1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! Duplicate an async I/O handle.
//!
//! This crate provides two tools, [`Arc`] and [`Mutex`]:
//!
//! * [`Arc`] implements [`AsyncRead`], [`AsyncWrite`], and [`AsyncSeek`] if a reference to the
//! inner type does.
//! * A reference to [`Mutex`] implements [`AsyncRead`], [`AsyncWrite`], and [`AsyncSeek`] if the
//! inner type does.
//!
//! Wrap an async I/O handle in [`Arc`] or [`Mutex`] to clone it or share among tasks.
//!
//! # Examples
//!
//! Clone an async I/O handle:
//!
//! ```no_run
//! use async_dup::Arc;
//! use futures::io;
//! use smol::Async;
//! use std::net::TcpStream;
//!
//! # fn main() -> std::io::Result<()> { smol::block_on(async {
//! // A client that echoes messages back to the server.
//! let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?;
//!
//! // Create two handles to the stream.
//! let reader = Arc::new(stream);
//! let mut writer = reader.clone();
//!
//! // Echo data received from the reader back into the writer.
//! io::copy(reader, &mut writer).await?;
//! # Ok(()) }) }
//! ```
//!
//! Share an async I/O handle:
//!
//! ```
//! use async_dup::Mutex;
//! use futures::io;
//! use futures::prelude::*;
//!
//! // Reads data from a stream and echoes it back.
//! async fn echo(stream: impl AsyncRead + AsyncWrite + Unpin) -> io::Result<u64> {
//! let stream = Mutex::new(stream);
//! io::copy(&stream, &mut &stream).await
//! }
//! ```
#![forbid(unsafe_code)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
use std::fmt;
use std::hash::{Hash, Hasher};
use std::io::{self, IoSlice, IoSliceMut, SeekFrom};
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::task::{Context, Poll};
use futures_io::{AsyncRead, AsyncSeek, AsyncWrite};
/// A reference-counted pointer that implements async I/O traits.
///
/// This is just a wrapper around [`std::sync::Arc`] that adds the following impls:
///
/// - `impl<T> AsyncRead for Arc<T> where &T: AsyncRead {}`
/// - `impl<T> AsyncWrite for Arc<T> where &T: AsyncWrite {}`
/// - `impl<T> AsyncSeek for Arc<T> where &T: AsyncSeek {}`
pub struct Arc<T>(pub std::sync::Arc<T>);
impl<T> Unpin for Arc<T> {}
impl<T> Arc<T> {
/// Constructs a new `Arc<T>`.
///
/// # Examples
///
/// ```
/// use async_dup::Arc;
///
/// let a = Arc::new(7);
/// ```
pub fn new(data: T) -> Arc<T> {
Arc(std::sync::Arc::new(data))
}
}
impl<T> Clone for Arc<T> {
fn clone(&self) -> Arc<T> {
Arc(self.0.clone())
}
}
impl<T> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<T: fmt::Debug> fmt::Debug for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display> fmt::Display for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<T: Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
impl<T> fmt::Pointer for Arc<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&(&**self as *const T), f)
}
}
impl<T: Default> Default for Arc<T> {
fn default() -> Arc<T> {
Arc::new(Default::default())
}
}
impl<T> From<T> for Arc<T> {
fn from(t: T) -> Arc<T> {
Arc::new(t)
}
}
// NOTE(stjepang): It would also make sense to have the following impls:
//
// - `impl<T> AsyncRead for &Arc<T> where &T: AsyncRead {}`
// - `impl<T> AsyncWrite for &Arc<T> where &T: AsyncWrite {}`
// - `impl<T> AsyncSeek for &Arc<T> where &T: AsyncSeek {}`
//
// However, those impls sometimes make Rust's type inference try too hard when types cannot be
// inferred. In the end, instead of complaining with a nice error message, the Rust compiler ends
// up overflowing and dumping a very long error message spanning multiple screens.
//
// Since those impls are not essential, I decided to err on the safe side and not include them.
impl<T> AsyncRead for Arc<T>
where
for<'a> &'a T: AsyncRead,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self.0).poll_read(cx, buf)
}
fn poll_read_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &mut [IoSliceMut<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self.0).poll_read_vectored(cx, bufs)
}
}
impl<T> AsyncWrite for Arc<T>
where
for<'a> &'a T: AsyncWrite,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self.0).poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self.0).poll_write_vectored(cx, bufs)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut &*self.0).poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut &*self.0).poll_close(cx)
}
}
impl<T> AsyncSeek for Arc<T>
where
for<'a> &'a T: AsyncSeek,
{
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
pos: SeekFrom,
) -> Poll<io::Result<u64>> {
Pin::new(&mut &*self.0).poll_seek(cx, pos)
}
}
/// A mutex that implements async I/O traits.
///
/// This is a blocking mutex that adds the following impls:
///
/// - `impl<T> AsyncRead for Mutex<T> where T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncRead for &Mutex<T> where T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncWrite for Mutex<T> where T: AsyncWrite + Unpin {}`
/// - `impl<T> AsyncWrite for &Mutex<T> where T: AsyncWrite + Unpin {}`
/// - `impl<T> AsyncSeek for Mutex<T> where T: AsyncSeek + Unpin {}`
/// - `impl<T> AsyncSeek for &Mutex<T> where T: AsyncSeek + Unpin {}`
pub struct Mutex<T>(async_lock::Mutex<T>);
impl<T> Mutex<T> {
/// Creates a new mutex.
///
/// # Examples
///
/// ```
/// use async_dup::Mutex;
///
/// let mutex = Mutex::new(10);
/// ```
pub fn new(data: T) -> Mutex<T> {
Mutex(data.into())
}
/// Acquires the mutex, blocking the current thread until it is able to do so.
///
/// Returns a guard that releases the mutex when dropped.
///
/// # Examples
///
/// ```
/// use async_dup::Mutex;
///
/// let mutex = Mutex::new(10);
/// let guard = mutex.lock();
/// assert_eq!(*guard, 10);
/// ```
pub fn lock(&self) -> MutexGuard<'_, T> {
MutexGuard(self.0.lock_blocking())
}
/// Attempts to acquire the mutex.
///
/// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the mutex when dropped.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// use async_dup::Mutex;
///
/// let mutex = Mutex::new(10);
/// if let Some(guard) = mutex.try_lock() {
/// assert_eq!(*guard, 10);
/// }
/// # ;
/// ```
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
self.0.try_lock().map(MutexGuard)
}
/// Consumes the mutex, returning the underlying data.
///
/// # Examples
///
/// ```
/// use async_dup::Mutex;
///
/// let mutex = Mutex::new(10);
/// assert_eq!(mutex.into_inner(), 10);
/// ```
pub fn into_inner(self) -> T {
self.0.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
/// borrow statically guarantees the mutex is not already acquired.
///
/// # Examples
///
/// ```
/// use async_dup::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut() = 10;
/// assert_eq!(*mutex.lock(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
self.0.get_mut()
}
}
impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct Locked;
impl fmt::Debug for Locked {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
match self.try_lock() {
None => f.debug_struct("Mutex").field("data", &Locked).finish(),
Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
}
}
}
impl<T> From<T> for Mutex<T> {
fn from(val: T) -> Mutex<T> {
Mutex::new(val)
}
}
impl<T: Default> Default for Mutex<T> {
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
impl<T: AsyncRead + Unpin> AsyncRead for Mutex<T> {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_read(cx, buf)
}
fn poll_read_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &mut [IoSliceMut<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
}
}
impl<T: AsyncRead + Unpin> AsyncRead for &Mutex<T> {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_read(cx, buf)
}
fn poll_read_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &mut [IoSliceMut<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
}
}
impl<T: AsyncWrite + Unpin> AsyncWrite for Mutex<T> {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut *self.lock()).poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut *self.lock()).poll_close(cx)
}
}
impl<T: AsyncWrite + Unpin> AsyncWrite for &Mutex<T> {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut *self.lock()).poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut *self.lock()).poll_close(cx)
}
}
impl<T: AsyncSeek + Unpin> AsyncSeek for Mutex<T> {
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
pos: SeekFrom,
) -> Poll<io::Result<u64>> {
Pin::new(&mut *self.lock()).poll_seek(cx, pos)
}
}
impl<T: AsyncSeek + Unpin> AsyncSeek for &Mutex<T> {
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
pos: SeekFrom,
) -> Poll<io::Result<u64>> {
Pin::new(&mut *self.lock()).poll_seek(cx, pos)
}
}
/// A guard that releases the mutex when dropped.
pub struct MutexGuard<'a, T>(async_lock::MutexGuard<'a, T>);
impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.0
}
}
#[cfg(test)]
mod tests {
use super::*;
fn is_send<T: Send>(_: &T) {}
fn is_sync<T: Sync>(_: &T) {}
#[test]
fn is_send_sync() {
let arc = Arc::new(());
let mutex = Mutex::new(());
is_send(&arc);
is_sync(&arc);
is_send(&mutex);
is_sync(&mutex);
let guard = mutex.lock();
is_send(&guard);
is_sync(&guard);
}
}