arrow_schema/
datatype.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::fmt;
use std::str::FromStr;
use std::sync::Arc;

use crate::{ArrowError, Field, FieldRef, Fields, UnionFields};

/// Datatypes supported by this implementation of Apache Arrow.
///
/// The variants of this enum include primitive fixed size types as well as
/// parametric or nested types. See [`Schema.fbs`] for Arrow's specification.
///
/// # Examples
///
/// Primitive types
/// ```
/// # use arrow_schema::DataType;
/// // create a new 32-bit signed integer
/// let data_type = DataType::Int32;
/// ```
///
/// Nested Types
/// ```
/// # use arrow_schema::{DataType, Field};
/// # use std::sync::Arc;
/// // create a new list of 32-bit signed integers directly
/// let list_data_type = DataType::List(Arc::new(Field::new_list_field(DataType::Int32, true)));
/// // Create the same list type with constructor
/// let list_data_type2 = DataType::new_list(DataType::Int32, true);
/// assert_eq!(list_data_type, list_data_type2);
/// ```
///
/// Dictionary Types
/// ```
/// # use arrow_schema::{DataType};
/// // String Dictionary (key type Int32 and value type Utf8)
/// let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8));
/// ```
///
/// Timestamp Types
/// ```
/// # use arrow_schema::{DataType, TimeUnit};
/// // timestamp with millisecond precision without timezone specified
/// let data_type = DataType::Timestamp(TimeUnit::Millisecond, None);
/// // timestamp with nanosecond precision in UTC timezone
/// let data_type = DataType::Timestamp(TimeUnit::Nanosecond, Some("UTC".into()));
///```
///
/// # Display and FromStr
///
/// The `Display` and `FromStr` implementations for `DataType` are
/// human-readable, parseable, and reversible.
///
/// ```
/// # use arrow_schema::DataType;
/// let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Utf8));
/// let data_type_string = data_type.to_string();
/// assert_eq!(data_type_string, "Dictionary(Int32, Utf8)");
/// // display can be parsed back into the original type
/// let parsed_data_type: DataType = data_type.to_string().parse().unwrap();
/// assert_eq!(data_type, parsed_data_type);
/// ```
///
/// # Nested Support
/// Currently, the Rust implementation supports the following nested types:
///  - `List<T>`
///  - `LargeList<T>`
///  - `FixedSizeList<T>`
///  - `Struct<T, U, V, ...>`
///  - `Union<T, U, V, ...>`
///  - `Map<K, V>`
///
/// Nested types can themselves be nested within other arrays.
/// For more information on these types please see
/// [the physical memory layout of Apache Arrow]
///
/// [`Schema.fbs`]: https://github.com/apache/arrow/blob/main/format/Schema.fbs
/// [the physical memory layout of Apache Arrow]: https://arrow.apache.org/docs/format/Columnar.html#physical-memory-layout
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum DataType {
    /// Null type
    Null,
    /// A boolean datatype representing the values `true` and `false`.
    Boolean,
    /// A signed 8-bit integer.
    Int8,
    /// A signed 16-bit integer.
    Int16,
    /// A signed 32-bit integer.
    Int32,
    /// A signed 64-bit integer.
    Int64,
    /// An unsigned 8-bit integer.
    UInt8,
    /// An unsigned 16-bit integer.
    UInt16,
    /// An unsigned 32-bit integer.
    UInt32,
    /// An unsigned 64-bit integer.
    UInt64,
    /// A 16-bit floating point number.
    Float16,
    /// A 32-bit floating point number.
    Float32,
    /// A 64-bit floating point number.
    Float64,
    /// A timestamp with an optional timezone.
    ///
    /// Time is measured as a Unix epoch, counting the seconds from
    /// 00:00:00.000 on 1 January 1970, excluding leap seconds,
    /// as a signed 64-bit integer.
    ///
    /// The time zone is a string indicating the name of a time zone, one of:
    ///
    /// * As used in the Olson time zone database (the "tz database" or
    ///   "tzdata"), such as "America/New_York"
    /// * An absolute time zone offset of the form +XX:XX or -XX:XX, such as +07:30
    ///
    /// Timestamps with a non-empty timezone
    /// ------------------------------------
    ///
    /// If a Timestamp column has a non-empty timezone value, its epoch is
    /// 1970-01-01 00:00:00 (January 1st 1970, midnight) in the *UTC* timezone
    /// (the Unix epoch), regardless of the Timestamp's own timezone.
    ///
    /// Therefore, timestamp values with a non-empty timezone correspond to
    /// physical points in time together with some additional information about
    /// how the data was obtained and/or how to display it (the timezone).
    ///
    ///   For example, the timestamp value 0 with the timezone string "Europe/Paris"
    ///   corresponds to "January 1st 1970, 00h00" in the UTC timezone, but the
    ///   application may prefer to display it as "January 1st 1970, 01h00" in
    ///   the Europe/Paris timezone (which is the same physical point in time).
    ///
    /// One consequence is that timestamp values with a non-empty timezone
    /// can be compared and ordered directly, since they all share the same
    /// well-known point of reference (the Unix epoch).
    ///
    /// Timestamps with an unset / empty timezone
    /// -----------------------------------------
    ///
    /// If a Timestamp column has no timezone value, its epoch is
    /// 1970-01-01 00:00:00 (January 1st 1970, midnight) in an *unknown* timezone.
    ///
    /// Therefore, timestamp values without a timezone cannot be meaningfully
    /// interpreted as physical points in time, but only as calendar / clock
    /// indications ("wall clock time") in an unspecified timezone.
    ///
    ///   For example, the timestamp value 0 with an empty timezone string
    ///   corresponds to "January 1st 1970, 00h00" in an unknown timezone: there
    ///   is not enough information to interpret it as a well-defined physical
    ///   point in time.
    ///
    /// One consequence is that timestamp values without a timezone cannot
    /// be reliably compared or ordered, since they may have different points of
    /// reference.  In particular, it is *not* possible to interpret an unset
    /// or empty timezone as the same as "UTC".
    ///
    /// Conversion between timezones
    /// ----------------------------
    ///
    /// If a Timestamp column has a non-empty timezone, changing the timezone
    /// to a different non-empty value is a metadata-only operation:
    /// the timestamp values need not change as their point of reference remains
    /// the same (the Unix epoch).
    ///
    /// However, if a Timestamp column has no timezone value, changing it to a
    /// non-empty value requires to think about the desired semantics.
    /// One possibility is to assume that the original timestamp values are
    /// relative to the epoch of the timezone being set; timestamp values should
    /// then adjusted to the Unix epoch (for example, changing the timezone from
    /// empty to "Europe/Paris" would require converting the timestamp values
    /// from "Europe/Paris" to "UTC", which seems counter-intuitive but is
    /// nevertheless correct).
    ///
    /// ```
    /// # use arrow_schema::{DataType, TimeUnit};
    /// DataType::Timestamp(TimeUnit::Second, None);
    /// DataType::Timestamp(TimeUnit::Second, Some("literal".into()));
    /// DataType::Timestamp(TimeUnit::Second, Some("string".to_string().into()));
    /// ```
    ///
    /// Timezone string parsing
    /// -----------------------
    /// When feature `chrono-tz` is not enabled, allowed timezone strings are fixed offsets of the form "+09:00", "-09" or "+0930".
    ///
    /// When feature `chrono-tz` is enabled, additional strings supported by [chrono_tz](https://docs.rs/chrono-tz/latest/chrono_tz/)
    /// are also allowed, which include [IANA database](https://en.wikipedia.org/wiki/List_of_tz_database_time_zones)
    /// timezones.
    Timestamp(TimeUnit, Option<Arc<str>>),
    /// A signed 32-bit date representing the elapsed time since UNIX epoch (1970-01-01)
    /// in days.
    Date32,
    /// A signed 64-bit date representing the elapsed time since UNIX epoch (1970-01-01)
    /// in milliseconds.
    ///
    /// # Valid Ranges
    ///
    /// According to the Arrow specification ([Schema.fbs]), values of Date64
    /// are treated as the number of *days*, in milliseconds, since the UNIX
    /// epoch. Therefore, values of this type  must be evenly divisible by
    /// `86_400_000`, the number of milliseconds in a standard day.
    ///
    /// It is not valid to store milliseconds that do not represent an exact
    /// day. The reason for this restriction is compatibility with other
    /// language's native libraries (specifically Java), which historically
    /// lacked a dedicated date type and only supported timestamps.
    ///
    /// # Validation
    ///
    /// This library does not validate or enforce that Date64 values are evenly
    /// divisible by `86_400_000`  for performance and usability reasons. Date64
    /// values are treated similarly to `Timestamp(TimeUnit::Millisecond,
    /// None)`: values will be displayed with a time of day if the value does
    /// not represent an exact day, and arithmetic will be done at the
    /// millisecond granularity.
    ///
    /// # Recommendation
    ///
    /// Users should prefer [`DataType::Date32`] to cleanly represent the number
    /// of days, or one of the Timestamp variants to include time as part of the
    /// representation, depending on their use case.
    ///
    /// # Further Reading
    ///
    /// For more details, see [#5288](https://github.com/apache/arrow-rs/issues/5288).
    ///
    /// [Schema.fbs]: https://github.com/apache/arrow/blob/main/format/Schema.fbs
    Date64,
    /// A signed 32-bit time representing the elapsed time since midnight in the unit of `TimeUnit`.
    /// Must be either seconds or milliseconds.
    Time32(TimeUnit),
    /// A signed 64-bit time representing the elapsed time since midnight in the unit of `TimeUnit`.
    /// Must be either microseconds or nanoseconds.
    Time64(TimeUnit),
    /// Measure of elapsed time in either seconds, milliseconds, microseconds or nanoseconds.
    Duration(TimeUnit),
    /// A "calendar" interval which models types that don't necessarily
    /// have a precise duration without the context of a base timestamp (e.g.
    /// days can differ in length during day light savings time transitions).
    Interval(IntervalUnit),
    /// Opaque binary data of variable length.
    ///
    /// A single Binary array can store up to [`i32::MAX`] bytes
    /// of binary data in total.
    Binary,
    /// Opaque binary data of fixed size.
    /// Enum parameter specifies the number of bytes per value.
    FixedSizeBinary(i32),
    /// Opaque binary data of variable length and 64-bit offsets.
    ///
    /// A single LargeBinary array can store up to [`i64::MAX`] bytes
    /// of binary data in total.
    LargeBinary,
    /// Opaque binary data of variable length.
    ///
    /// Logically the same as [`Self::Binary`], but the internal representation uses a view
    /// struct that contains the string length and either the string's entire data
    /// inline (for small strings) or an inlined prefix, an index of another buffer,
    /// and an offset pointing to a slice in that buffer (for non-small strings).
    BinaryView,
    /// A variable-length string in Unicode with UTF-8 encoding.
    ///
    /// A single Utf8 array can store up to [`i32::MAX`] bytes
    /// of string data in total.
    Utf8,
    /// A variable-length string in Unicode with UFT-8 encoding and 64-bit offsets.
    ///
    /// A single LargeUtf8 array can store up to [`i64::MAX`] bytes
    /// of string data in total.
    LargeUtf8,
    /// A variable-length string in Unicode with UTF-8 encoding
    ///
    /// Logically the same as [`Self::Utf8`], but the internal representation uses a view
    /// struct that contains the string length and either the string's entire data
    /// inline (for small strings) or an inlined prefix, an index of another buffer,
    /// and an offset pointing to a slice in that buffer (for non-small strings).
    Utf8View,
    /// A list of some logical data type with variable length.
    ///
    /// A single List array can store up to [`i32::MAX`] elements in total.
    List(FieldRef),

    /// (NOT YET FULLY SUPPORTED)  A list of some logical data type with variable length.
    ///
    /// Note this data type is not yet fully supported. Using it with arrow APIs may result in `panic`s.
    ///
    /// The ListView layout is defined by three buffers:
    /// a validity bitmap, an offsets buffer, and an additional sizes buffer.
    /// Sizes and offsets are both 32 bits for this type
    ListView(FieldRef),
    /// A list of some logical data type with fixed length.
    FixedSizeList(FieldRef, i32),
    /// A list of some logical data type with variable length and 64-bit offsets.
    ///
    /// A single LargeList array can store up to [`i64::MAX`] elements in total.
    LargeList(FieldRef),

    /// (NOT YET FULLY SUPPORTED)  A list of some logical data type with variable length and 64-bit offsets.
    ///
    /// Note this data type is not yet fully supported. Using it with arrow APIs may result in `panic`s.
    ///
    /// The LargeListView layout is defined by three buffers:
    /// a validity bitmap, an offsets buffer, and an additional sizes buffer.
    /// Sizes and offsets are both 64 bits for this type
    LargeListView(FieldRef),
    /// A nested datatype that contains a number of sub-fields.
    Struct(Fields),
    /// A nested datatype that can represent slots of differing types. Components:
    ///
    /// 1. [`UnionFields`]
    /// 2. The type of union (Sparse or Dense)
    Union(UnionFields, UnionMode),
    /// A dictionary encoded array (`key_type`, `value_type`), where
    /// each array element is an index of `key_type` into an
    /// associated dictionary of `value_type`.
    ///
    /// Dictionary arrays are used to store columns of `value_type`
    /// that contain many repeated values using less memory, but with
    /// a higher CPU overhead for some operations.
    ///
    /// This type mostly used to represent low cardinality string
    /// arrays or a limited set of primitive types as integers.
    Dictionary(Box<DataType>, Box<DataType>),
    /// Exact 128-bit width decimal value with precision and scale
    ///
    /// * precision is the total number of digits
    /// * scale is the number of digits past the decimal
    ///
    /// For example the number 123.45 has precision 5 and scale 2.
    ///
    /// In certain situations, scale could be negative number. For
    /// negative scale, it is the number of padding 0 to the right
    /// of the digits.
    ///
    /// For example the number 12300 could be treated as a decimal
    /// has precision 3 and scale -2.
    Decimal128(u8, i8),
    /// Exact 256-bit width decimal value with precision and scale
    ///
    /// * precision is the total number of digits
    /// * scale is the number of digits past the decimal
    ///
    /// For example the number 123.45 has precision 5 and scale 2.
    ///
    /// In certain situations, scale could be negative number. For
    /// negative scale, it is the number of padding 0 to the right
    /// of the digits.
    ///
    /// For example the number 12300 could be treated as a decimal
    /// has precision 3 and scale -2.
    Decimal256(u8, i8),
    /// A Map is a logical nested type that is represented as
    ///
    /// `List<entries: Struct<key: K, value: V>>`
    ///
    /// The keys and values are each respectively contiguous.
    /// The key and value types are not constrained, but keys should be
    /// hashable and unique.
    /// Whether the keys are sorted can be set in the `bool` after the `Field`.
    ///
    /// In a field with Map type, the field has a child Struct field, which then
    /// has two children: key type and the second the value type. The names of the
    /// child fields may be respectively "entries", "key", and "value", but this is
    /// not enforced.
    Map(FieldRef, bool),
    /// A run-end encoding (REE) is a variation of run-length encoding (RLE). These
    /// encodings are well-suited for representing data containing sequences of the
    /// same value, called runs. Each run is represented as a value and an integer giving
    /// the index in the array where the run ends.
    ///
    /// A run-end encoded array has no buffers by itself, but has two child arrays. The
    /// first child array, called the run ends array, holds either 16, 32, or 64-bit
    /// signed integers. The actual values of each run are held in the second child array.
    ///
    /// These child arrays are prescribed the standard names of "run_ends" and "values"
    /// respectively.
    RunEndEncoded(FieldRef, FieldRef),
}

/// An absolute length of time in seconds, milliseconds, microseconds or nanoseconds.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum TimeUnit {
    /// Time in seconds.
    Second,
    /// Time in milliseconds.
    Millisecond,
    /// Time in microseconds.
    Microsecond,
    /// Time in nanoseconds.
    Nanosecond,
}

/// YEAR_MONTH, DAY_TIME, MONTH_DAY_NANO interval in SQL style.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum IntervalUnit {
    /// Indicates the number of elapsed whole months, stored as 4-byte integers.
    YearMonth,
    /// Indicates the number of elapsed days and milliseconds,
    /// stored as 2 contiguous 32-bit integers (days, milliseconds) (8-bytes in total).
    DayTime,
    /// A triple of the number of elapsed months, days, and nanoseconds.
    /// The values are stored contiguously in 16 byte blocks. Months and
    /// days are encoded as 32 bit integers and nanoseconds is encoded as a
    /// 64 bit integer. All integers are signed. Each field is independent
    /// (e.g. there is no constraint that nanoseconds have the same sign
    /// as days or that the quantity of nanoseconds represents less
    /// than a day's worth of time).
    MonthDayNano,
}

/// Sparse or Dense union layouts
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Copy)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum UnionMode {
    /// Sparse union layout
    Sparse,
    /// Dense union layout
    Dense,
}

impl fmt::Display for DataType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{self:?}")
    }
}

/// Parses `str` into a `DataType`.
///
/// This is the reverse of [`DataType`]'s `Display`
/// impl, and maintains the invariant that
/// `DataType::try_from(&data_type.to_string()).unwrap() == data_type`
///
/// # Example
/// ```
/// use arrow_schema::DataType;
///
/// let data_type: DataType = "Int32".parse().unwrap();
/// assert_eq!(data_type, DataType::Int32);
/// ```
impl FromStr for DataType {
    type Err = ArrowError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        crate::datatype_parse::parse_data_type(s)
    }
}

impl TryFrom<&str> for DataType {
    type Error = ArrowError;

    fn try_from(value: &str) -> Result<Self, Self::Error> {
        value.parse()
    }
}

impl DataType {
    /// Returns true if the type is primitive: (numeric, temporal).
    #[inline]
    pub fn is_primitive(&self) -> bool {
        self.is_numeric() || self.is_temporal()
    }

    /// Returns true if this type is numeric: (UInt*, Int*, Float*, Decimal*).
    #[inline]
    pub fn is_numeric(&self) -> bool {
        use DataType::*;
        matches!(
            self,
            UInt8
                | UInt16
                | UInt32
                | UInt64
                | Int8
                | Int16
                | Int32
                | Int64
                | Float16
                | Float32
                | Float64
                | Decimal128(_, _)
                | Decimal256(_, _)
        )
    }

    /// Returns true if this type is temporal: (Date*, Time*, Duration, or Interval).
    #[inline]
    pub fn is_temporal(&self) -> bool {
        use DataType::*;
        matches!(
            self,
            Date32 | Date64 | Timestamp(_, _) | Time32(_) | Time64(_) | Duration(_) | Interval(_)
        )
    }

    /// Returns true if this type is floating: (Float*).
    #[inline]
    pub fn is_floating(&self) -> bool {
        use DataType::*;
        matches!(self, Float16 | Float32 | Float64)
    }

    /// Returns true if this type is integer: (Int*, UInt*).
    #[inline]
    pub fn is_integer(&self) -> bool {
        self.is_signed_integer() || self.is_unsigned_integer()
    }

    /// Returns true if this type is signed integer: (Int*).
    #[inline]
    pub fn is_signed_integer(&self) -> bool {
        use DataType::*;
        matches!(self, Int8 | Int16 | Int32 | Int64)
    }

    /// Returns true if this type is unsigned integer: (UInt*).
    #[inline]
    pub fn is_unsigned_integer(&self) -> bool {
        use DataType::*;
        matches!(self, UInt8 | UInt16 | UInt32 | UInt64)
    }

    /// Returns true if this type is valid as a dictionary key
    #[inline]
    pub fn is_dictionary_key_type(&self) -> bool {
        self.is_integer()
    }

    /// Returns true if this type is valid for run-ends array in RunArray
    #[inline]
    pub fn is_run_ends_type(&self) -> bool {
        use DataType::*;
        matches!(self, Int16 | Int32 | Int64)
    }

    /// Returns true if this type is nested (List, FixedSizeList, LargeList, Struct, Union,
    /// or Map), or a dictionary of a nested type
    #[inline]
    pub fn is_nested(&self) -> bool {
        use DataType::*;
        match self {
            Dictionary(_, v) => DataType::is_nested(v.as_ref()),
            List(_) | FixedSizeList(_, _) | LargeList(_) | Struct(_) | Union(_, _) | Map(_, _) => {
                true
            }
            _ => false,
        }
    }

    /// Returns true if this type is DataType::Null.
    #[inline]
    pub fn is_null(&self) -> bool {
        use DataType::*;
        matches!(self, Null)
    }

    /// Compares the datatype with another, ignoring nested field names
    /// and metadata.
    pub fn equals_datatype(&self, other: &DataType) -> bool {
        match (&self, other) {
            (DataType::List(a), DataType::List(b))
            | (DataType::LargeList(a), DataType::LargeList(b)) => {
                a.is_nullable() == b.is_nullable() && a.data_type().equals_datatype(b.data_type())
            }
            (DataType::FixedSizeList(a, a_size), DataType::FixedSizeList(b, b_size)) => {
                a_size == b_size
                    && a.is_nullable() == b.is_nullable()
                    && a.data_type().equals_datatype(b.data_type())
            }
            (DataType::Struct(a), DataType::Struct(b)) => {
                a.len() == b.len()
                    && a.iter().zip(b).all(|(a, b)| {
                        a.is_nullable() == b.is_nullable()
                            && a.data_type().equals_datatype(b.data_type())
                    })
            }
            (DataType::Map(a_field, a_is_sorted), DataType::Map(b_field, b_is_sorted)) => {
                a_field.is_nullable() == b_field.is_nullable()
                    && a_field.data_type().equals_datatype(b_field.data_type())
                    && a_is_sorted == b_is_sorted
            }
            (DataType::Dictionary(a_key, a_value), DataType::Dictionary(b_key, b_value)) => {
                a_key.equals_datatype(b_key) && a_value.equals_datatype(b_value)
            }
            (
                DataType::RunEndEncoded(a_run_ends, a_values),
                DataType::RunEndEncoded(b_run_ends, b_values),
            ) => {
                a_run_ends.is_nullable() == b_run_ends.is_nullable()
                    && a_run_ends
                        .data_type()
                        .equals_datatype(b_run_ends.data_type())
                    && a_values.is_nullable() == b_values.is_nullable()
                    && a_values.data_type().equals_datatype(b_values.data_type())
            }
            (
                DataType::Union(a_union_fields, a_union_mode),
                DataType::Union(b_union_fields, b_union_mode),
            ) => {
                a_union_mode == b_union_mode
                    && a_union_fields.len() == b_union_fields.len()
                    && a_union_fields.iter().all(|a| {
                        b_union_fields.iter().any(|b| {
                            a.0 == b.0
                                && a.1.is_nullable() == b.1.is_nullable()
                                && a.1.data_type().equals_datatype(b.1.data_type())
                        })
                    })
            }
            _ => self == other,
        }
    }

    /// Returns the byte width of this type if it is a primitive type
    ///
    /// Returns `None` if not a primitive type
    #[inline]
    pub fn primitive_width(&self) -> Option<usize> {
        match self {
            DataType::Null => None,
            DataType::Boolean => None,
            DataType::Int8 | DataType::UInt8 => Some(1),
            DataType::Int16 | DataType::UInt16 | DataType::Float16 => Some(2),
            DataType::Int32 | DataType::UInt32 | DataType::Float32 => Some(4),
            DataType::Int64 | DataType::UInt64 | DataType::Float64 => Some(8),
            DataType::Timestamp(_, _) => Some(8),
            DataType::Date32 | DataType::Time32(_) => Some(4),
            DataType::Date64 | DataType::Time64(_) => Some(8),
            DataType::Duration(_) => Some(8),
            DataType::Interval(IntervalUnit::YearMonth) => Some(4),
            DataType::Interval(IntervalUnit::DayTime) => Some(8),
            DataType::Interval(IntervalUnit::MonthDayNano) => Some(16),
            DataType::Decimal128(_, _) => Some(16),
            DataType::Decimal256(_, _) => Some(32),
            DataType::Utf8 | DataType::LargeUtf8 | DataType::Utf8View => None,
            DataType::Binary | DataType::LargeBinary | DataType::BinaryView => None,
            DataType::FixedSizeBinary(_) => None,
            DataType::List(_)
            | DataType::ListView(_)
            | DataType::LargeList(_)
            | DataType::LargeListView(_)
            | DataType::Map(_, _) => None,
            DataType::FixedSizeList(_, _) => None,
            DataType::Struct(_) => None,
            DataType::Union(_, _) => None,
            DataType::Dictionary(_, _) => None,
            DataType::RunEndEncoded(_, _) => None,
        }
    }

    /// Return size of this instance in bytes.
    ///
    /// Includes the size of `Self`.
    pub fn size(&self) -> usize {
        std::mem::size_of_val(self)
            + match self {
                DataType::Null
                | DataType::Boolean
                | DataType::Int8
                | DataType::Int16
                | DataType::Int32
                | DataType::Int64
                | DataType::UInt8
                | DataType::UInt16
                | DataType::UInt32
                | DataType::UInt64
                | DataType::Float16
                | DataType::Float32
                | DataType::Float64
                | DataType::Date32
                | DataType::Date64
                | DataType::Time32(_)
                | DataType::Time64(_)
                | DataType::Duration(_)
                | DataType::Interval(_)
                | DataType::Binary
                | DataType::FixedSizeBinary(_)
                | DataType::LargeBinary
                | DataType::BinaryView
                | DataType::Utf8
                | DataType::LargeUtf8
                | DataType::Utf8View
                | DataType::Decimal128(_, _)
                | DataType::Decimal256(_, _) => 0,
                DataType::Timestamp(_, s) => s.as_ref().map(|s| s.len()).unwrap_or_default(),
                DataType::List(field)
                | DataType::ListView(field)
                | DataType::FixedSizeList(field, _)
                | DataType::LargeList(field)
                | DataType::LargeListView(field)
                | DataType::Map(field, _) => field.size(),
                DataType::Struct(fields) => fields.size(),
                DataType::Union(fields, _) => fields.size(),
                DataType::Dictionary(dt1, dt2) => dt1.size() + dt2.size(),
                DataType::RunEndEncoded(run_ends, values) => {
                    run_ends.size() - std::mem::size_of_val(run_ends) + values.size()
                        - std::mem::size_of_val(values)
                }
            }
    }

    /// Check to see if `self` is a superset of `other`
    ///
    /// If DataType is a nested type, then it will check to see if the nested type is a superset of the other nested type
    /// else it will check to see if the DataType is equal to the other DataType
    pub fn contains(&self, other: &DataType) -> bool {
        match (self, other) {
            (DataType::List(f1), DataType::List(f2))
            | (DataType::LargeList(f1), DataType::LargeList(f2)) => f1.contains(f2),
            (DataType::FixedSizeList(f1, s1), DataType::FixedSizeList(f2, s2)) => {
                s1 == s2 && f1.contains(f2)
            }
            (DataType::Map(f1, s1), DataType::Map(f2, s2)) => s1 == s2 && f1.contains(f2),
            (DataType::Struct(f1), DataType::Struct(f2)) => f1.contains(f2),
            (DataType::Union(f1, s1), DataType::Union(f2, s2)) => {
                s1 == s2
                    && f1
                        .iter()
                        .all(|f1| f2.iter().any(|f2| f1.0 == f2.0 && f1.1.contains(f2.1)))
            }
            (DataType::Dictionary(k1, v1), DataType::Dictionary(k2, v2)) => {
                k1.contains(k2) && v1.contains(v2)
            }
            _ => self == other,
        }
    }

    /// Create a [`DataType::List`] with elements of the specified type
    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
    ///
    /// To specify field level metadata, construct the inner [`Field`]
    /// directly via [`Field::new`] or [`Field::new_list_field`].
    pub fn new_list(data_type: DataType, nullable: bool) -> Self {
        DataType::List(Arc::new(Field::new_list_field(data_type, nullable)))
    }

    /// Create a [`DataType::LargeList`] with elements of the specified type
    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
    ///
    /// To specify field level metadata, construct the inner [`Field`]
    /// directly via [`Field::new`] or [`Field::new_list_field`].
    pub fn new_large_list(data_type: DataType, nullable: bool) -> Self {
        DataType::LargeList(Arc::new(Field::new_list_field(data_type, nullable)))
    }

    /// Create a [`DataType::FixedSizeList`] with elements of the specified type, size
    /// and nullability, and conventionally named inner [`Field`] (`"item"`).
    ///
    /// To specify field level metadata, construct the inner [`Field`]
    /// directly via [`Field::new`] or [`Field::new_list_field`].
    pub fn new_fixed_size_list(data_type: DataType, size: i32, nullable: bool) -> Self {
        DataType::FixedSizeList(Arc::new(Field::new_list_field(data_type, nullable)), size)
    }
}

/// The maximum precision for [DataType::Decimal128] values
pub const DECIMAL128_MAX_PRECISION: u8 = 38;

/// The maximum scale for [DataType::Decimal128] values
pub const DECIMAL128_MAX_SCALE: i8 = 38;

/// The maximum precision for [DataType::Decimal256] values
pub const DECIMAL256_MAX_PRECISION: u8 = 76;

/// The maximum scale for [DataType::Decimal256] values
pub const DECIMAL256_MAX_SCALE: i8 = 76;

/// The default scale for [DataType::Decimal128] and [DataType::Decimal256]
/// values
pub const DECIMAL_DEFAULT_SCALE: i8 = 10;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[cfg(feature = "serde")]
    fn serde_struct_type() {
        use std::collections::HashMap;

        let kv_array = [("k".to_string(), "v".to_string())];
        let field_metadata: HashMap<String, String> = kv_array.iter().cloned().collect();

        // Non-empty map: should be converted as JSON obj { ... }
        let first_name =
            Field::new("first_name", DataType::Utf8, false).with_metadata(field_metadata);

        // Empty map: should be omitted.
        let last_name =
            Field::new("last_name", DataType::Utf8, false).with_metadata(HashMap::default());

        let person = DataType::Struct(Fields::from(vec![
            first_name,
            last_name,
            Field::new(
                "address",
                DataType::Struct(Fields::from(vec![
                    Field::new("street", DataType::Utf8, false),
                    Field::new("zip", DataType::UInt16, false),
                ])),
                false,
            ),
        ]));

        let serialized = serde_json::to_string(&person).unwrap();

        // NOTE that this is testing the default (derived) serialization format, not the
        // JSON format specified in metadata.md

        assert_eq!(
            "{\"Struct\":[\
             {\"name\":\"first_name\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{\"k\":\"v\"}},\
             {\"name\":\"last_name\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}},\
             {\"name\":\"address\",\"data_type\":{\"Struct\":\
             [{\"name\":\"street\",\"data_type\":\"Utf8\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}},\
             {\"name\":\"zip\",\"data_type\":\"UInt16\",\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}}\
             ]},\"nullable\":false,\"dict_id\":0,\"dict_is_ordered\":false,\"metadata\":{}}]}",
            serialized
        );

        let deserialized = serde_json::from_str(&serialized).unwrap();

        assert_eq!(person, deserialized);
    }

    #[test]
    fn test_list_datatype_equality() {
        // tests that list type equality is checked while ignoring list names
        let list_a = DataType::List(Arc::new(Field::new_list_field(DataType::Int32, true)));
        let list_b = DataType::List(Arc::new(Field::new("array", DataType::Int32, true)));
        let list_c = DataType::List(Arc::new(Field::new_list_field(DataType::Int32, false)));
        let list_d = DataType::List(Arc::new(Field::new_list_field(DataType::UInt32, true)));
        assert!(list_a.equals_datatype(&list_b));
        assert!(!list_a.equals_datatype(&list_c));
        assert!(!list_b.equals_datatype(&list_c));
        assert!(!list_a.equals_datatype(&list_d));

        let list_e =
            DataType::FixedSizeList(Arc::new(Field::new_list_field(list_a.clone(), false)), 3);
        let list_f =
            DataType::FixedSizeList(Arc::new(Field::new("array", list_b.clone(), false)), 3);
        let list_g = DataType::FixedSizeList(
            Arc::new(Field::new_list_field(DataType::FixedSizeBinary(3), true)),
            3,
        );
        assert!(list_e.equals_datatype(&list_f));
        assert!(!list_e.equals_datatype(&list_g));
        assert!(!list_f.equals_datatype(&list_g));

        let list_h = DataType::Struct(Fields::from(vec![Field::new("f1", list_e, true)]));
        let list_i = DataType::Struct(Fields::from(vec![Field::new("f1", list_f.clone(), true)]));
        let list_j = DataType::Struct(Fields::from(vec![Field::new("f1", list_f.clone(), false)]));
        let list_k = DataType::Struct(Fields::from(vec![
            Field::new("f1", list_f.clone(), false),
            Field::new("f2", list_g.clone(), false),
            Field::new("f3", DataType::Utf8, true),
        ]));
        let list_l = DataType::Struct(Fields::from(vec![
            Field::new("ff1", list_f.clone(), false),
            Field::new("ff2", list_g.clone(), false),
            Field::new("ff3", DataType::LargeUtf8, true),
        ]));
        let list_m = DataType::Struct(Fields::from(vec![
            Field::new("ff1", list_f, false),
            Field::new("ff2", list_g, false),
            Field::new("ff3", DataType::Utf8, true),
        ]));
        assert!(list_h.equals_datatype(&list_i));
        assert!(!list_h.equals_datatype(&list_j));
        assert!(!list_k.equals_datatype(&list_l));
        assert!(list_k.equals_datatype(&list_m));

        let list_n = DataType::Map(Arc::new(Field::new("f1", list_a.clone(), true)), true);
        let list_o = DataType::Map(Arc::new(Field::new("f2", list_b.clone(), true)), true);
        let list_p = DataType::Map(Arc::new(Field::new("f2", list_b.clone(), true)), false);
        let list_q = DataType::Map(Arc::new(Field::new("f2", list_c.clone(), true)), true);
        let list_r = DataType::Map(Arc::new(Field::new("f1", list_a.clone(), false)), true);

        assert!(list_n.equals_datatype(&list_o));
        assert!(!list_n.equals_datatype(&list_p));
        assert!(!list_n.equals_datatype(&list_q));
        assert!(!list_n.equals_datatype(&list_r));

        let list_s = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_a));
        let list_t = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_b.clone()));
        let list_u = DataType::Dictionary(Box::new(DataType::Int8), Box::new(list_b));
        let list_v = DataType::Dictionary(Box::new(DataType::UInt8), Box::new(list_c));

        assert!(list_s.equals_datatype(&list_t));
        assert!(!list_s.equals_datatype(&list_u));
        assert!(!list_s.equals_datatype(&list_v));

        let union_a = DataType::Union(
            UnionFields::new(
                vec![1, 2],
                vec![
                    Field::new("f1", DataType::Utf8, false),
                    Field::new("f2", DataType::UInt8, false),
                ],
            ),
            UnionMode::Sparse,
        );
        let union_b = DataType::Union(
            UnionFields::new(
                vec![1, 2],
                vec![
                    Field::new("ff1", DataType::Utf8, false),
                    Field::new("ff2", DataType::UInt8, false),
                ],
            ),
            UnionMode::Sparse,
        );
        let union_c = DataType::Union(
            UnionFields::new(
                vec![2, 1],
                vec![
                    Field::new("fff2", DataType::UInt8, false),
                    Field::new("fff1", DataType::Utf8, false),
                ],
            ),
            UnionMode::Sparse,
        );
        let union_d = DataType::Union(
            UnionFields::new(
                vec![2, 1],
                vec![
                    Field::new("fff1", DataType::Int8, false),
                    Field::new("fff2", DataType::UInt8, false),
                ],
            ),
            UnionMode::Sparse,
        );
        let union_e = DataType::Union(
            UnionFields::new(
                vec![1, 2],
                vec![
                    Field::new("f1", DataType::Utf8, true),
                    Field::new("f2", DataType::UInt8, false),
                ],
            ),
            UnionMode::Sparse,
        );

        assert!(union_a.equals_datatype(&union_b));
        assert!(union_a.equals_datatype(&union_c));
        assert!(!union_a.equals_datatype(&union_d));
        assert!(!union_a.equals_datatype(&union_e));

        let list_w = DataType::RunEndEncoded(
            Arc::new(Field::new("f1", DataType::Int64, true)),
            Arc::new(Field::new("f2", DataType::Utf8, true)),
        );
        let list_x = DataType::RunEndEncoded(
            Arc::new(Field::new("ff1", DataType::Int64, true)),
            Arc::new(Field::new("ff2", DataType::Utf8, true)),
        );
        let list_y = DataType::RunEndEncoded(
            Arc::new(Field::new("ff1", DataType::UInt16, true)),
            Arc::new(Field::new("ff2", DataType::Utf8, true)),
        );
        let list_z = DataType::RunEndEncoded(
            Arc::new(Field::new("f1", DataType::Int64, false)),
            Arc::new(Field::new("f2", DataType::Utf8, true)),
        );

        assert!(list_w.equals_datatype(&list_x));
        assert!(!list_w.equals_datatype(&list_y));
        assert!(!list_w.equals_datatype(&list_z));
    }

    #[test]
    fn create_struct_type() {
        let _person = DataType::Struct(Fields::from(vec![
            Field::new("first_name", DataType::Utf8, false),
            Field::new("last_name", DataType::Utf8, false),
            Field::new(
                "address",
                DataType::Struct(Fields::from(vec![
                    Field::new("street", DataType::Utf8, false),
                    Field::new("zip", DataType::UInt16, false),
                ])),
                false,
            ),
        ]));
    }

    #[test]
    fn test_nested() {
        let list = DataType::List(Arc::new(Field::new("foo", DataType::Utf8, true)));

        assert!(!DataType::is_nested(&DataType::Boolean));
        assert!(!DataType::is_nested(&DataType::Int32));
        assert!(!DataType::is_nested(&DataType::Utf8));
        assert!(DataType::is_nested(&list));

        assert!(!DataType::is_nested(&DataType::Dictionary(
            Box::new(DataType::Int32),
            Box::new(DataType::Boolean)
        )));
        assert!(!DataType::is_nested(&DataType::Dictionary(
            Box::new(DataType::Int32),
            Box::new(DataType::Int64)
        )));
        assert!(!DataType::is_nested(&DataType::Dictionary(
            Box::new(DataType::Int32),
            Box::new(DataType::LargeUtf8)
        )));
        assert!(DataType::is_nested(&DataType::Dictionary(
            Box::new(DataType::Int32),
            Box::new(list)
        )));
    }

    #[test]
    fn test_integer() {
        // is_integer
        assert!(DataType::is_integer(&DataType::Int32));
        assert!(DataType::is_integer(&DataType::UInt64));
        assert!(!DataType::is_integer(&DataType::Float16));

        // is_signed_integer
        assert!(DataType::is_signed_integer(&DataType::Int32));
        assert!(!DataType::is_signed_integer(&DataType::UInt64));
        assert!(!DataType::is_signed_integer(&DataType::Float16));

        // is_unsigned_integer
        assert!(!DataType::is_unsigned_integer(&DataType::Int32));
        assert!(DataType::is_unsigned_integer(&DataType::UInt64));
        assert!(!DataType::is_unsigned_integer(&DataType::Float16));

        // is_dictionary_key_type
        assert!(DataType::is_dictionary_key_type(&DataType::Int32));
        assert!(DataType::is_dictionary_key_type(&DataType::UInt64));
        assert!(!DataType::is_dictionary_key_type(&DataType::Float16));
    }

    #[test]
    fn test_floating() {
        assert!(DataType::is_floating(&DataType::Float16));
        assert!(!DataType::is_floating(&DataType::Int32));
    }

    #[test]
    fn test_datatype_is_null() {
        assert!(DataType::is_null(&DataType::Null));
        assert!(!DataType::is_null(&DataType::Int32));
    }

    #[test]
    fn size_should_not_regress() {
        assert_eq!(std::mem::size_of::<DataType>(), 24);
    }

    #[test]
    #[should_panic(expected = "duplicate type id: 1")]
    fn test_union_with_duplicated_type_id() {
        let type_ids = vec![1, 1];
        let _union = DataType::Union(
            UnionFields::new(
                type_ids,
                vec![
                    Field::new("f1", DataType::Int32, false),
                    Field::new("f2", DataType::Utf8, false),
                ],
            ),
            UnionMode::Dense,
        );
    }

    #[test]
    fn test_try_from_str() {
        let data_type: DataType = "Int32".try_into().unwrap();
        assert_eq!(data_type, DataType::Int32);
    }

    #[test]
    fn test_from_str() {
        let data_type: DataType = "UInt64".parse().unwrap();
        assert_eq!(data_type, DataType::UInt64);
    }
}