arrow_schema/
ffi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Contains declarations to bind to the [C Data Interface](https://arrow.apache.org/docs/format/CDataInterface.html).
//!
//! ```
//! # use arrow_schema::{DataType, Field, Schema};
//! # use arrow_schema::ffi::FFI_ArrowSchema;
//!
//! // Create from data type
//! let ffi_data_type = FFI_ArrowSchema::try_from(&DataType::LargeUtf8).unwrap();
//! let back = DataType::try_from(&ffi_data_type).unwrap();
//! assert_eq!(back, DataType::LargeUtf8);
//!
//! // Create from schema
//! let schema = Schema::new(vec![Field::new("foo", DataType::Int64, false)]);
//! let ffi_schema = FFI_ArrowSchema::try_from(&schema).unwrap();
//! let back = Schema::try_from(&ffi_schema).unwrap();
//!
//! assert_eq!(schema, back);
//! ```

use crate::{
    ArrowError, DataType, Field, FieldRef, IntervalUnit, Schema, TimeUnit, UnionFields, UnionMode,
};
use bitflags::bitflags;
use std::sync::Arc;
use std::{
    collections::HashMap,
    ffi::{c_char, c_void, CStr, CString},
};

bitflags! {
    /// Flags for [`FFI_ArrowSchema`]
    ///
    /// Old Workaround at <https://github.com/bitflags/bitflags/issues/356>
    /// is no longer required as `bitflags` [fixed the issue](https://github.com/bitflags/bitflags/pull/355).
    pub struct Flags: i64 {
        /// Indicates that the dictionary is ordered
        const DICTIONARY_ORDERED = 0b00000001;
        /// Indicates that the field is nullable
        const NULLABLE = 0b00000010;
        /// Indicates that the map keys are sorted
        const MAP_KEYS_SORTED = 0b00000100;
    }
}

/// ABI-compatible struct for `ArrowSchema` from C Data Interface
/// See <https://arrow.apache.org/docs/format/CDataInterface.html#structure-definitions>
///
/// ```
/// # use arrow_schema::DataType;
/// # use arrow_schema::ffi::FFI_ArrowSchema;
/// fn array_schema(data_type: &DataType) -> FFI_ArrowSchema {
///     FFI_ArrowSchema::try_from(data_type).unwrap()
/// }
/// ```
///
#[repr(C)]
#[derive(Debug)]
#[allow(non_camel_case_types)]
pub struct FFI_ArrowSchema {
    format: *const c_char,
    name: *const c_char,
    metadata: *const c_char,
    /// Refer to [Arrow Flags](https://arrow.apache.org/docs/format/CDataInterface.html#c.ArrowSchema.flags)
    flags: i64,
    n_children: i64,
    children: *mut *mut FFI_ArrowSchema,
    dictionary: *mut FFI_ArrowSchema,
    release: Option<unsafe extern "C" fn(arg1: *mut FFI_ArrowSchema)>,
    private_data: *mut c_void,
}

struct SchemaPrivateData {
    children: Box<[*mut FFI_ArrowSchema]>,
    dictionary: *mut FFI_ArrowSchema,
    metadata: Option<Vec<u8>>,
}

// callback used to drop [FFI_ArrowSchema] when it is exported.
unsafe extern "C" fn release_schema(schema: *mut FFI_ArrowSchema) {
    if schema.is_null() {
        return;
    }
    let schema = &mut *schema;

    // take ownership back to release it.
    drop(CString::from_raw(schema.format as *mut c_char));
    if !schema.name.is_null() {
        drop(CString::from_raw(schema.name as *mut c_char));
    }
    if !schema.private_data.is_null() {
        let private_data = Box::from_raw(schema.private_data as *mut SchemaPrivateData);
        for child in private_data.children.iter() {
            drop(Box::from_raw(*child))
        }
        if !private_data.dictionary.is_null() {
            drop(Box::from_raw(private_data.dictionary));
        }

        drop(private_data);
    }

    schema.release = None;
}

impl FFI_ArrowSchema {
    /// create a new [`FFI_ArrowSchema`]. This fails if the fields'
    /// [`DataType`] is not supported.
    pub fn try_new(
        format: &str,
        children: Vec<FFI_ArrowSchema>,
        dictionary: Option<FFI_ArrowSchema>,
    ) -> Result<Self, ArrowError> {
        let mut this = Self::empty();

        let children_ptr = children
            .into_iter()
            .map(Box::new)
            .map(Box::into_raw)
            .collect::<Box<_>>();

        this.format = CString::new(format).unwrap().into_raw();
        this.release = Some(release_schema);
        this.n_children = children_ptr.len() as i64;

        let dictionary_ptr = dictionary
            .map(|d| Box::into_raw(Box::new(d)))
            .unwrap_or(std::ptr::null_mut());

        let mut private_data = Box::new(SchemaPrivateData {
            children: children_ptr,
            dictionary: dictionary_ptr,
            metadata: None,
        });

        // intentionally set from private_data (see https://github.com/apache/arrow-rs/issues/580)
        this.children = private_data.children.as_mut_ptr();

        this.dictionary = dictionary_ptr;

        this.private_data = Box::into_raw(private_data) as *mut c_void;

        Ok(this)
    }

    /// Set the name of the schema
    pub fn with_name(mut self, name: &str) -> Result<Self, ArrowError> {
        self.name = CString::new(name).unwrap().into_raw();
        Ok(self)
    }

    /// Set the flags of the schema
    pub fn with_flags(mut self, flags: Flags) -> Result<Self, ArrowError> {
        self.flags = flags.bits();
        Ok(self)
    }

    /// Add metadata to the schema
    pub fn with_metadata<I, S>(mut self, metadata: I) -> Result<Self, ArrowError>
    where
        I: IntoIterator<Item = (S, S)>,
        S: AsRef<str>,
    {
        let metadata: Vec<(S, S)> = metadata.into_iter().collect();
        // https://arrow.apache.org/docs/format/CDataInterface.html#c.ArrowSchema.metadata
        let new_metadata = if !metadata.is_empty() {
            let mut metadata_serialized: Vec<u8> = Vec::new();
            let num_entries: i32 = metadata.len().try_into().map_err(|_| {
                ArrowError::CDataInterface(format!(
                    "metadata can only have {} entries, but {} were provided",
                    i32::MAX,
                    metadata.len()
                ))
            })?;
            metadata_serialized.extend(num_entries.to_ne_bytes());

            for (key, value) in metadata.into_iter() {
                let key_len: i32 = key.as_ref().len().try_into().map_err(|_| {
                    ArrowError::CDataInterface(format!(
                        "metadata key can only have {} bytes, but {} were provided",
                        i32::MAX,
                        key.as_ref().len()
                    ))
                })?;
                let value_len: i32 = value.as_ref().len().try_into().map_err(|_| {
                    ArrowError::CDataInterface(format!(
                        "metadata value can only have {} bytes, but {} were provided",
                        i32::MAX,
                        value.as_ref().len()
                    ))
                })?;

                metadata_serialized.extend(key_len.to_ne_bytes());
                metadata_serialized.extend_from_slice(key.as_ref().as_bytes());
                metadata_serialized.extend(value_len.to_ne_bytes());
                metadata_serialized.extend_from_slice(value.as_ref().as_bytes());
            }

            self.metadata = metadata_serialized.as_ptr() as *const c_char;
            Some(metadata_serialized)
        } else {
            self.metadata = std::ptr::null_mut();
            None
        };

        unsafe {
            let mut private_data = Box::from_raw(self.private_data as *mut SchemaPrivateData);
            private_data.metadata = new_metadata;
            self.private_data = Box::into_raw(private_data) as *mut c_void;
        }

        Ok(self)
    }

    /// Takes ownership of the pointed to [`FFI_ArrowSchema`]
    ///
    /// This acts to [move] the data out of `schema`, setting the release callback to NULL
    ///
    /// # Safety
    ///
    /// * `schema` must be [valid] for reads and writes
    /// * `schema` must be properly aligned
    /// * `schema` must point to a properly initialized value of [`FFI_ArrowSchema`]
    ///
    /// [move]: https://arrow.apache.org/docs/format/CDataInterface.html#moving-an-array
    /// [valid]: https://doc.rust-lang.org/std/ptr/index.html#safety
    pub unsafe fn from_raw(schema: *mut FFI_ArrowSchema) -> Self {
        std::ptr::replace(schema, Self::empty())
    }

    /// Create an empty [`FFI_ArrowSchema`]
    pub fn empty() -> Self {
        Self {
            format: std::ptr::null_mut(),
            name: std::ptr::null_mut(),
            metadata: std::ptr::null_mut(),
            flags: 0,
            n_children: 0,
            children: std::ptr::null_mut(),
            dictionary: std::ptr::null_mut(),
            release: None,
            private_data: std::ptr::null_mut(),
        }
    }

    /// Returns the format of this schema.
    pub fn format(&self) -> &str {
        assert!(!self.format.is_null());
        // safe because the lifetime of `self.format` equals `self`
        unsafe { CStr::from_ptr(self.format) }
            .to_str()
            .expect("The external API has a non-utf8 as format")
    }

    /// Returns the name of this schema.
    pub fn name(&self) -> Option<&str> {
        if self.name.is_null() {
            None
        } else {
            // safe because the lifetime of `self.name` equals `self`
            Some(
                unsafe { CStr::from_ptr(self.name) }
                    .to_str()
                    .expect("The external API has a non-utf8 as name"),
            )
        }
    }

    /// Returns the flags of this schema.
    pub fn flags(&self) -> Option<Flags> {
        Flags::from_bits(self.flags)
    }

    /// Returns the child of this schema at `index`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater than or equal to the number of children.
    ///
    /// This is to make sure that the unsafe acces to raw pointer is sound.
    pub fn child(&self, index: usize) -> &Self {
        assert!(index < self.n_children as usize);
        unsafe { self.children.add(index).as_ref().unwrap().as_ref().unwrap() }
    }

    /// Returns an iterator to the schema's children.
    pub fn children(&self) -> impl Iterator<Item = &Self> {
        (0..self.n_children as usize).map(move |i| self.child(i))
    }

    /// Returns if the field is semantically nullable,
    /// regardless of whether it actually has null values.
    pub fn nullable(&self) -> bool {
        (self.flags / 2) & 1 == 1
    }

    /// Returns the reference to the underlying dictionary of the schema.
    /// Check [ArrowSchema.dictionary](https://arrow.apache.org/docs/format/CDataInterface.html#c.ArrowSchema.dictionary).
    ///
    /// This must be `Some` if the schema represents a dictionary-encoded type, `None` otherwise.
    pub fn dictionary(&self) -> Option<&Self> {
        unsafe { self.dictionary.as_ref() }
    }

    /// For map types, returns whether the keys within each map value are sorted.
    ///
    /// Refer to [Arrow Flags](https://arrow.apache.org/docs/format/CDataInterface.html#c.ArrowSchema.flags)
    pub fn map_keys_sorted(&self) -> bool {
        self.flags & 0b00000100 != 0
    }

    /// For dictionary-encoded types, returns whether the ordering of dictionary indices is semantically meaningful.
    pub fn dictionary_ordered(&self) -> bool {
        self.flags & 0b00000001 != 0
    }

    /// Returns the metadata in the schema as `Key-Value` pairs
    pub fn metadata(&self) -> Result<HashMap<String, String>, ArrowError> {
        if self.metadata.is_null() {
            Ok(HashMap::new())
        } else {
            let mut pos = 0;

            // On some platforms, c_char = u8, and on some, c_char = i8. Where c_char = u8, clippy
            // wants to complain that we're casting to the same type, but if we remove the cast,
            // this will fail to compile on the other platforms. So we must allow it.
            #[allow(clippy::unnecessary_cast)]
            let buffer: *const u8 = self.metadata as *const u8;

            fn next_four_bytes(buffer: *const u8, pos: &mut isize) -> [u8; 4] {
                let out = unsafe {
                    [
                        *buffer.offset(*pos),
                        *buffer.offset(*pos + 1),
                        *buffer.offset(*pos + 2),
                        *buffer.offset(*pos + 3),
                    ]
                };
                *pos += 4;
                out
            }

            fn next_n_bytes(buffer: *const u8, pos: &mut isize, n: i32) -> &[u8] {
                let out = unsafe {
                    std::slice::from_raw_parts(buffer.offset(*pos), n.try_into().unwrap())
                };
                *pos += isize::try_from(n).unwrap();
                out
            }

            let num_entries = i32::from_ne_bytes(next_four_bytes(buffer, &mut pos));
            if num_entries < 0 {
                return Err(ArrowError::CDataInterface(
                    "Negative number of metadata entries".to_string(),
                ));
            }

            let mut metadata =
                HashMap::with_capacity(num_entries.try_into().expect("Too many metadata entries"));

            for _ in 0..num_entries {
                let key_length = i32::from_ne_bytes(next_four_bytes(buffer, &mut pos));
                if key_length < 0 {
                    return Err(ArrowError::CDataInterface(
                        "Negative key length in metadata".to_string(),
                    ));
                }
                let key = String::from_utf8(next_n_bytes(buffer, &mut pos, key_length).to_vec())?;
                let value_length = i32::from_ne_bytes(next_four_bytes(buffer, &mut pos));
                if value_length < 0 {
                    return Err(ArrowError::CDataInterface(
                        "Negative value length in metadata".to_string(),
                    ));
                }
                let value =
                    String::from_utf8(next_n_bytes(buffer, &mut pos, value_length).to_vec())?;
                metadata.insert(key, value);
            }

            Ok(metadata)
        }
    }
}

impl Drop for FFI_ArrowSchema {
    fn drop(&mut self) {
        match self.release {
            None => (),
            Some(release) => unsafe { release(self) },
        };
    }
}

unsafe impl Send for FFI_ArrowSchema {}

impl TryFrom<&FFI_ArrowSchema> for DataType {
    type Error = ArrowError;

    /// See [CDataInterface docs](https://arrow.apache.org/docs/format/CDataInterface.html#data-type-description-format-strings)
    fn try_from(c_schema: &FFI_ArrowSchema) -> Result<Self, ArrowError> {
        let mut dtype = match c_schema.format() {
            "n" => DataType::Null,
            "b" => DataType::Boolean,
            "c" => DataType::Int8,
            "C" => DataType::UInt8,
            "s" => DataType::Int16,
            "S" => DataType::UInt16,
            "i" => DataType::Int32,
            "I" => DataType::UInt32,
            "l" => DataType::Int64,
            "L" => DataType::UInt64,
            "e" => DataType::Float16,
            "f" => DataType::Float32,
            "g" => DataType::Float64,
            "vz" => DataType::BinaryView,
            "z" => DataType::Binary,
            "Z" => DataType::LargeBinary,
            "vu" => DataType::Utf8View,
            "u" => DataType::Utf8,
            "U" => DataType::LargeUtf8,
            "tdD" => DataType::Date32,
            "tdm" => DataType::Date64,
            "tts" => DataType::Time32(TimeUnit::Second),
            "ttm" => DataType::Time32(TimeUnit::Millisecond),
            "ttu" => DataType::Time64(TimeUnit::Microsecond),
            "ttn" => DataType::Time64(TimeUnit::Nanosecond),
            "tDs" => DataType::Duration(TimeUnit::Second),
            "tDm" => DataType::Duration(TimeUnit::Millisecond),
            "tDu" => DataType::Duration(TimeUnit::Microsecond),
            "tDn" => DataType::Duration(TimeUnit::Nanosecond),
            "tiM" => DataType::Interval(IntervalUnit::YearMonth),
            "tiD" => DataType::Interval(IntervalUnit::DayTime),
            "tin" => DataType::Interval(IntervalUnit::MonthDayNano),
            "+l" => {
                let c_child = c_schema.child(0);
                DataType::List(Arc::new(Field::try_from(c_child)?))
            }
            "+L" => {
                let c_child = c_schema.child(0);
                DataType::LargeList(Arc::new(Field::try_from(c_child)?))
            }
            "+s" => {
                let fields = c_schema.children().map(Field::try_from);
                DataType::Struct(fields.collect::<Result<_, ArrowError>>()?)
            }
            "+m" => {
                let c_child = c_schema.child(0);
                let map_keys_sorted = c_schema.map_keys_sorted();
                DataType::Map(Arc::new(Field::try_from(c_child)?), map_keys_sorted)
            }
            "+r" => {
                let c_run_ends = c_schema.child(0);
                let c_values = c_schema.child(1);
                DataType::RunEndEncoded(
                    Arc::new(Field::try_from(c_run_ends)?),
                    Arc::new(Field::try_from(c_values)?),
                )
            }
            // Parametrized types, requiring string parse
            other => {
                match other.splitn(2, ':').collect::<Vec<&str>>().as_slice() {
                    // FixedSizeBinary type in format "w:num_bytes"
                    ["w", num_bytes] => {
                        let parsed_num_bytes = num_bytes.parse::<i32>().map_err(|_| {
                            ArrowError::CDataInterface(
                                "FixedSizeBinary requires an integer parameter representing number of bytes per element".to_string())
                        })?;
                        DataType::FixedSizeBinary(parsed_num_bytes)
                    },
                    // FixedSizeList type in format "+w:num_elems"
                    ["+w", num_elems] => {
                        let c_child = c_schema.child(0);
                        let parsed_num_elems = num_elems.parse::<i32>().map_err(|_| {
                            ArrowError::CDataInterface(
                                "The FixedSizeList type requires an integer parameter representing number of elements per list".to_string())
                        })?;
                        DataType::FixedSizeList(Arc::new(Field::try_from(c_child)?), parsed_num_elems)
                    },
                    // Decimal types in format "d:precision,scale" or "d:precision,scale,bitWidth"
                    ["d", extra] => {
                        match extra.splitn(3, ',').collect::<Vec<&str>>().as_slice() {
                            [precision, scale] => {
                                let parsed_precision = precision.parse::<u8>().map_err(|_| {
                                    ArrowError::CDataInterface(
                                        "The decimal type requires an integer precision".to_string(),
                                    )
                                })?;
                                let parsed_scale = scale.parse::<i8>().map_err(|_| {
                                    ArrowError::CDataInterface(
                                        "The decimal type requires an integer scale".to_string(),
                                    )
                                })?;
                                DataType::Decimal128(parsed_precision, parsed_scale)
                            },
                            [precision, scale, bits] => {
                                if *bits != "128" && *bits != "256" {
                                    return Err(ArrowError::CDataInterface("Only 128/256 bit wide decimal is supported in the Rust implementation".to_string()));
                                }
                                let parsed_precision = precision.parse::<u8>().map_err(|_| {
                                    ArrowError::CDataInterface(
                                        "The decimal type requires an integer precision".to_string(),
                                    )
                                })?;
                                let parsed_scale = scale.parse::<i8>().map_err(|_| {
                                    ArrowError::CDataInterface(
                                        "The decimal type requires an integer scale".to_string(),
                                    )
                                })?;
                                if *bits == "128" {
                                    DataType::Decimal128(parsed_precision, parsed_scale)
                                } else {
                                    DataType::Decimal256(parsed_precision, parsed_scale)
                                }
                            }
                            _ => {
                                return Err(ArrowError::CDataInterface(format!(
                                    "The decimal pattern \"d:{extra:?}\" is not supported in the Rust implementation"
                                )))
                            }
                        }
                    }
                    // DenseUnion
                    ["+ud", extra] => {
                        let type_ids = extra.split(',').map(|t| t.parse::<i8>().map_err(|_| {
                            ArrowError::CDataInterface(
                                "The Union type requires an integer type id".to_string(),
                            )
                        })).collect::<Result<Vec<_>, ArrowError>>()?;
                        let mut fields = Vec::with_capacity(type_ids.len());
                        for idx in 0..c_schema.n_children {
                            let c_child = c_schema.child(idx as usize);
                            let field = Field::try_from(c_child)?;
                            fields.push(field);
                        }

                        if fields.len() != type_ids.len() {
                            return Err(ArrowError::CDataInterface(
                                "The Union type requires same number of fields and type ids".to_string(),
                            ));
                        }

                        DataType::Union(UnionFields::new(type_ids, fields), UnionMode::Dense)
                    }
                    // SparseUnion
                    ["+us", extra] => {
                        let type_ids = extra.split(',').map(|t| t.parse::<i8>().map_err(|_| {
                            ArrowError::CDataInterface(
                                "The Union type requires an integer type id".to_string(),
                            )
                        })).collect::<Result<Vec<_>, ArrowError>>()?;
                        let mut fields = Vec::with_capacity(type_ids.len());
                        for idx in 0..c_schema.n_children {
                            let c_child = c_schema.child(idx as usize);
                            let field = Field::try_from(c_child)?;
                            fields.push(field);
                        }

                        if fields.len() != type_ids.len() {
                            return Err(ArrowError::CDataInterface(
                                "The Union type requires same number of fields and type ids".to_string(),
                            ));
                        }

                        DataType::Union(UnionFields::new(type_ids, fields), UnionMode::Sparse)
                    }

                    // Timestamps in format "tts:" and "tts:America/New_York" for no timezones and timezones resp.
                    ["tss", ""] => DataType::Timestamp(TimeUnit::Second, None),
                    ["tsm", ""] => DataType::Timestamp(TimeUnit::Millisecond, None),
                    ["tsu", ""] => DataType::Timestamp(TimeUnit::Microsecond, None),
                    ["tsn", ""] => DataType::Timestamp(TimeUnit::Nanosecond, None),
                    ["tss", tz] => {
                        DataType::Timestamp(TimeUnit::Second, Some(Arc::from(*tz)))
                    }
                    ["tsm", tz] => {
                        DataType::Timestamp(TimeUnit::Millisecond, Some(Arc::from(*tz)))
                    }
                    ["tsu", tz] => {
                        DataType::Timestamp(TimeUnit::Microsecond, Some(Arc::from(*tz)))
                    }
                    ["tsn", tz] => {
                        DataType::Timestamp(TimeUnit::Nanosecond, Some(Arc::from(*tz)))
                    }
                    _ => {
                        return Err(ArrowError::CDataInterface(format!(
                            "The datatype \"{other:?}\" is still not supported in Rust implementation"
                        )))
                    }
                }
            }
        };

        if let Some(dict_schema) = c_schema.dictionary() {
            let value_type = Self::try_from(dict_schema)?;
            dtype = DataType::Dictionary(Box::new(dtype), Box::new(value_type));
        }

        Ok(dtype)
    }
}

impl TryFrom<&FFI_ArrowSchema> for Field {
    type Error = ArrowError;

    fn try_from(c_schema: &FFI_ArrowSchema) -> Result<Self, ArrowError> {
        let dtype = DataType::try_from(c_schema)?;
        let mut field = Field::new(c_schema.name().unwrap_or(""), dtype, c_schema.nullable());
        field.set_metadata(c_schema.metadata()?);
        Ok(field)
    }
}

impl TryFrom<&FFI_ArrowSchema> for Schema {
    type Error = ArrowError;

    fn try_from(c_schema: &FFI_ArrowSchema) -> Result<Self, ArrowError> {
        // interpret it as a struct type then extract its fields
        let dtype = DataType::try_from(c_schema)?;
        if let DataType::Struct(fields) = dtype {
            Ok(Schema::new(fields).with_metadata(c_schema.metadata()?))
        } else {
            Err(ArrowError::CDataInterface(
                "Unable to interpret C data struct as a Schema".to_string(),
            ))
        }
    }
}

impl TryFrom<&DataType> for FFI_ArrowSchema {
    type Error = ArrowError;

    /// See [CDataInterface docs](https://arrow.apache.org/docs/format/CDataInterface.html#data-type-description-format-strings)
    fn try_from(dtype: &DataType) -> Result<Self, ArrowError> {
        let format = get_format_string(dtype)?;
        // allocate and hold the children
        let children = match dtype {
            DataType::List(child)
            | DataType::LargeList(child)
            | DataType::FixedSizeList(child, _)
            | DataType::Map(child, _) => {
                vec![FFI_ArrowSchema::try_from(child.as_ref())?]
            }
            DataType::Union(fields, _) => fields
                .iter()
                .map(|(_, f)| f.as_ref().try_into())
                .collect::<Result<Vec<_>, ArrowError>>()?,
            DataType::Struct(fields) => fields
                .iter()
                .map(FFI_ArrowSchema::try_from)
                .collect::<Result<Vec<_>, ArrowError>>()?,
            DataType::RunEndEncoded(run_ends, values) => vec![
                FFI_ArrowSchema::try_from(run_ends.as_ref())?,
                FFI_ArrowSchema::try_from(values.as_ref())?,
            ],
            _ => vec![],
        };
        let dictionary = if let DataType::Dictionary(_, value_data_type) = dtype {
            Some(Self::try_from(value_data_type.as_ref())?)
        } else {
            None
        };

        let flags = match dtype {
            DataType::Map(_, true) => Flags::MAP_KEYS_SORTED,
            _ => Flags::empty(),
        };

        FFI_ArrowSchema::try_new(&format, children, dictionary)?.with_flags(flags)
    }
}

fn get_format_string(dtype: &DataType) -> Result<String, ArrowError> {
    match dtype {
        DataType::Null => Ok("n".to_string()),
        DataType::Boolean => Ok("b".to_string()),
        DataType::Int8 => Ok("c".to_string()),
        DataType::UInt8 => Ok("C".to_string()),
        DataType::Int16 => Ok("s".to_string()),
        DataType::UInt16 => Ok("S".to_string()),
        DataType::Int32 => Ok("i".to_string()),
        DataType::UInt32 => Ok("I".to_string()),
        DataType::Int64 => Ok("l".to_string()),
        DataType::UInt64 => Ok("L".to_string()),
        DataType::Float16 => Ok("e".to_string()),
        DataType::Float32 => Ok("f".to_string()),
        DataType::Float64 => Ok("g".to_string()),
        DataType::BinaryView => Ok("vz".to_string()),
        DataType::Binary => Ok("z".to_string()),
        DataType::LargeBinary => Ok("Z".to_string()),
        DataType::Utf8View => Ok("vu".to_string()),
        DataType::Utf8 => Ok("u".to_string()),
        DataType::LargeUtf8 => Ok("U".to_string()),
        DataType::FixedSizeBinary(num_bytes) => Ok(format!("w:{num_bytes}")),
        DataType::FixedSizeList(_, num_elems) => Ok(format!("+w:{num_elems}")),
        DataType::Decimal128(precision, scale) => Ok(format!("d:{precision},{scale}")),
        DataType::Decimal256(precision, scale) => Ok(format!("d:{precision},{scale},256")),
        DataType::Date32 => Ok("tdD".to_string()),
        DataType::Date64 => Ok("tdm".to_string()),
        DataType::Time32(TimeUnit::Second) => Ok("tts".to_string()),
        DataType::Time32(TimeUnit::Millisecond) => Ok("ttm".to_string()),
        DataType::Time64(TimeUnit::Microsecond) => Ok("ttu".to_string()),
        DataType::Time64(TimeUnit::Nanosecond) => Ok("ttn".to_string()),
        DataType::Timestamp(TimeUnit::Second, None) => Ok("tss:".to_string()),
        DataType::Timestamp(TimeUnit::Millisecond, None) => Ok("tsm:".to_string()),
        DataType::Timestamp(TimeUnit::Microsecond, None) => Ok("tsu:".to_string()),
        DataType::Timestamp(TimeUnit::Nanosecond, None) => Ok("tsn:".to_string()),
        DataType::Timestamp(TimeUnit::Second, Some(tz)) => Ok(format!("tss:{tz}")),
        DataType::Timestamp(TimeUnit::Millisecond, Some(tz)) => Ok(format!("tsm:{tz}")),
        DataType::Timestamp(TimeUnit::Microsecond, Some(tz)) => Ok(format!("tsu:{tz}")),
        DataType::Timestamp(TimeUnit::Nanosecond, Some(tz)) => Ok(format!("tsn:{tz}")),
        DataType::Duration(TimeUnit::Second) => Ok("tDs".to_string()),
        DataType::Duration(TimeUnit::Millisecond) => Ok("tDm".to_string()),
        DataType::Duration(TimeUnit::Microsecond) => Ok("tDu".to_string()),
        DataType::Duration(TimeUnit::Nanosecond) => Ok("tDn".to_string()),
        DataType::Interval(IntervalUnit::YearMonth) => Ok("tiM".to_string()),
        DataType::Interval(IntervalUnit::DayTime) => Ok("tiD".to_string()),
        DataType::Interval(IntervalUnit::MonthDayNano) => Ok("tin".to_string()),
        DataType::List(_) => Ok("+l".to_string()),
        DataType::LargeList(_) => Ok("+L".to_string()),
        DataType::Struct(_) => Ok("+s".to_string()),
        DataType::Map(_, _) => Ok("+m".to_string()),
        DataType::RunEndEncoded(_, _) => Ok("+r".to_string()),
        DataType::Dictionary(key_data_type, _) => get_format_string(key_data_type),
        DataType::Union(fields, mode) => {
            let formats = fields
                .iter()
                .map(|(t, _)| t.to_string())
                .collect::<Vec<_>>();
            match mode {
                UnionMode::Dense => Ok(format!("{}:{}", "+ud", formats.join(","))),
                UnionMode::Sparse => Ok(format!("{}:{}", "+us", formats.join(","))),
            }
        }
        other => Err(ArrowError::CDataInterface(format!(
            "The datatype \"{other:?}\" is still not supported in Rust implementation"
        ))),
    }
}

impl TryFrom<&FieldRef> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(value: &FieldRef) -> Result<Self, Self::Error> {
        value.as_ref().try_into()
    }
}

impl TryFrom<&Field> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(field: &Field) -> Result<Self, ArrowError> {
        let mut flags = if field.is_nullable() {
            Flags::NULLABLE
        } else {
            Flags::empty()
        };

        if let Some(true) = field.dict_is_ordered() {
            flags |= Flags::DICTIONARY_ORDERED;
        }

        FFI_ArrowSchema::try_from(field.data_type())?
            .with_name(field.name())?
            .with_flags(flags)?
            .with_metadata(field.metadata())
    }
}

impl TryFrom<&Schema> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(schema: &Schema) -> Result<Self, ArrowError> {
        let dtype = DataType::Struct(schema.fields().clone());
        let c_schema = FFI_ArrowSchema::try_from(&dtype)?.with_metadata(&schema.metadata)?;
        Ok(c_schema)
    }
}

impl TryFrom<DataType> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(dtype: DataType) -> Result<Self, ArrowError> {
        FFI_ArrowSchema::try_from(&dtype)
    }
}

impl TryFrom<Field> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(field: Field) -> Result<Self, ArrowError> {
        FFI_ArrowSchema::try_from(&field)
    }
}

impl TryFrom<Schema> for FFI_ArrowSchema {
    type Error = ArrowError;

    fn try_from(schema: Schema) -> Result<Self, ArrowError> {
        FFI_ArrowSchema::try_from(&schema)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Fields;

    fn round_trip_type(dtype: DataType) {
        let c_schema = FFI_ArrowSchema::try_from(&dtype).unwrap();
        let restored = DataType::try_from(&c_schema).unwrap();
        assert_eq!(restored, dtype);
    }

    fn round_trip_field(field: Field) {
        let c_schema = FFI_ArrowSchema::try_from(&field).unwrap();
        let restored = Field::try_from(&c_schema).unwrap();
        assert_eq!(restored, field);
    }

    fn round_trip_schema(schema: Schema) {
        let c_schema = FFI_ArrowSchema::try_from(&schema).unwrap();
        let restored = Schema::try_from(&c_schema).unwrap();
        assert_eq!(restored, schema);
    }

    #[test]
    fn test_type() {
        round_trip_type(DataType::Int64);
        round_trip_type(DataType::UInt64);
        round_trip_type(DataType::Float64);
        round_trip_type(DataType::Date64);
        round_trip_type(DataType::Time64(TimeUnit::Nanosecond));
        round_trip_type(DataType::FixedSizeBinary(12));
        round_trip_type(DataType::FixedSizeList(
            Arc::new(Field::new("a", DataType::Int64, false)),
            5,
        ));
        round_trip_type(DataType::Utf8);
        round_trip_type(DataType::Utf8View);
        round_trip_type(DataType::BinaryView);
        round_trip_type(DataType::Binary);
        round_trip_type(DataType::LargeBinary);
        round_trip_type(DataType::List(Arc::new(Field::new(
            "a",
            DataType::Int16,
            false,
        ))));
        round_trip_type(DataType::Struct(Fields::from(vec![Field::new(
            "a",
            DataType::Utf8,
            true,
        )])));
        round_trip_type(DataType::RunEndEncoded(
            Arc::new(Field::new("run_ends", DataType::Int32, false)),
            Arc::new(Field::new("values", DataType::Binary, true)),
        ));
    }

    #[test]
    fn test_field() {
        let dtype = DataType::Struct(vec![Field::new("a", DataType::Utf8, true)].into());
        round_trip_field(Field::new("test", dtype, true));
    }

    #[test]
    fn test_schema() {
        let schema = Schema::new(vec![
            Field::new("name", DataType::Utf8, false),
            Field::new("address", DataType::Utf8, false),
            Field::new("priority", DataType::UInt8, false),
        ])
        .with_metadata([("hello".to_string(), "world".to_string())].into());

        round_trip_schema(schema);

        // test that we can interpret struct types as schema
        let dtype = DataType::Struct(Fields::from(vec![
            Field::new("a", DataType::Utf8, true),
            Field::new("b", DataType::Int16, false),
        ]));
        let c_schema = FFI_ArrowSchema::try_from(&dtype).unwrap();
        let schema = Schema::try_from(&c_schema).unwrap();
        assert_eq!(schema.fields().len(), 2);

        // test that we assert the input type
        let c_schema = FFI_ArrowSchema::try_from(&DataType::Float64).unwrap();
        let result = Schema::try_from(&c_schema);
        assert!(result.is_err());
    }

    #[test]
    fn test_map_keys_sorted() {
        let keys = Field::new("keys", DataType::Int32, false);
        let values = Field::new("values", DataType::UInt32, false);
        let entry_struct = DataType::Struct(vec![keys, values].into());

        // Construct a map array from the above two
        let map_data_type =
            DataType::Map(Arc::new(Field::new("entries", entry_struct, false)), true);

        let arrow_schema = FFI_ArrowSchema::try_from(map_data_type).unwrap();
        assert!(arrow_schema.map_keys_sorted());
    }

    #[test]
    fn test_dictionary_ordered() {
        let schema = Schema::new(vec![Field::new_dict(
            "dict",
            DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8)),
            false,
            0,
            true,
        )]);

        let arrow_schema = FFI_ArrowSchema::try_from(schema).unwrap();
        assert!(arrow_schema.child(0).dictionary_ordered());
    }

    #[test]
    fn test_set_field_metadata() {
        let metadata_cases: Vec<HashMap<String, String>> = vec![
            [].into(),
            [("key".to_string(), "value".to_string())].into(),
            [
                ("key".to_string(), "".to_string()),
                ("ascii123".to_string(), "你好".to_string()),
                ("".to_string(), "value".to_string()),
            ]
            .into(),
        ];

        let mut schema = FFI_ArrowSchema::try_new("b", vec![], None)
            .unwrap()
            .with_name("test")
            .unwrap();

        for metadata in metadata_cases {
            schema = schema.with_metadata(&metadata).unwrap();
            let field = Field::try_from(&schema).unwrap();
            assert_eq!(field.metadata(), &metadata);
        }
    }

    #[test]
    fn test_import_field_with_null_name() {
        let dtype = DataType::Int16;
        let c_schema = FFI_ArrowSchema::try_from(&dtype).unwrap();
        assert!(c_schema.name().is_none());
        let field = Field::try_from(&c_schema).unwrap();
        assert_eq!(field.name(), "");
    }
}