self::Item) -> bool;
fn is_lt(l: Self::Item, r: Self::Item) -> bool;
}
impl ArrayOrd for &BooleanArray {
type Item = bool;
fn len(&self) -> usize {
Array::len(self)
}
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
BooleanArray::value_unchecked(self, idx)
}
fn is_eq(l: Self::Item, r: Self::Item) -> bool {
l == r
}
fn is_lt(l: Self::Item, r: Self::Item) -> bool {
!l & r
}
}
impl<T: ArrowNativeTypeOp> ArrayOrd for &[T] {
type Item = T;
fn len(&self) -> usize {
(*self).len()
}
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
*self.get_unchecked(idx)
}
fn is_eq(l: Self::Item, r: Self::Item) -> bool {
l.is_eq(r)
}
fn is_lt(l: Self::Item, r: Self::Item) -> bool {
l.is_lt(r)
}
}
impl<'a, T: ByteArrayType> ArrayOrd for &'a GenericByteArray<T> {
type Item = &'a [u8];
fn len(&self) -> usize {
Array::len(self)
}
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
GenericByteArray::value_unchecked(self, idx).as_ref()
}
fn is_eq(l: Self::Item, r: Self::Item) -> bool {
l == r
}
fn is_lt(l: Self::Item, r: Self::Item) -> bool {
l < r
}
}
impl<'a, T: ByteViewType> ArrayOrd for &'a GenericByteViewArray<T> {
/// This is the item type for the GenericByteViewArray::compare
/// Item.0 is the array, Item.1 is the index
type Item = (&'a GenericByteViewArray<T>, usize);
fn is_eq(l: Self::Item, r: Self::Item) -> bool {
// # Safety
// The index is within bounds as it is checked in value()
let l_view = unsafe { l.0.views().get_unchecked(l.1) };
let l_len = *l_view as u32;
let r_view = unsafe { r.0.views().get_unchecked(r.1) };
let r_len = *r_view as u32;
// This is a fast path for equality check.
// We don't need to look at the actual bytes to determine if they are equal.
if l_len != r_len {
return false;
}
unsafe { GenericByteViewArray::compare_unchecked(l.0, l.1, r.0, r.1).is_eq() }
}
fn is_lt(l: Self::Item, r: Self::Item) -> bool {
// # Safety
// The index is within bounds as it is checked in value()
unsafe { GenericByteViewArray::compare_unchecked(l.0, l.1, r.0, r.1).is_lt() }
}
fn len(&self) -> usize {
Array::len(self)
}
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
(self, idx)
}
}
impl<'a> ArrayOrd for &'a FixedSizeBinaryArray {
type Item = &'a [u8];
fn len(&self) -> usize {
Array::len(self)
}
unsafe fn value_unchecked(&self, idx: usize) -> Self::Item {
FixedSizeBinaryArray::value_unchecked(self, idx)
}
fn is_eq(l: Self::Item, r: Self::Item) -> bool {
l == r
}
fn is_lt(l: Self::Item, r: Self::Item) -> bool {
l < r
}
}
/// Compares two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
pub fn compare_byte_view<T: ByteViewType>(
left: &GenericByteViewArray<T>,
left_idx: usize,
right: &GenericByteViewArray<T>,
right_idx: usize,
) -> std::cmp::Ordering {
assert!(left_idx < left.len());
assert!(right_idx < right.len());
unsafe { GenericByteViewArray::compare_unchecked(left, left_idx, right, right_idx) }
}
/// Comparing two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
///
/// Comparing two ByteView types are non-trivial.
/// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
///
/// ByteView types give us the following two advantages, and we need to be careful not to lose them:
/// (1) For string/byte smaller than 12 bytes, the entire data is inlined in the view.
/// Meaning that reading one array element requires only one memory access
/// (two memory access required for StringArray, one for offset buffer, the other for value buffer).
///
/// (2) For string/byte larger than 12 bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
/// thanks to the inlined 4 bytes.
/// Consider equality check:
/// If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
///
/// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
/// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
/// e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
///
/// # Order check flow
/// (1) if both string are smaller than 12 bytes, we can directly compare the data inlined to the view.
/// (2) if any of the string is larger than 12 bytes, we need to compare the full string.
/// (2.1) if the inlined 4 bytes are different, we can return the result immediately.
/// (2.2) o.w., we need to compare the full string.
///
/// # Safety
/// The left/right_idx must within range of each array
#[deprecated(note = "Use `GenericByteViewArray::compare_unchecked` instead")]
pub unsafe fn compare_byte_view_unchecked<T: ByteViewType>(
left: &GenericByteViewArray<T>,
left_idx: usize,
right: &GenericByteViewArray<T>,
right_idx: usize,
) -> std::cmp::Ordering {
let l_view = left.views().get_unchecked(left_idx);
let l_len = *l_view as u32;
let r_view = right.views().get_unchecked(right_idx);
let r_len = *r_view as u32;
if l_len <= 12 && r_len <= 12 {
let l_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, l_len as usize) };
let r_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, r_len as usize) };
return l_data.cmp(r_data);
}
// one of the string is larger than 12 bytes,
// we then try to compare the inlined data first
let l_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(l_view, 4) };
let r_inlined_data = unsafe { GenericByteViewArray::<T>::inline_value(r_view, 4) };
if r_inlined_data != l_inlined_data {
return l_inlined_data.cmp(r_inlined_data);
}
// unfortunately, we need to compare the full data
let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
l_full_data.cmp(r_full_data)
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow_array::{DictionaryArray, Int32Array, Scalar, StringArray};
use super::*;
#[test]
fn test_null_dict() {
let a = DictionaryArray::new(Int32Array::new_null(10), Arc::new(Int32Array::new_null(0)));
let r = eq(&a, &a).unwrap();
assert_eq!(r.null_count(), 10);
let a = DictionaryArray::new(
Int32Array::from(vec![1, 2, 3, 4, 5, 6]),
Arc::new(Int32Array::new_null(10)),
);
let r = eq(&a, &a).unwrap();
assert_eq!(r.null_count(), 6);
let scalar =
DictionaryArray::new(Int32Array::new_null(1), Arc::new(Int32Array::new_null(0)));
let r = eq(&a, &Scalar::new(&scalar)).unwrap();
assert_eq!(r.null_count(), 6);
let scalar =
DictionaryArray::new(Int32Array::new_null(1), Arc::new(Int32Array::new_null(0)));
let r = eq(&Scalar::new(&scalar), &Scalar::new(&scalar)).unwrap();
assert_eq!(r.null_count(), 1);
let a = DictionaryArray::new(
Int32Array::from(vec![0, 1, 2]),
Arc::new(Int32Array::from(vec![3, 2, 1])),
);
let r = eq(&a, &Scalar::new(&scalar)).unwrap();
assert_eq!(r.null_count(), 3);
}
#[test]
fn is_distinct_from_non_nulls() {
let left_int_array = Int32Array::from(vec![0, 1, 2, 3, 4]);
let right_int_array = Int32Array::from(vec![4, 3, 2, 1, 0]);
assert_eq!(
BooleanArray::from(vec![true, true, false, true, true,]),
distinct(&left_int_array, &right_int_array).unwrap()
);
assert_eq!(
BooleanArray::from(vec![false, false, true, false, false,]),
not_distinct(&left_int_array, &right_int_array).unwrap()
);
}
#[test]
fn is_distinct_from_nulls() {
// [0, 0, NULL, 0, 0, 0]
let left_int_array = Int32Array::new(
vec![0, 0, 1, 3, 0, 0].into(),
Some(NullBuffer::from(vec![true, true, false, true, true, true])),
);
// [0, NULL, NULL, NULL, 0, NULL]
let right_int_array = Int32Array::new(
vec![0; 6].into(),
Some(NullBuffer::from(vec![
true, false, false, false, true, false,
])),
);
assert_eq!(
BooleanArray::from(vec![false, true, false, true, false, true,]),
distinct(&left_int_array, &right_int_array).unwrap()
);
assert_eq!(
BooleanArray::from(vec![true, false, true, false, true, false,]),
not_distinct(&left_int_array, &right_int_array).unwrap()
);
}
#[test]
fn test_distinct_scalar() {
let a = Int32Array::new_scalar(12);
let b = Int32Array::new_scalar(12);
assert!(!distinct(&a, &b).unwrap().value(0));
assert!(not_distinct(&a, &b).unwrap().value(0));
let a = Int32Array::new_scalar(12);
let b = Int32Array::new_null(1);
assert!(distinct(&a, &b).unwrap().value(0));
assert!(!not_distinct(&a, &b).unwrap().value(0));
assert!(distinct(&b, &a).unwrap().value(0));
assert!(!not_distinct(&b, &a).unwrap().value(0));
let b = Scalar::new(b);
assert!(distinct(&a, &b).unwrap().value(0));
assert!(!not_distinct(&a, &b).unwrap().value(0));
assert!(!distinct(&b, &b).unwrap().value(0));
assert!(not_distinct(&b, &b).unwrap().value(0));
let a = Int32Array::new(
vec![0, 1, 2, 3].into(),
Some(vec![false, false, true, true].into()),
);
let expected = BooleanArray::from(vec![false, false, true, true]);
assert_eq!(distinct(&a, &b).unwrap(), expected);
assert_eq!(distinct(&b, &a).unwrap(), expected);
let expected = BooleanArray::from(vec![true, true, false, false]);
assert_eq!(not_distinct(&a, &b).unwrap(), expected);
assert_eq!(not_distinct(&b, &a).unwrap(), expected);
let b = Int32Array::new_scalar(1);
let expected = BooleanArray::from(vec![true; 4]);
assert_eq!(distinct(&a, &b).unwrap(), expected);
assert_eq!(distinct(&b, &a).unwrap(), expected);
let expected = BooleanArray::from(vec![false; 4]);
assert_eq!(not_distinct(&a, &b).unwrap(), expected);
assert_eq!(not_distinct(&b, &a).unwrap(), expected);
let b = Int32Array::new_scalar(3);
let expected = BooleanArray::from(vec![true, true, true, false]);
assert_eq!(distinct(&a, &b).unwrap(), expected);
assert_eq!(distinct(&b, &a).unwrap(), expected);
let expected = BooleanArray::from(vec![false, false, false, true]);
assert_eq!(not_distinct(&a, &b).unwrap(), expected);
assert_eq!(not_distinct(&b, &a).unwrap(), expected);
}
#[test]
fn test_scalar_negation() {
let a = Int32Array::new_scalar(54);
let b = Int32Array::new_scalar(54);
let r = eq(&a, &b).unwrap();
assert!(r.value(0));
let r = neq(&a, &b).unwrap();
assert!(!r.value(0))
}
#[test]
fn test_scalar_empty() {
let a = Int32Array::new_null(0);
let b = Int32Array::new_scalar(23);
let r = eq(&a, &b).unwrap();
assert_eq!(r.len(), 0);
let r = eq(&b, &a).unwrap();
assert_eq!(r.len(), 0);
}
#[test]
fn test_dictionary_nulls() {
let values = StringArray::from(vec![Some("us-west"), Some("us-east")]);
let nulls = NullBuffer::from(vec![false, true, true]);
let key_values = vec![100i32, 1i32, 0i32].into();
let keys = Int32Array::new(key_values, Some(nulls));
let col = DictionaryArray::try_new(keys, Arc::new(values)).unwrap();
neq(&col.slice(0, col.len() - 1), &col.slice(1, col.len() - 1)).unwrap();
}
}