1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::error::ArrowError;
use std::cmp::Ordering;
use std::collections::HashMap;
use std::hash::{Hash, Hasher};
use std::sync::Arc;

use crate::datatype::DataType;
use crate::schema::SchemaBuilder;
use crate::{Fields, UnionFields, UnionMode};

/// A reference counted [`Field`]
pub type FieldRef = Arc<Field>;

/// Describes a single column in a [`Schema`](super::Schema).
///
/// A [`Schema`](super::Schema) is an ordered collection of
/// [`Field`] objects.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Field {
    name: String,
    data_type: DataType,
    nullable: bool,
    dict_id: i64,
    dict_is_ordered: bool,
    /// A map of key-value pairs containing additional custom meta data.
    metadata: HashMap<String, String>,
}

// Auto-derive `PartialEq` traits will pull `dict_id` and `dict_is_ordered`
// into comparison. However, these properties are only used in IPC context
// for matching dictionary encoded data. They are not necessary to be same
// to consider schema equality. For example, in C++ `Field` implementation,
// it doesn't contain these dictionary properties too.
impl PartialEq for Field {
    fn eq(&self, other: &Self) -> bool {
        self.name == other.name
            && self.data_type == other.data_type
            && self.nullable == other.nullable
            && self.metadata == other.metadata
    }
}

impl Eq for Field {}

impl PartialOrd for Field {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Field {
    fn cmp(&self, other: &Self) -> Ordering {
        self.name
            .cmp(other.name())
            .then_with(|| self.data_type.cmp(other.data_type()))
            .then_with(|| self.nullable.cmp(&other.nullable))
            .then_with(|| {
                // ensure deterministic key order
                let mut keys: Vec<&String> =
                    self.metadata.keys().chain(other.metadata.keys()).collect();
                keys.sort();
                for k in keys {
                    match (self.metadata.get(k), other.metadata.get(k)) {
                        (None, None) => {}
                        (Some(_), None) => {
                            return Ordering::Less;
                        }
                        (None, Some(_)) => {
                            return Ordering::Greater;
                        }
                        (Some(v1), Some(v2)) => match v1.cmp(v2) {
                            Ordering::Equal => {}
                            other => {
                                return other;
                            }
                        },
                    }
                }

                Ordering::Equal
            })
    }
}

impl Hash for Field {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.name.hash(state);
        self.data_type.hash(state);
        self.nullable.hash(state);

        // ensure deterministic key order
        let mut keys: Vec<&String> = self.metadata.keys().collect();
        keys.sort();
        for k in keys {
            k.hash(state);
            self.metadata.get(k).expect("key valid").hash(state);
        }
    }
}

impl Field {
    /// Creates a new field
    pub fn new(name: impl Into<String>, data_type: DataType, nullable: bool) -> Self {
        Field {
            name: name.into(),
            data_type,
            nullable,
            dict_id: 0,
            dict_is_ordered: false,
            metadata: HashMap::default(),
        }
    }

    /// Creates a new field that has additional dictionary information
    pub fn new_dict(
        name: impl Into<String>,
        data_type: DataType,
        nullable: bool,
        dict_id: i64,
        dict_is_ordered: bool,
    ) -> Self {
        Field {
            name: name.into(),
            data_type,
            nullable,
            dict_id,
            dict_is_ordered,
            metadata: HashMap::default(),
        }
    }

    /// Create a new [`Field`] with [`DataType::Dictionary`]
    ///
    /// Use [`Self::new_dict`] for more advanced dictionary options
    ///
    /// # Panics
    ///
    /// Panics if [`!key.is_dictionary_key_type`][DataType::is_dictionary_key_type]
    pub fn new_dictionary(
        name: impl Into<String>,
        key: DataType,
        value: DataType,
        nullable: bool,
    ) -> Self {
        assert!(
            key.is_dictionary_key_type(),
            "{key} is not a valid dictionary key"
        );
        let data_type = DataType::Dictionary(Box::new(key), Box::new(value));
        Self::new(name, data_type, nullable)
    }

    /// Create a new [`Field`] with [`DataType::Struct`]
    ///
    /// - `name`: the name of the [`DataType::Struct`] field
    /// - `fields`: the description of each struct element
    /// - `nullable`: if the [`DataType::Struct`] array is nullable
    pub fn new_struct(
        name: impl Into<String>,
        fields: impl Into<Fields>,
        nullable: bool,
    ) -> Self {
        Self::new(name, DataType::Struct(fields.into()), nullable)
    }

    /// Create a new [`Field`] with [`DataType::List`]
    ///
    /// - `name`: the name of the [`DataType::List`] field
    /// - `value`: the description of each list element
    /// - `nullable`: if the [`DataType::List`] array is nullable
    pub fn new_list(
        name: impl Into<String>,
        value: impl Into<FieldRef>,
        nullable: bool,
    ) -> Self {
        Self::new(name, DataType::List(value.into()), nullable)
    }

    /// Create a new [`Field`] with [`DataType::LargeList`]
    ///
    /// - `name`: the name of the [`DataType::LargeList`] field
    /// - `value`: the description of each list element
    /// - `nullable`: if the [`DataType::LargeList`] array is nullable
    pub fn new_large_list(
        name: impl Into<String>,
        value: impl Into<FieldRef>,
        nullable: bool,
    ) -> Self {
        Self::new(name, DataType::LargeList(value.into()), nullable)
    }

    /// Create a new [`Field`] with [`DataType::Map`]
    ///
    /// - `name`: the name of the [`DataType::Map`] field
    /// - `entries`: the name of the inner [`DataType::Struct`] field
    /// - `keys`: the map keys
    /// - `values`: the map values
    /// - `sorted`: if the [`DataType::Map`] array is sorted
    /// - `nullable`: if the [`DataType::Map`] array is nullable
    pub fn new_map(
        name: impl Into<String>,
        entries: impl Into<String>,
        keys: impl Into<FieldRef>,
        values: impl Into<FieldRef>,
        sorted: bool,
        nullable: bool,
    ) -> Self {
        let data_type = DataType::Map(
            Arc::new(Field::new(
                entries.into(),
                DataType::Struct(Fields::from([keys.into(), values.into()])),
                false, // The inner map field is always non-nullable (#1697),
            )),
            sorted,
        );
        Self::new(name, data_type, nullable)
    }

    /// Create a new [`Field`] with [`DataType::Union`]
    ///
    /// - `name`: the name of the [`DataType::Union`] field
    /// - `type_ids`: the union type ids
    /// - `fields`: the union fields
    /// - `mode`: the union mode
    pub fn new_union<S, F, T>(name: S, type_ids: T, fields: F, mode: UnionMode) -> Self
    where
        S: Into<String>,
        F: IntoIterator,
        F::Item: Into<FieldRef>,
        T: IntoIterator<Item = i8>,
    {
        Self::new(
            name,
            DataType::Union(UnionFields::new(type_ids, fields), mode),
            false, // Unions cannot be nullable
        )
    }

    /// Sets the `Field`'s optional custom metadata.
    #[inline]
    pub fn set_metadata(&mut self, metadata: HashMap<String, String>) {
        self.metadata = metadata;
    }

    /// Sets the metadata of this `Field` to be `metadata` and returns self
    pub fn with_metadata(mut self, metadata: HashMap<String, String>) -> Self {
        self.set_metadata(metadata);
        self
    }

    /// Returns the immutable reference to the `Field`'s optional custom metadata.
    #[inline]
    pub const fn metadata(&self) -> &HashMap<String, String> {
        &self.metadata
    }

    /// Returns an immutable reference to the `Field`'s name.
    #[inline]
    pub const fn name(&self) -> &String {
        &self.name
    }

    /// Set the name of the [`Field`] and returns self.
    ///
    /// ```
    /// # use arrow_schema::*;
    /// let field = Field::new("c1", DataType::Int64, false)
    ///    .with_name("c2");
    ///
    /// assert_eq!(field.name(), "c2");
    /// ```
    pub fn with_name(mut self, name: impl Into<String>) -> Self {
        self.name = name.into();
        self
    }

    /// Returns an immutable reference to the [`Field`]'s  [`DataType`].
    #[inline]
    pub const fn data_type(&self) -> &DataType {
        &self.data_type
    }

    /// Set [`DataType`] of the [`Field`] and returns self.
    ///
    /// ```
    /// # use arrow_schema::*;
    /// let field = Field::new("c1", DataType::Int64, false)
    ///    .with_data_type(DataType::Utf8);
    ///
    /// assert_eq!(field.data_type(), &DataType::Utf8);
    /// ```
    pub fn with_data_type(mut self, data_type: DataType) -> Self {
        self.data_type = data_type;
        self
    }

    /// Indicates whether this [`Field`] supports null values.
    #[inline]
    pub const fn is_nullable(&self) -> bool {
        self.nullable
    }

    /// Set `nullable` of the [`Field`] and returns self.
    ///
    /// ```
    /// # use arrow_schema::*;
    /// let field = Field::new("c1", DataType::Int64, false)
    ///    .with_nullable(true);
    ///
    /// assert_eq!(field.is_nullable(), true);
    /// ```
    pub fn with_nullable(mut self, nullable: bool) -> Self {
        self.nullable = nullable;
        self
    }

    /// Returns a (flattened) [`Vec`] containing all child [`Field`]s
    /// within `self` contained within this field (including `self`)
    pub(crate) fn fields(&self) -> Vec<&Field> {
        let mut collected_fields = vec![self];
        collected_fields.append(&mut Field::_fields(&self.data_type));

        collected_fields
    }

    fn _fields(dt: &DataType) -> Vec<&Field> {
        match dt {
            DataType::Struct(fields) => fields.iter().flat_map(|f| f.fields()).collect(),
            DataType::Union(fields, _) => {
                fields.iter().flat_map(|(_, f)| f.fields()).collect()
            }
            DataType::List(field)
            | DataType::LargeList(field)
            | DataType::FixedSizeList(field, _)
            | DataType::Map(field, _) => field.fields(),
            DataType::Dictionary(_, value_field) => Field::_fields(value_field.as_ref()),
            _ => vec![],
        }
    }

    /// Returns a vector containing all (potentially nested) `Field` instances selected by the
    /// dictionary ID they use
    #[inline]
    pub(crate) fn fields_with_dict_id(&self, id: i64) -> Vec<&Field> {
        self.fields()
            .into_iter()
            .filter(|&field| {
                matches!(field.data_type(), DataType::Dictionary(_, _))
                    && field.dict_id == id
            })
            .collect()
    }

    /// Returns the dictionary ID, if this is a dictionary type.
    #[inline]
    pub const fn dict_id(&self) -> Option<i64> {
        match self.data_type {
            DataType::Dictionary(_, _) => Some(self.dict_id),
            _ => None,
        }
    }

    /// Returns whether this `Field`'s dictionary is ordered, if this is a dictionary type.
    #[inline]
    pub const fn dict_is_ordered(&self) -> Option<bool> {
        match self.data_type {
            DataType::Dictionary(_, _) => Some(self.dict_is_ordered),
            _ => None,
        }
    }

    /// Merge this field into self if it is compatible.
    ///
    /// Struct fields are merged recursively.
    ///
    /// NOTE: `self` may be updated to a partial / unexpected state in case of merge failure.
    ///
    /// Example:
    ///
    /// ```
    /// # use arrow_schema::*;
    /// let mut field = Field::new("c1", DataType::Int64, false);
    /// assert!(field.try_merge(&Field::new("c1", DataType::Int64, true)).is_ok());
    /// assert!(field.is_nullable());
    /// ```
    pub fn try_merge(&mut self, from: &Field) -> Result<(), ArrowError> {
        if from.dict_id != self.dict_id {
            return Err(ArrowError::SchemaError(format!(
                "Fail to merge schema field '{}' because from dict_id = {} does not match {}",
                self.name, from.dict_id, self.dict_id
            )));
        }
        if from.dict_is_ordered != self.dict_is_ordered {
            return Err(ArrowError::SchemaError(format!(
                "Fail to merge schema field '{}' because from dict_is_ordered = {} does not match {}",
                self.name, from.dict_is_ordered, self.dict_is_ordered
            )));
        }
        // merge metadata
        match (self.metadata().is_empty(), from.metadata().is_empty()) {
            (false, false) => {
                let mut merged = self.metadata().clone();
                for (key, from_value) in from.metadata() {
                    if let Some(self_value) = self.metadata.get(key) {
                        if self_value != from_value {
                            return Err(ArrowError::SchemaError(format!(
                                "Fail to merge field '{}' due to conflicting metadata data value for key {}.
                                    From value = {} does not match {}", self.name, key, from_value, self_value),
                            ));
                        }
                    } else {
                        merged.insert(key.clone(), from_value.clone());
                    }
                }
                self.set_metadata(merged);
            }
            (true, false) => {
                self.set_metadata(from.metadata().clone());
            }
            _ => {}
        }
        match &mut self.data_type {
            DataType::Struct(nested_fields) => match &from.data_type {
                DataType::Struct(from_nested_fields) => {
                    let mut builder = SchemaBuilder::new();
                    nested_fields.iter().chain(from_nested_fields).try_for_each(|f| builder.try_merge(f))?;
                    *nested_fields = builder.finish().fields;
                }
                _ => {
                    return Err(ArrowError::SchemaError(
                        format!("Fail to merge schema field '{}' because the from data_type = {} is not DataType::Struct",
                            self.name, from.data_type)
                ))}
            },
            DataType::Union(nested_fields, _) => match &from.data_type {
                DataType::Union(from_nested_fields, _) => {
                    nested_fields.try_merge(from_nested_fields)?
                }
                _ => {
                    return Err(ArrowError::SchemaError(
                        format!("Fail to merge schema field '{}' because the from data_type = {} is not DataType::Union",
                            self.name, from.data_type)
                    ));
                }
            },
            DataType::Null
            | DataType::Boolean
            | DataType::Int8
            | DataType::Int16
            | DataType::Int32
            | DataType::Int64
            | DataType::UInt8
            | DataType::UInt16
            | DataType::UInt32
            | DataType::UInt64
            | DataType::Float16
            | DataType::Float32
            | DataType::Float64
            | DataType::Timestamp(_, _)
            | DataType::Date32
            | DataType::Date64
            | DataType::Time32(_)
            | DataType::Time64(_)
            | DataType::Duration(_)
            | DataType::Binary
            | DataType::LargeBinary
            | DataType::Interval(_)
            | DataType::LargeList(_)
            | DataType::List(_)
            | DataType::Map(_, _)
            | DataType::Dictionary(_, _)
            | DataType::RunEndEncoded(_, _)
            | DataType::FixedSizeList(_, _)
            | DataType::FixedSizeBinary(_)
            | DataType::Utf8
            | DataType::LargeUtf8
            | DataType::Decimal128(_, _)
            | DataType::Decimal256(_, _) => {
                if self.data_type != from.data_type {
                    return Err(ArrowError::SchemaError(
                        format!("Fail to merge schema field '{}' because the from data_type = {} does not equal {}",
                            self.name, from.data_type, self.data_type)
                    ));
                }
            }
        }
        self.nullable |= from.nullable;

        Ok(())
    }

    /// Check to see if `self` is a superset of `other` field. Superset is defined as:
    ///
    /// * if nullability doesn't match, self needs to be nullable
    /// * self.metadata is a superset of other.metadata
    /// * all other fields are equal
    pub fn contains(&self, other: &Field) -> bool {
        self.name == other.name
        && self.data_type.contains(&other.data_type)
        && self.dict_id == other.dict_id
        && self.dict_is_ordered == other.dict_is_ordered
        // self need to be nullable or both of them are not nullable
        && (self.nullable || !other.nullable)
        // make sure self.metadata is a superset of other.metadata
        && other.metadata.iter().all(|(k, v1)| {
            self.metadata.get(k).map(|v2| v1 == v2).unwrap_or_default()
        })
    }

    /// Return size of this instance in bytes.
    ///
    /// Includes the size of `Self`.
    pub fn size(&self) -> usize {
        std::mem::size_of_val(self) - std::mem::size_of_val(&self.data_type)
            + self.data_type.size()
            + self.name.capacity()
            + (std::mem::size_of::<(String, String)>() * self.metadata.capacity())
            + self
                .metadata
                .iter()
                .map(|(k, v)| k.capacity() + v.capacity())
                .sum::<usize>()
    }
}

// TODO: improve display with crate https://crates.io/crates/derive_more ?
impl std::fmt::Display for Field {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{self:?}")
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::Fields;
    use std::collections::hash_map::DefaultHasher;
    use std::hash::{Hash, Hasher};
    use std::sync::Arc;

    #[test]
    fn test_new_with_string() {
        // Fields should allow owned Strings to support reuse
        let s = String::from("c1");
        Field::new(s, DataType::Int64, false);
    }

    #[test]
    fn test_new_dict_with_string() {
        // Fields should allow owned Strings to support reuse
        let s = String::from("c1");
        Field::new_dict(s, DataType::Int64, false, 4, false);
    }

    #[test]
    fn test_merge_incompatible_types() {
        let mut field = Field::new("c1", DataType::Int64, false);
        let result = field
            .try_merge(&Field::new("c1", DataType::Float32, true))
            .expect_err("should fail")
            .to_string();
        assert_eq!("Schema error: Fail to merge schema field 'c1' because the from data_type = Float32 does not equal Int64", result);
    }

    #[test]
    fn test_fields_with_dict_id() {
        let dict1 = Field::new_dict(
            "dict1",
            DataType::Dictionary(DataType::Utf8.into(), DataType::Int32.into()),
            false,
            10,
            false,
        );
        let dict2 = Field::new_dict(
            "dict2",
            DataType::Dictionary(DataType::Int32.into(), DataType::Int8.into()),
            false,
            20,
            false,
        );

        let field = Field::new(
            "struct<dict1, list[struct<dict2, list[struct<dict1]>]>",
            DataType::Struct(Fields::from(vec![
                dict1.clone(),
                Field::new(
                    "list[struct<dict1, list[struct<dict2>]>]",
                    DataType::List(Arc::new(Field::new(
                        "struct<dict1, list[struct<dict2>]>",
                        DataType::Struct(Fields::from(vec![
                            dict1.clone(),
                            Field::new(
                                "list[struct<dict2>]",
                                DataType::List(Arc::new(Field::new(
                                    "struct<dict2>",
                                    DataType::Struct(vec![dict2.clone()].into()),
                                    false,
                                ))),
                                false,
                            ),
                        ])),
                        false,
                    ))),
                    false,
                ),
            ])),
            false,
        );

        for field in field.fields_with_dict_id(10) {
            assert_eq!(dict1, *field);
        }
        for field in field.fields_with_dict_id(20) {
            assert_eq!(dict2, *field);
        }
    }

    fn get_field_hash(field: &Field) -> u64 {
        let mut s = DefaultHasher::new();
        field.hash(&mut s);
        s.finish()
    }

    #[test]
    fn test_field_comparison_case() {
        // dictionary-encoding properties not used for field comparison
        let dict1 = Field::new_dict(
            "dict1",
            DataType::Dictionary(DataType::Utf8.into(), DataType::Int32.into()),
            false,
            10,
            false,
        );
        let dict2 = Field::new_dict(
            "dict1",
            DataType::Dictionary(DataType::Utf8.into(), DataType::Int32.into()),
            false,
            20,
            false,
        );

        assert_eq!(dict1, dict2);
        assert_eq!(get_field_hash(&dict1), get_field_hash(&dict2));

        let dict1 = Field::new_dict(
            "dict0",
            DataType::Dictionary(DataType::Utf8.into(), DataType::Int32.into()),
            false,
            10,
            false,
        );

        assert_ne!(dict1, dict2);
        assert_ne!(get_field_hash(&dict1), get_field_hash(&dict2));
    }

    #[test]
    fn test_field_comparison_metadata() {
        let f1 = Field::new("x", DataType::Binary, false).with_metadata(HashMap::from([
            (String::from("k1"), String::from("v1")),
            (String::from("k2"), String::from("v2")),
        ]));
        let f2 = Field::new("x", DataType::Binary, false).with_metadata(HashMap::from([
            (String::from("k1"), String::from("v1")),
            (String::from("k3"), String::from("v3")),
        ]));
        let f3 = Field::new("x", DataType::Binary, false).with_metadata(HashMap::from([
            (String::from("k1"), String::from("v1")),
            (String::from("k3"), String::from("v4")),
        ]));

        assert!(f1.cmp(&f2).is_lt());
        assert!(f2.cmp(&f3).is_lt());
        assert!(f1.cmp(&f3).is_lt());
    }

    #[test]
    fn test_contains_reflexivity() {
        let mut field = Field::new("field1", DataType::Float16, false);
        field.set_metadata(HashMap::from([
            (String::from("k0"), String::from("v0")),
            (String::from("k1"), String::from("v1")),
        ]));
        assert!(field.contains(&field))
    }

    #[test]
    fn test_contains_transitivity() {
        let child_field = Field::new("child1", DataType::Float16, false);

        let mut field1 = Field::new(
            "field1",
            DataType::Struct(Fields::from(vec![child_field])),
            false,
        );
        field1.set_metadata(HashMap::from([(String::from("k1"), String::from("v1"))]));

        let mut field2 = Field::new("field1", DataType::Struct(Fields::default()), true);
        field2.set_metadata(HashMap::from([(String::from("k2"), String::from("v2"))]));
        field2.try_merge(&field1).unwrap();

        let mut field3 = Field::new("field1", DataType::Struct(Fields::default()), false);
        field3.set_metadata(HashMap::from([(String::from("k3"), String::from("v3"))]));
        field3.try_merge(&field2).unwrap();

        assert!(field2.contains(&field1));
        assert!(field3.contains(&field2));
        assert!(field3.contains(&field1));

        assert!(!field1.contains(&field2));
        assert!(!field1.contains(&field3));
        assert!(!field2.contains(&field3));
    }

    #[test]
    fn test_contains_nullable() {
        let field1 = Field::new("field1", DataType::Boolean, true);
        let field2 = Field::new("field1", DataType::Boolean, false);
        assert!(field1.contains(&field2));
        assert!(!field2.contains(&field1));
    }

    #[test]
    fn test_contains_must_have_same_fields() {
        let child_field1 = Field::new("child1", DataType::Float16, false);
        let child_field2 = Field::new("child2", DataType::Float16, false);

        let field1 = Field::new(
            "field1",
            DataType::Struct(vec![child_field1.clone()].into()),
            true,
        );
        let field2 = Field::new(
            "field1",
            DataType::Struct(vec![child_field1, child_field2].into()),
            true,
        );

        assert!(!field1.contains(&field2));
        assert!(!field2.contains(&field1));

        // UnionFields with different type ID
        let field1 = Field::new(
            "field1",
            DataType::Union(
                UnionFields::new(
                    vec![1, 2],
                    vec![
                        Field::new("field1", DataType::UInt8, true),
                        Field::new("field3", DataType::Utf8, false),
                    ],
                ),
                UnionMode::Dense,
            ),
            true,
        );
        let field2 = Field::new(
            "field1",
            DataType::Union(
                UnionFields::new(
                    vec![1, 3],
                    vec![
                        Field::new("field1", DataType::UInt8, false),
                        Field::new("field3", DataType::Utf8, false),
                    ],
                ),
                UnionMode::Dense,
            ),
            true,
        );
        assert!(!field1.contains(&field2));

        // UnionFields with same type ID
        let field1 = Field::new(
            "field1",
            DataType::Union(
                UnionFields::new(
                    vec![1, 2],
                    vec![
                        Field::new("field1", DataType::UInt8, true),
                        Field::new("field3", DataType::Utf8, false),
                    ],
                ),
                UnionMode::Dense,
            ),
            true,
        );
        let field2 = Field::new(
            "field1",
            DataType::Union(
                UnionFields::new(
                    vec![1, 2],
                    vec![
                        Field::new("field1", DataType::UInt8, false),
                        Field::new("field3", DataType::Utf8, false),
                    ],
                ),
                UnionMode::Dense,
            ),
            true,
        );
        assert!(field1.contains(&field2));
    }

    #[cfg(feature = "serde")]
    fn assert_binary_serde_round_trip(field: Field) {
        let serialized = bincode::serialize(&field).unwrap();
        let deserialized: Field = bincode::deserialize(&serialized).unwrap();
        assert_eq!(field, deserialized)
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_field_without_metadata_serde() {
        let field = Field::new("name", DataType::Boolean, true);
        assert_binary_serde_round_trip(field)
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_field_with_empty_metadata_serde() {
        let field =
            Field::new("name", DataType::Boolean, false).with_metadata(HashMap::new());

        assert_binary_serde_round_trip(field)
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_field_with_nonempty_metadata_serde() {
        let mut metadata = HashMap::new();
        metadata.insert("hi".to_owned(), "".to_owned());
        let field = Field::new("name", DataType::Boolean, false).with_metadata(metadata);

        assert_binary_serde_round_trip(field)
    }
}