arrow_schema/
datatype.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use std::fmt;
19use std::str::FromStr;
20use std::sync::Arc;
21
22use crate::{ArrowError, Field, FieldRef, Fields, UnionFields};
23
24/// Datatypes supported by this implementation of Apache Arrow.
25///
26/// The variants of this enum include primitive fixed size types as well as
27/// parametric or nested types. See [`Schema.fbs`] for Arrow's specification.
28///
29/// # Examples
30///
31/// Primitive types
32/// ```
33/// # use arrow_schema::DataType;
34/// // create a new 32-bit signed integer
35/// let data_type = DataType::Int32;
36/// ```
37///
38/// Nested Types
39/// ```
40/// # use arrow_schema::{DataType, Field};
41/// # use std::sync::Arc;
42/// // create a new list of 32-bit signed integers directly
43/// let list_data_type = DataType::List(Arc::new(Field::new("item", DataType::Int32, true)));
44/// // Create the same list type with constructor
45/// let list_data_type2 = DataType::new_list(DataType::Int32, true);
46/// assert_eq!(list_data_type, list_data_type2);
47/// ```
48///
49/// Dictionary Types
50/// ```
51/// # use arrow_schema::{DataType};
52/// // String Dictionary (key type Int32 and value type Utf8)
53/// let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8));
54/// ```
55///
56/// Timestamp Types
57/// ```
58/// # use arrow_schema::{DataType, TimeUnit};
59/// // timestamp with millisecond precision without timezone specified
60/// let data_type = DataType::Timestamp(TimeUnit::Millisecond, None);
61/// // timestamp with nanosecond precision in UTC timezone
62/// let data_type = DataType::Timestamp(TimeUnit::Nanosecond, Some("UTC".into()));
63///```
64///
65/// # Display and FromStr
66///
67/// The `Display` and `FromStr` implementations for `DataType` are
68/// human-readable, parseable, and reversible.
69///
70/// ```
71/// # use arrow_schema::DataType;
72/// let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8));
73/// let data_type_string = data_type.to_string();
74/// assert_eq!(data_type_string, "Dictionary(Int32, Utf8)");
75/// // display can be parsed back into the original type
76/// let parsed_data_type: DataType = data_type.to_string().parse().unwrap();
77/// assert_eq!(data_type, parsed_data_type);
78/// ```
79///
80/// # Nested Support
81/// Currently, the Rust implementation supports the following nested types:
82///  - `List<T>`
83///  - `LargeList<T>`
84///  - `FixedSizeList<T>`
85///  - `Struct<T, U, V, ...>`
86///  - `Union<T, U, V, ...>`
87///  - `Map<K, V>`
88///
89/// Nested types can themselves be nested within other arrays.
90/// For more information on these types please see
91/// [the physical memory layout of Apache Arrow]
92///
93/// [`Schema.fbs`]: https://github.com/apache/arrow/blob/main/format/Schema.fbs
94/// [the physical memory layout of Apache Arrow]: https://arrow.apache.org/docs/format/Columnar.html#physical-memory-layout
95#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
96#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
97pub enum DataType {
98    /// Null type
99    Null,
100    /// A boolean datatype representing the values `true` and `false`.
101    Boolean,
102    /// A signed 8-bit integer.
103    Int8,
104    /// A signed 16-bit integer.
105    Int16,
106    /// A signed 32-bit integer.
107    Int32,
108    /// A signed 64-bit integer.
109    Int64,
110    /// An unsigned 8-bit integer.
111    UInt8,
112    /// An unsigned 16-bit integer.
113    UInt16,
114    /// An unsigned 32-bit integer.
115    UInt32,
116    /// An unsigned 64-bit integer.
117    UInt64,
118    /// A 16-bit floating point number.
119    Float16,
120    /// A 32-bit floating point number.
121    Float32,
122    /// A 64-bit floating point number.
123    Float64,
124    /// A timestamp with an optional timezone.
125    ///
126    /// Time is measured as a Unix epoch, counting the seconds from
127    /// 00:00:00.000 on 1 January 1970, excluding leap seconds,
128    /// as a signed 64-bit integer.
129    ///
130    /// The time zone is a string indicating the name of a time zone, one of:
131    ///
132    /// * As used in the Olson time zone database (the "tz database" or
133    ///   "tzdata"), such as "America/New_York"
134    /// * An absolute time zone offset of the form +XX:XX or -XX:XX, such as +07:30
135    ///
136    /// Timestamps with a non-empty timezone
137    /// ------------------------------------
138    ///
139    /// If a Timestamp column has a non-empty timezone value, its epoch is
140    /// 1970-01-01 00:00:00 (January 1st 1970, midnight) in the *UTC* timezone
141    /// (the Unix epoch), regardless of the Timestamp's own timezone.
142    ///
143    /// Therefore, timestamp values with a non-empty timezone correspond to
144    /// physical points in time together with some additional information about
145    /// how the data was obtained and/or how to display it (the timezone).
146    ///
147    ///   For example, the timestamp value 0 with the timezone string "Europe/Paris"
148    ///   corresponds to "January 1st 1970, 00h00" in the UTC timezone, but the
149    ///   application may prefer to display it as "January 1st 1970, 01h00" in
150    ///   the Europe/Paris timezone (which is the same physical point in time).
151    ///
152    /// One consequence is that timestamp values with a non-empty timezone
153    /// can be compared and ordered directly, since they all share the same
154    /// well-known point of reference (the Unix epoch).
155    ///
156    /// Timestamps with an unset / empty timezone
157    /// -----------------------------------------
158    ///
159    /// If a Timestamp column has no timezone value, its epoch is
160    /// 1970-01-01 00:00:00 (January 1st 1970, midnight) in an *unknown* timezone.
161    ///
162    /// Therefore, timestamp values without a timezone cannot be meaningfully
163    /// interpreted as physical points in time, but only as calendar / clock
164    /// indications ("wall clock time") in an unspecified timezone.
165    ///
166    ///   For example, the timestamp value 0 with an empty timezone string
167    ///   corresponds to "January 1st 1970, 00h00" in an unknown timezone: there
168    ///   is not enough information to interpret it as a well-defined physical
169    ///   point in time.
170    ///
171    /// One consequence is that timestamp values without a timezone cannot
172    /// be reliably compared or ordered, since they may have different points of
173    /// reference.  In particular, it is *not* possible to interpret an unset
174    /// or empty timezone as the same as "UTC".
175    ///
176    /// Conversion between timezones
177    /// ----------------------------
178    ///
179    /// If a Timestamp column has a non-empty timezone, changing the timezone
180    /// to a different non-empty value is a metadata-only operation:
181    /// the timestamp values need not change as their point of reference remains
182    /// the same (the Unix epoch).
183    ///
184    /// However, if a Timestamp column has no timezone value, changing it to a
185    /// non-empty value requires to think about the desired semantics.
186    /// One possibility is to assume that the original timestamp values are
187    /// relative to the epoch of the timezone being set; timestamp values should
188    /// then adjusted to the Unix epoch (for example, changing the timezone from
189    /// empty to "Europe/Paris" would require converting the timestamp values
190    /// from "Europe/Paris" to "UTC", which seems counter-intuitive but is
191    /// nevertheless correct).
192    ///
193    /// ```
194    /// # use arrow_schema::{DataType, TimeUnit};
195    /// DataType::Timestamp(TimeUnit::Second, None);
196    /// DataType::Timestamp(TimeUnit::Second, Some("literal".into()));
197    /// DataType::Timestamp(TimeUnit::Second, Some("string".to_string().into()));
198    /// ```
199    Timestamp(TimeUnit, Option<Arc<str>>),
200    /// A signed 32-bit date representing the elapsed time since UNIX epoch (1970-01-01)
201    /// in days.
202    Date32,
203    /// A signed 64-bit date representing the elapsed time since UNIX epoch (1970-01-01)
204    /// in milliseconds.
205    ///
206    /// # Valid Ranges
207    ///
208    /// According to the Arrow specification ([Schema.fbs]), values of Date64
209    /// are treated as the number of *days*, in milliseconds, since the UNIX
210    /// epoch. Therefore, values of this type  must be evenly divisible by
211    /// `86_400_000`, the number of milliseconds in a standard day.
212    ///
213    /// It is not valid to store milliseconds that do not represent an exact
214    /// day. The reason for this restriction is compatibility with other
215    /// language's native libraries (specifically Java), which historically
216    /// lacked a dedicated date type and only supported timestamps.
217    ///
218    /// # Validation
219    ///
220    /// This library does not validate or enforce that Date64 values are evenly
221    /// divisible by `86_400_000`  for performance and usability reasons. Date64
222    /// values are treated similarly to `Timestamp(TimeUnit::Millisecond,
223    /// None)`: values will be displayed with a time of day if the value does
224    /// not represent an exact day, and arithmetic will be done at the
225    /// millisecond granularity.
226    ///
227    /// # Recommendation
228    ///
229    /// Users should prefer [`DataType::Date32`] to cleanly represent the number
230    /// of days, or one of the Timestamp variants to include time as part of the
231    /// representation, depending on their use case.
232    ///
233    /// # Further Reading
234    ///
235    /// For more details, see [#5288](https://github.com/apache/arrow-rs/issues/5288).
236    ///
237    /// [Schema.fbs]: https://github.com/apache/arrow/blob/main/format/Schema.fbs
238    Date64,
239    /// A signed 32-bit time representing the elapsed time since midnight in the unit of `TimeUnit`.
240    /// Must be either seconds or milliseconds.
241    Time32(TimeUnit),
242    /// A signed 64-bit time representing the elapsed time since midnight in the unit of `TimeUnit`.
243    /// Must be either microseconds or nanoseconds.
244    Time64(TimeUnit),
245    /// Measure of elapsed time in either seconds, milliseconds, microseconds or nanoseconds.
246    Duration(TimeUnit),
247    /// A "calendar" interval which models types that don't necessarily
248    /// have a precise duration without the context of a base timestamp (e.g.
249    /// days can differ in length during day light savings time transitions).
250    Interval(IntervalUnit),
251    /// Opaque binary data of variable length.
252    ///
253    /// A single Binary array can store up to [`i32::MAX`] bytes
254    /// of binary data in total.
255    Binary,
256    /// Opaque binary data of fixed size.
257    /// Enum parameter specifies the number of bytes per value.
258    FixedSizeBinary(i32),
259    /// Opaque binary data of variable length and 64-bit offsets.
260    ///
261    /// A single LargeBinary array can store up to [`i64::MAX`] bytes
262    /// of binary data in total.
263    LargeBinary,
264    /// Opaque binary data of variable length.
265    ///
266    /// Logically the same as [`Self::Binary`], but the internal representation uses a view
267    /// struct that contains the string length and either the string's entire data
268    /// inline (for small strings) or an inlined prefix, an index of another buffer,
269    /// and an offset pointing to a slice in that buffer (for non-small strings).
270    BinaryView,
271    /// A variable-length string in Unicode with UTF-8 encoding.
272    ///
273    /// A single Utf8 array can store up to [`i32::MAX`] bytes
274    /// of string data in total.
275    Utf8,
276    /// A variable-length string in Unicode with UFT-8 encoding and 64-bit offsets.
277    ///
278    /// A single LargeUtf8 array can store up to [`i64::MAX`] bytes
279    /// of string data in total.
280    LargeUtf8,
281    /// A variable-length string in Unicode with UTF-8 encoding
282    ///
283    /// Logically the same as [`Self::Utf8`], but the internal representation uses a view
284    /// struct that contains the string length and either the string's entire data
285    /// inline (for small strings) or an inlined prefix, an index of another buffer,
286    /// and an offset pointing to a slice in that buffer (for non-small strings).
287    Utf8View,
288    /// A list of some logical data type with variable length.
289    ///
290    /// A single List array can store up to [`i32::MAX`] elements in total.
291    List(FieldRef),
292
293    /// (NOT YET FULLY SUPPORTED)  A list of some logical data type with variable length.
294    ///
295    /// Note this data type is not yet fully supported. Using it with arrow APIs may result in `panic`s.
296    ///
297    /// The ListView layout is defined by three buffers:
298    /// a validity bitmap, an offsets buffer, and an additional sizes buffer.
299    /// Sizes and offsets are both 32 bits for this type
300    ListView(FieldRef),
301    /// A list of some logical data type with fixed length.
302    FixedSizeList(FieldRef, i32),
303    /// A list of some logical data type with variable length and 64-bit offsets.
304    ///
305    /// A single LargeList array can store up to [`i64::MAX`] elements in total.
306    LargeList(FieldRef),
307
308    /// (NOT YET FULLY SUPPORTED)  A list of some logical data type with variable length and 64-bit offsets.
309    ///
310    /// Note this data type is not yet fully supported. Using it with arrow APIs may result in `panic`s.
311    ///
312    /// The LargeListView layout is defined by three buffers:
313    /// a validity bitmap, an offsets buffer, and an additional sizes buffer.
314    /// Sizes and offsets are both 64 bits for this type
315    LargeListView(FieldRef),
316    /// A nested datatype that contains a number of sub-fields.
317    Struct(Fields),
318    /// A nested datatype that can represent slots of differing types. Components:
319    ///
320    /// 1. [`UnionFields`]
321    /// 2. The type of union (Sparse or Dense)
322    Union(UnionFields, UnionMode),
323    /// A dictionary encoded array (`key_type`, `value_type`), where
324    /// each array element is an index of `key_type` into an
325    /// associated dictionary of `value_type`.
326    ///
327    /// Dictionary arrays are used to store columns of `value_type`
328    /// that contain many repeated values using less memory, but with
329    /// a higher CPU overhead for some operations.
330    ///
331    /// This type mostly used to represent low cardinality string
332    /// arrays or a limited set of primitive types as integers.
333    Dictionary(Box<DataType>, Box<DataType>),
334    /// Exact 128-bit width decimal value with precision and scale
335    ///
336    /// * precision is the total number of digits
337    /// * scale is the number of digits past the decimal
338    ///
339    /// For example the number 123.45 has precision 5 and scale 2.
340    ///
341    /// In certain situations, scale could be negative number. For
342    /// negative scale, it is the number of padding 0 to the right
343    /// of the digits.
344    ///
345    /// For example the number 12300 could be treated as a decimal
346    /// has precision 3 and scale -2.
347    Decimal128(u8, i8),
348    /// Exact 256-bit width decimal value with precision and scale
349    ///
350    /// * precision is the total number of digits
351    /// * scale is the number of digits past the decimal
352    ///
353    /// For example the number 123.45 has precision 5 and scale 2.
354    ///
355    /// In certain situations, scale could be negative number. For
356    /// negative scale, it is the number of padding 0 to the right
357    /// of the digits.
358    ///
359    /// For example the number 12300 could be treated as a decimal
360    /// has precision 3 and scale -2.
361    Decimal256(u8, i8),
362    /// A Map is a logical nested type that is represented as
363    ///
364    /// `List<entries: Struct<key: K, value: V>>`
365    ///
366    /// The keys and values are each respectively contiguous.
367    /// The key and value types are not constrained, but keys should be
368    /// hashable and unique.
369    /// Whether the keys are sorted can be set in the `bool` after the `Field`.
370    ///
371    /// In a field with Map type, the field has a child Struct field, which then
372    /// has two children: key type and the second the value type. The names of the
373    /// child fields may be respectively "entries", "key", and "value", but this is
374    /// not enforced.
375    Map(FieldRef, bool),
376    /// A run-end encoding (REE) is a variation of run-length encoding (RLE). These
377    /// encodings are well-suited for representing data containing sequences of the
378    /// same value, called runs. Each run is represented as a value and an integer giving
379    /// the index in the array where the run ends.
380    ///
381    /// A run-end encoded array has no buffers by itself, but has two child arrays. The
382    /// first child array, called the run ends array, holds either 16, 32, or 64-bit
383    /// signed integers. The actual values of each run are held in the second child array.
384    ///
385    /// These child arrays are prescribed the standard names of "run_ends" and "values"
386    /// respectively.
387    RunEndEncoded(FieldRef, FieldRef),
388}
389
390/// An absolute length of time in seconds, milliseconds, microseconds or nanoseconds.
391#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
392#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
393pub enum TimeUnit {
394    /// Time in seconds.
395    Second,
396    /// Time in milliseconds.
397    Millisecond,
398    /// Time in microseconds.
399    Microsecond,
400    /// Time in nanoseconds.
401    Nanosecond,
402}
403
404/// YEAR_MONTH, DAY_TIME, MONTH_DAY_NANO interval in SQL style.
405#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
406#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
407pub enum IntervalUnit {
408    /// Indicates the number of elapsed whole months, stored as 4-byte integers.
409    YearMonth,
410    /// Indicates the number of elapsed days and milliseconds,
411    /// stored as 2 contiguous 32-bit integers (days, milliseconds) (8-bytes in total).
412    DayTime,
413    /// A triple of the number of elapsed months, days, and nanoseconds.
414    /// The values are stored contiguously in 16 byte blocks. Months and
415    /// days are encoded as 32 bit integers and nanoseconds is encoded as a
416    /// 64 bit integer. All integers are signed. Each field is independent
417    /// (e.g. there is no constraint that nanoseconds have the same sign
418    /// as days or that the quantity of nanoseconds represents less
419    /// than a day's worth of time).
420    MonthDayNano,
421}
422
423/// Sparse or Dense union layouts
424#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Copy)]
425#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
426pub enum UnionMode {
427    /// Sparse union layout
428    Sparse,
429    /// Dense union layout
430    Dense,
431}
432
433impl fmt::Display for DataType {
434    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
435        write!(f, "{self:?}")
436    }
437}
438
439/// Parses `str` into a `DataType`.
440///
441/// This is the reverse of [`DataType`]'s `Display`
442/// impl, and maintains the invariant that
443/// `DataType::try_from(&data_type.to_string()).unwrap() == data_type`
444///
445/// # Example
446/// ```
447/// use arrow_schema::DataType;
448///
449/// let data_type: DataType = "Int32".parse().unwrap();
450/// assert_eq!(data_type, DataType::Int32);
451/// ```
452impl FromStr for DataType {
453    type Err = ArrowError;
454
455    fn from_str(s: &str) -> Result<Self, Self::Err> {
456        crate::datatype_parse::parse_data_type(s)
457    }
458}
459
460impl TryFrom<&str> for DataType {
461    type Error = ArrowError;
462
463    fn try_from(value: &str) -> Result<Self, Self::Error> {
464        value.parse()
465    }
466}
467
468impl DataType {
469    /// Returns true if the type is primitive: (numeric, temporal).
470    #[inline]
471    pub fn is_primitive(&self) -> bool {
472        self.is_numeric() || self.is_temporal()
473    }
474
475    /// Returns true if this type is numeric: (UInt*, Int*, Float*, Decimal*).
476    #[inline]
477    pub fn is_numeric(&self) -> bool {
478        use DataType::*;
479        matches!(
480            self,
481            UInt8
482                | UInt16
483                | UInt32
484                | UInt64
485                | Int8
486                | Int16
487                | Int32
488                | Int64
489                | Float16
490                | Float32
491                | Float64
492                | Decimal128(_, _)
493                | Decimal256(_, _)
494        )
495    }
496
497    /// Returns true if this type is temporal: (Date*, Time*, Duration, or Interval).
498    #[inline]
499    pub fn is_temporal(&self) -> bool {
500        use DataType::*;
501        matches!(
502            self,
503            Date32 | Date64 | Timestamp(_, _) | Time32(_) | Time64(_) | Duration(_) | Interval(_)
504        )
505    }
506
507    /// Returns true if this type is floating: (Float*).
508    #[inline]
509    pub fn is_floating(&self) -> bool {
510        use DataType::*;
511        matches!(self, Float16 | Float32 | Float64)
512    }
513
514    /// Returns true if this type is integer: (Int*, UInt*).
515    #[inline]
516    pub fn is_integer(&self) -> bool {
517        self.is_signed_integer() || self.is_unsigned_integer()
518    }
519
520    /// Returns true if this type is signed integer: (Int*).
521    #[inline]
522    pub fn is_signed_integer(&self) -> bool {
523        use DataType::*;
524        matches!(self, Int8 | Int16 | Int32 | Int64)
525    }
526
527    /// Returns true if this type is unsigned integer: (UInt*).
528    #[inline]
529    pub fn is_unsigned_integer(&self) -> bool {
530        use DataType::*;
531        matches!(self, UInt8 | UInt16 | UInt32 | UInt64)
532    }
533
534    /// Returns true if this type is valid as a dictionary key
535    #[inline]
536    pub fn is_dictionary_key_type(&self) -> bool {
537        self.is_integer()
538    }
539
540    /// Returns true if this type is valid for run-ends array in RunArray
541    #[inline]
542    pub fn is_run_ends_type(&self) -> bool {
543        use DataType::*;
544        matches!(self, Int16 | Int32 | Int64)
545    }
546
547    /// Returns true if this type is nested (List, FixedSizeList, LargeList, Struct, Union,
548    /// or Map), or a dictionary of a nested type
549    #[inline]
550    pub fn is_nested(&self) -> bool {
551        use DataType::*;
552        match self {
553            Dictionary(_, v) => DataType::is_nested(v.as_ref()),
554            List(_) | FixedSizeList(_, _) | LargeList(_) | Struct(_) | Union(_, _) | Map(_, _) => {
555                true
556            }
557            _ => false,
558        }
559    }
560
561    /// Returns true if this type is DataType::Null.
562    #[inline]
563    pub fn is_null(&self) -> bool {
564        use DataType::*;
565        matches!(self, Null)
566    }
567
568    /// Compares the datatype with another, ignoring nested field names
569    /// and metadata.
570    pub fn equals_datatype(&self, other: &DataType) -> bool {
571        match (&self, other) {
572            (DataType::List(a), DataType::List(b))
573            | (DataType::LargeList(a), DataType::LargeList(b)) => {
574                a.is_nullable() == b.is_nullable() && a.data_type().equals_datatype(b.data_type())
575            }
576            (DataType::FixedSizeList(a, a_size), DataType::FixedSizeList(b, b_size)) => {
577                a_size == b_size
578                    && a.is_nullable() == b.is_nullable()
579                    && a.data_type().equals_datatype(b.data_type())
580            }
581            (DataType::Struct(a), DataType::Struct(b)) => {
582                a.len() == b.len()
583                    && a.iter().zip(b).all(|(a, b)| {
584                        a.is_nullable() == b.is_nullable()
585                            && a.data_type().equals_datatype(b.data_type())
586                    })
587            }
588            (DataType::Map(a_field, a_is_sorted), DataType::Map(b_field, b_is_sorted)) => {
589                a_field.is_nullable() == b_field.is_nullable()
590                    && a_field.data_type().equals_datatype(b_field.data_type())
591                    && a_is_sorted == b_is_sorted
592            }
593            (DataType::Dictionary(a_key, a_value), DataType::Dictionary(b_key, b_value)) => {
594                a_key.equals_datatype(b_key) && a_value.equals_datatype(b_value)
595            }
596            (
597                DataType::RunEndEncoded(a_run_ends, a_values),
598                DataType::RunEndEncoded(b_run_ends, b_values),
599            ) => {
600                a_run_ends.is_nullable() == b_run_ends.is_nullable()
601                    && a_run_ends
602                        .data_type()
603                        .equals_datatype(b_run_ends.data_type())
604                    && a_values.is_nullable() == b_values.is_nullable()
605                    && a_values.data_type().equals_datatype(b_values.data_type())
606            }
607            (
608                DataType::Union(a_union_fields, a_union_mode),
609                DataType::Union(b_union_fields, b_union_mode),
610            ) => {
611                a_union_mode == b_union_mode
612                    && a_union_fields.len() == b_union_fields.len()
613                    && a_union_fields.iter().all(|a| {
614                        b_union_fields.iter().any(|b| {
615                            a.0 == b.0
616                                && a.1.is_nullable() == b.1.is_nullable()
617                                && a.1.data_type().equals_datatype(b.1.data_type())
618                        })
619                    })
620            }
621            _ => self == other,
622        }
623    }
624
625    /// Returns the byte width of this type if it is a primitive type
626    ///
627    /// Returns `None` if not a primitive type
628    #[inline]
629    pub fn primitive_width(&self) -> Option<usize> {
630        match self {
631            DataType::Null => None,
632            DataType::Boolean => None,
633            DataType::Int8 | DataType::UInt8 => Some(1),
634            DataType::Int16 | DataType::UInt16 | DataType::Float16 => Some(2),
635            DataType::Int32 | DataType::UInt32 | DataType::Float32 => Some(4),
636            DataType::Int64 | DataType::UInt64 | DataType::Float64 => Some(8),
637            DataType::Timestamp(_, _) => Some(8),
638            DataType::Date32 | DataType::Time32(_) => Some(4),
639            DataType::Date64 | DataType::Time64(_) => Some(8),
640            DataType::Duration(_) => Some(8),
641            DataType::Interval(IntervalUnit::YearMonth) => Some(4),
642            DataType::Interval(IntervalUnit::DayTime) => Some(8),
643            DataType::Interval(IntervalUnit::MonthDayNano) => Some(16),
644            DataType::Decimal128(_, _) => Some(16),
645            DataType::Decimal256(_, _) => Some(32),
646            DataType::Utf8 | DataType::LargeUtf8 | DataType::Utf8View => None,
647            DataType::Binary | DataType::LargeBinary | DataType::BinaryView => None,
648            DataType::FixedSizeBinary(_) => None,
649            DataType::List(_)
650            | DataType::ListView(_)
651            | DataType::LargeList(_)
652            | DataType::LargeListView(_)
653            | DataType::Map(_, _) => None,
654            DataType::FixedSizeList(_, _) => None,
655            DataType::Struct(_) => None,
656            DataType::Union(_, _) => None,
657            DataType::Dictionary(_, _) => None,
658            DataType::RunEndEncoded(_, _) => None,
659        }
660    }
661
662    /// Return size of this instance in bytes.
663    ///
664    /// Includes the size of `Self`.
665    pub fn size(&self) -> usize {
666        std::mem::size_of_val(self)
667            + match self {
668                DataType::Null
669                | DataType::Boolean
670                | DataType::Int8
671                | DataType::Int16
672                | DataType::Int32
673                | DataType::Int64
674                | DataType::UInt8
675                | DataType::UInt16
676                | DataType::UInt32
677                | DataType::UInt64
678                | DataType::Float16
679                | DataType::Float32
680                | DataType::Float64
681                | DataType::Date32
682                | DataType::Date64
683                | DataType::Time32(_)
684                | DataType::Time64(_)
685                | DataType::Duration(_)
686                | DataType::Interval(_)
687                | DataType::Binary
688                | DataType::FixedSizeBinary(_)
689                | DataType::LargeBinary
690                | DataType::BinaryView
691                | DataType::Utf8
692                | DataType::LargeUtf8
693                | DataType::Utf8View
694                | DataType::Decimal128(_, _)
695                | DataType::Decimal256(_, _) => 0,
696                DataType::Timestamp(_, s) => s.as_ref().map(|s| s.len()).unwrap_or_default(),
697                DataType::List(field)
698                | DataType::ListView(field)
699                | DataType::FixedSizeList(field, _)
700                | DataType::LargeList(field)
701                | DataType::LargeListView(field)
702                | DataType::Map(field, _) => field.size(),
703                DataType::Struct(fields) => fields.size(),
704                DataType::Union(fields, _) => fields.size(),
705                DataType::Dictionary(dt1, dt2) => dt1.size() + dt2.size(),
706                DataType::RunEndEncoded(run_ends, values) => {
707                    run_ends.size() - std::mem::size_of_val(run_ends) + values.size()
708                        - std::mem::size_of_val(values)
709                }
710            }
711    }
712
713    /// Check to see if `self` is a superset of `other`
714    ///
715    /// If DataType is a nested type, then it will check to see if the nested type is a superset of the other nested type
716    /// else it will check to see if the DataType is equal to the other DataType
717    pub fn contains(&self, other: &DataType) -> bool {
718        match (self, other) {
719            (DataType::List(f1), DataType::List(f2))
720            | (DataType::LargeList(f1), DataType::LargeList(f2)) => f1.contains(f2),
721            (DataType::FixedSizeList(f1, s1), DataType::FixedSizeList(f2, s2)) => {
722                s1 == s2 && f1.contains(f2)
723            }
724            (DataType::Map(f1, s1), DataType::Map(f2, s2)) => s1 == s2 && f1.contains(f2),
725            (DataType::Struct(f1), DataType::Struct(f2)) => f1.contains(f2),
726            (DataType::Union(f1, s1), DataType::Union(f2, s2)) => {
727                s1 == s2
728                    && f1
729                        .iter()
730                        .all(|f1| f2.iter().any(|f2| f1.0 == f2.0 && f1.1.contains(f2.1)))
731            }
732            (DataType::Dictionary(k1, v1), DataType::Dictionary(k2, v2)) => {
733                k1.contains(k2) && v1.contains(v2)
734            }
735            _ => self == other,
736        }
737    }
738
739    /// Create a [`DataType::List`] with elements of the specified type
740    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
741    ///
742    /// To specify field level metadata, construct the inner [`Field`]
743    /// directly via [`Field::new`] or [`Field::new_list_field`].
744    pub fn new_list(data_type: DataType, nullable: bool) -> Self {
745        DataType::List(Arc::new(Field::new_list_field(data_type, nullable)))
746    }
747
748    /// Create a [`DataType::LargeList`] with elements of the specified type
749    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
750    ///
751    /// To specify field level metadata, construct the inner [`Field`]
752    /// directly via [`Field::new`] or [`Field::new_list_field`].
753    pub fn new_large_list(data_type: DataType, nullable: bool) -> Self {
754        DataType::LargeList(Arc::new(Field::new_list_field(data_type, nullable)))
755    }
756
757    /// Create a [`DataType::FixedSizeList`] with elements of the specified type, size
758    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
759    ///
760    /// To specify field level metadata, construct the inner [`Field`]
761    /// directly via [`Field::new`] or [`Field::new_list_field`].
762    pub fn new_fixed_size_list(data_type: DataType, size: i32, nullable: bool) -> Self {
763        DataType::FixedSizeList(Arc::new(Field::new_list_field(data_type, nullable)), size)
764    }
765}
766
767/// The maximum precision for [DataType::Decimal128] values
768pub const DECIMAL128_MAX_PRECISION: u8 = 38;
769
770/// The maximum scale for [DataType::Decimal128] values
771pub const DECIMAL128_MAX_SCALE: i8 = 38;
772
773/// The maximum precision for [DataType::Decimal256] values
774pub const DECIMAL256_MAX_PRECISION: u8 = 76;
775
776/// The maximum scale for [DataType::Decimal256] values
777pub const DECIMAL256_MAX_SCALE: i8 = 76;
778
779/// The default scale for [DataType::Decimal128] and [DataType::Decimal256]
780/// values
781pub const DECIMAL_DEFAULT_SCALE: i8 = 10;
782
783#[cfg(test)]
784mod tests {
785    use super::*;
786
787    #[test]
788    #[cfg(feature = "serde")]
789    fn serde_struct_type() {
790        use std::collections::HashMap;
791
792        let kv_array = [("k".to_string(), "v".to_string())];
793        let field_metadata: HashMap<String, String> = kv_array.iter().cloned().collect();
794
795        // Non-empty map: should be converted as JSON obj { ... }
796        let first_name =
797            Field::new("first_name", DataType::Utf8, false).with_metadata(field_metadata);
798
799        // Empty map: should be omitted.
800        let last_name =
801            Field::new("last_name", DataType::Utf8, false).with_metadata(HashMap::default());
802
803        let person = DataType::Struct(Fields::from(vec![
804            first_name,
805            last_name,
806            Field::new(
807                "address",
808                DataType::Struct(Fields::from(vec![
809                    Field::new("street", DataType::Utf8, false),
810                    Field::new("zip", DataType::UInt16, false),
811                ])),
812                false,
813            ),
814        ]));
815
816        let serialized = serde_json::to_string(&person).unwrap();
817
818        // NOTE that this is testing the default (derived) serialization format, not the
819        // JSON format specified in metadata.md
820
821        assert_eq!(
822            "{\"Struct\":[\
823             {\"name\":\"first_name\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{\"k\":\"v\"}},\
824             {\"name\":\"last_name\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}},\
825             {\"name\":\"address\",\"data_type\":{\"Struct\":\
826             [{\"name\":\"street\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}},\
827             {\"name\":\"zip\",\"data_type\":\"UInt16\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}}\
828             ]},\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}}]}",
829            serialized
830        );
831
832        let deserialized = serde_json::from_str(&serialized).unwrap();
833
834        assert_eq!(person, deserialized);
835    }
836
837    #[test]
838    fn test_list_datatype_equality() {
839        // tests that list type equality is checked while ignoring list names
840        let list_a = DataType::List(Arc::new(Field::new("item", DataType::Int32, true)));
841        let list_b = DataType::List(Arc::new(Field::new("array", DataType::Int32, true)));
842        let list_c = DataType::List(Arc::new(Field::new("item", DataType::Int32, false)));
843        let list_d = DataType::List(Arc::new(Field::new("item", DataType::UInt32, true)));
844        assert!(list_a.equals_datatype(&list_b));
845        assert!(!list_a.equals_datatype(&list_c));
846        assert!(!list_b.equals_datatype(&list_c));
847        assert!(!list_a.equals_datatype(&list_d));
848
849        let list_e =
850            DataType::FixedSizeList(Arc::new(Field::new("item", list_a.clone(), false)), 3);
851        let list_f =
852            DataType::FixedSizeList(Arc::new(Field::new("array", list_b.clone(), false)), 3);
853        let list_g = DataType::FixedSizeList(
854            Arc::new(Field::new("item", DataType::FixedSizeBinary(3), true)),
855            3,
856        );
857        assert!(list_e.equals_datatype(&list_f));
858        assert!(!list_e.equals_datatype(&list_g));
859        assert!(!list_f.equals_datatype(&list_g));
860
861        let list_h = DataType::Struct(Fields::from(vec![Field::new("f1", list_e, true)]));
862        let list_i = DataType::Struct(Fields::from(vec![Field::new("f1", list_f.clone(), true)]));
863        let list_j = DataType::Struct(Fields::from(vec![Field::new("f1", list_f.clone(), false)]));
864        let list_k = DataType::Struct(Fields::from(vec![
865            Field::new("f1", list_f.clone(), false),
866            Field::new("f2", list_g.clone(), false),
867            Field::new("f3", DataType::Utf8, true),
868        ]));
869        let list_l = DataType::Struct(Fields::from(vec![
870            Field::new("ff1", list_f.clone(), false),
871            Field::new("ff2", list_g.clone(), false),
872            Field::new("ff3", DataType::LargeUtf8, true),
873        ]));
874        let list_m = DataType::Struct(Fields::from(vec![
875            Field::new("ff1", list_f, false),
876            Field::new("ff2", list_g, false),
877            Field::new("ff3", DataType::Utf8, true),
878        ]));
879        assert!(list_h.equals_datatype(&list_i));
880        assert!(!list_h.equals_datatype(&list_j));
881        assert!(!list_k.equals_datatype(&list_l));
882        assert!(list_k.equals_datatype(&list_m));
883
884        let list_n = DataType::Map(Arc::new(Field::new("f1", list_a.clone(), true)), true);
885        let list_o = DataType::Map(Arc::new(Field::new("f2", list_b.clone(), true)), true);
886        let list_p = DataType::Map(Arc::new(Field::new("f2", list_b.clone(), true)), false);
887        let list_q = DataType::Map(Arc::new(Field::new("f2", list_c.clone(), true)), true);
888        let list_r = DataType::Map(Arc::new(Field::new("f1", list_a.clone(), false)), true);
889
890        assert!(list_n.equals_datatype(&list_o));
891        assert!(!list_n.equals_datatype(&list_p));
892        assert!(!list_n.equals_datatype(&list_q));
893        assert!(!list_n.equals_datatype(&list_r));
894
895        let list_s = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_a));
896        let list_t = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_b.clone()));
897        let list_u = DataType::Dictionary(Box::new(DataType::Int8), Box::new(list_b));
898        let list_v = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_c));
899
900        assert!(list_s.equals_datatype(&list_t));
901        assert!(!list_s.equals_datatype(&list_u));
902        assert!(!list_s.equals_datatype(&list_v));
903
904        let union_a = DataType::Union(
905            UnionFields::new(
906                vec![1, 2],
907                vec![
908                    Field::new("f1", DataType::Utf8, false),
909                    Field::new("f2", DataType::UInt8, false),
910                ],
911            ),
912            UnionMode::Sparse,
913        );
914        let union_b = DataType::Union(
915            UnionFields::new(
916                vec![1, 2],
917                vec![
918                    Field::new("ff1", DataType::Utf8, false),
919                    Field::new("ff2", DataType::UInt8, false),
920                ],
921            ),
922            UnionMode::Sparse,
923        );
924        let union_c = DataType::Union(
925            UnionFields::new(
926                vec![2, 1],
927                vec![
928                    Field::new("fff2", DataType::UInt8, false),
929                    Field::new("fff1", DataType::Utf8, false),
930                ],
931            ),
932            UnionMode::Sparse,
933        );
934        let union_d = DataType::Union(
935            UnionFields::new(
936                vec![2, 1],
937                vec![
938                    Field::new("fff1", DataType::Int8, false),
939                    Field::new("fff2", DataType::UInt8, false),
940                ],
941            ),
942            UnionMode::Sparse,
943        );
944        let union_e = DataType::Union(
945            UnionFields::new(
946                vec![1, 2],
947                vec![
948                    Field::new("f1", DataType::Utf8, true),
949                    Field::new("f2", DataType::UInt8, false),
950                ],
951            ),
952            UnionMode::Sparse,
953        );
954
955        assert!(union_a.equals_datatype(&union_b));
956        assert!(union_a.equals_datatype(&union_c));
957        assert!(!union_a.equals_datatype(&union_d));
958        assert!(!union_a.equals_datatype(&union_e));
959
960        let list_w = DataType::RunEndEncoded(
961            Arc::new(Field::new("f1", DataType::Int64, true)),
962            Arc::new(Field::new("f2", DataType::Utf8, true)),
963        );
964        let list_x = DataType::RunEndEncoded(
965            Arc::new(Field::new("ff1", DataType::Int64, true)),
966            Arc::new(Field::new("ff2", DataType::Utf8, true)),
967        );
968        let list_y = DataType::RunEndEncoded(
969            Arc::new(Field::new("ff1", DataType::UInt16, true)),
970            Arc::new(Field::new("ff2", DataType::Utf8, true)),
971        );
972        let list_z = DataType::RunEndEncoded(
973            Arc::new(Field::new("f1", DataType::Int64, false)),
974            Arc::new(Field::new("f2", DataType::Utf8, true)),
975        );
976
977        assert!(list_w.equals_datatype(&list_x));
978        assert!(!list_w.equals_datatype(&list_y));
979        assert!(!list_w.equals_datatype(&list_z));
980    }
981
982    #[test]
983    fn create_struct_type() {
984        let _person = DataType::Struct(Fields::from(vec![
985            Field::new("first_name", DataType::Utf8, false),
986            Field::new("last_name", DataType::Utf8, false),
987            Field::new(
988                "address",
989                DataType::Struct(Fields::from(vec![
990                    Field::new("street", DataType::Utf8, false),
991                    Field::new("zip", DataType::UInt16, false),
992                ])),
993                false,
994            ),
995        ]));
996    }
997
998    #[test]
999    fn test_nested() {
1000        let list = DataType::List(Arc::new(Field::new("foo", DataType::Utf8, true)));
1001
1002        assert!(!DataType::is_nested(&DataType::Boolean));
1003        assert!(!DataType::is_nested(&DataType::Int32));
1004        assert!(!DataType::is_nested(&DataType::Utf8));
1005        assert!(DataType::is_nested(&list));
1006
1007        assert!(!DataType::is_nested(&DataType::Dictionary(
1008            Box::new(DataType::Int32),
1009            Box::new(DataType::Boolean)
1010        )));
1011        assert!(!DataType::is_nested(&DataType::Dictionary(
1012            Box::new(DataType::Int32),
1013            Box::new(DataType::Int64)
1014        )));
1015        assert!(!DataType::is_nested(&DataType::Dictionary(
1016            Box::new(DataType::Int32),
1017            Box::new(DataType::LargeUtf8)
1018        )));
1019        assert!(DataType::is_nested(&DataType::Dictionary(
1020            Box::new(DataType::Int32),
1021            Box::new(list)
1022        )));
1023    }
1024
1025    #[test]
1026    fn test_integer() {
1027        // is_integer
1028        assert!(DataType::is_integer(&DataType::Int32));
1029        assert!(DataType::is_integer(&DataType::UInt64));
1030        assert!(!DataType::is_integer(&DataType::Float16));
1031
1032        // is_signed_integer
1033        assert!(DataType::is_signed_integer(&DataType::Int32));
1034        assert!(!DataType::is_signed_integer(&DataType::UInt64));
1035        assert!(!DataType::is_signed_integer(&DataType::Float16));
1036
1037        // is_unsigned_integer
1038        assert!(!DataType::is_unsigned_integer(&DataType::Int32));
1039        assert!(DataType::is_unsigned_integer(&DataType::UInt64));
1040        assert!(!DataType::is_unsigned_integer(&DataType::Float16));
1041
1042        // is_dictionary_key_type
1043        assert!(DataType::is_dictionary_key_type(&DataType::Int32));
1044        assert!(DataType::is_dictionary_key_type(&DataType::UInt64));
1045        assert!(!DataType::is_dictionary_key_type(&DataType::Float16));
1046    }
1047
1048    #[test]
1049    fn test_floating() {
1050        assert!(DataType::is_floating(&DataType::Float16));
1051        assert!(!DataType::is_floating(&DataType::Int32));
1052    }
1053
1054    #[test]
1055    fn test_datatype_is_null() {
1056        assert!(DataType::is_null(&DataType::Null));
1057        assert!(!DataType::is_null(&DataType::Int32));
1058    }
1059
1060    #[test]
1061    fn size_should_not_regress() {
1062        assert_eq!(std::mem::size_of::<DataType>(), 24);
1063    }
1064
1065    #[test]
1066    #[should_panic(expected = "duplicate type id: 1")]
1067    fn test_union_with_duplicated_type_id() {
1068        let type_ids = vec![1, 1];
1069        let _union = DataType::Union(
1070            UnionFields::new(
1071                type_ids,
1072                vec![
1073                    Field::new("f1", DataType::Int32, false),
1074                    Field::new("f2", DataType::Utf8, false),
1075                ],
1076            ),
1077            UnionMode::Dense,
1078        );
1079    }
1080
1081    #[test]
1082    fn test_try_from_str() {
1083        let data_type: DataType = "Int32".try_into().unwrap();
1084        assert_eq!(data_type, DataType::Int32);
1085    }
1086
1087    #[test]
1088    fn test_from_str() {
1089        let data_type: DataType = "UInt64".parse().unwrap();
1090        assert_eq!(data_type, DataType::UInt64);
1091    }
1092}