1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! Helper macros for `async_ffi::FfiFuture`.
use std::mem;
use proc_macro::TokenStream as RawTokenStream;
use proc_macro2::{Ident, Span, TokenStream, TokenTree};
use quote::{quote, quote_spanned, ToTokens};
use syn::parse::{Parse, ParseStream, Result};
use syn::spanned::Spanned;
use syn::{
parse_quote_spanned, Attribute, Block, Error, FnArg, ForeignItemFn, GenericParam, ItemFn,
Lifetime, LifetimeParam, Pat, PatIdent, Signature, Token,
};
/// A helper macro attribute to converts an `async fn` into a ordinary `fn` returning `FfiFuture`.
///
/// Note that this crate doesn't automatically pulls in `async_ffi` dependency. You must manually
/// add `async_ffi` dependency to your `Cargo.toml`. Or alternatively, using `macros` feature of
/// `async_ffi` which re-export the macro from this crate, instead of pulling in this crate
/// explicitly.
///
/// # Usages
///
/// The typical usage is to apply this macro to an `async fn`.
/// ```
/// # async fn do_work(_: i32) {}
/// use async_ffi_macros::async_ffi;
/// // Or if you have `macros` feature of `async_ffi` enabled,
/// // use async_ffi::async_ffi;
///
/// #[async_ffi]
/// #[no_mangle]
/// async fn func(x: i32) -> i32 {
/// do_work(x).await;
/// x + 42
/// }
/// ```
///
/// It would be converted into roughly:
/// ```
/// # async fn do_work(_: i32) {}
/// #[no_mangle]
/// extern "C" fn func(x: i32) -> ::async_ffi::FfiFuture<i32> {
/// ::async_ffi::FfiFuture::new(async move {
/// // NB. Arguments are always moved into the result Future, no matter if it's used.
/// // This is the same behavior as original `async fn`s.
/// let x = x;
///
/// do_work(x).await;
/// x + 42
/// })
/// }
/// ```
///
/// You can also apply `#[async_ffi]` to external functions.
/// ```
/// # use async_ffi_macros::async_ffi;
/// extern "C" {
/// #[async_ffi]
/// async fn extern_fn(arg: i32) -> i32;
/// // => fn extern_fn(arg: i32) -> ::async_ffi::FfiFuture<i32>;
/// }
/// ```
///
/// ## Non-`Send` futures
/// Call the macro with arguments `?Send` to wrap the result into `LocalFfiFuture` instead of
/// `FfiFuture`.
///
/// ```
/// # use async_ffi_macros::async_ffi;
/// #[async_ffi(?Send)]
/// async fn func() {}
/// // => fn func() -> ::async_ffi::LocalFfiFuture<()> { ... }
/// ```
///
/// ## References in parameters
/// When parameters of your `async fn` contain references, you need to capture their lifetimes in
/// the result `FfiFuture`. Currently, we don't expand lifetime elisions. You must explicitly give
/// the result lifetime a name in macro arguments and specify all bounds if necessary.
///
/// ```
/// # use async_ffi_macros::async_ffi;
/// #[async_ffi('fut)]
/// async fn borrow(x: &'fut i32, y: &'fut i32) -> i32 { *x + *y }
/// // => fn borrow<'fut>(x: &'fut i32) -> ::async_ffi::BorrowingFfiFuture<'fut, i32> { ... }
///
/// // In complex cases, explicit bounds are necessary.
/// #[async_ffi('fut)]
/// async fn complex<'a: 'fut, 'b: 'fut>(x: &'a mut i32, y: &'b mut i32) -> i32 { *x + *y }
/// // => fn complex<'a: 'fut, 'b: 'fut, 'fut>(x: &'a mut i32, y: &'b mut i32) -> BorrowingFfiFuture<'fut, i32> { ... }
///
/// // Non Send async fn can also work together.
/// #[async_ffi('fut, ?Send)]
/// async fn non_send(x: &'fut i32, y: &'fut i32) -> i32 { *x }
/// // => fn non_send<'fut>(x: &'fut i32) -> ::async_ffi::LocalBorrowingFfiFuture<'fut, i32> { ... }
/// ```
#[proc_macro_attribute]
pub fn async_ffi(args: RawTokenStream, input: RawTokenStream) -> RawTokenStream {
async_ffi_inner(args.into(), input.into()).into()
}
fn async_ffi_inner(args: TokenStream, mut input: TokenStream) -> TokenStream {
let mut errors = Vec::new();
let args = syn::parse2::<Args>(args)
.map_err(|err| errors.push(err))
.unwrap_or_default();
if matches!(input.clone().into_iter().last(), Some(TokenTree::Punct(p)) if p.as_char() == ';') {
match syn::parse2::<ForeignItemFn>(input.clone()) {
Ok(mut item) => {
expand(&mut item.attrs, &mut item.sig, None, args, &mut errors);
input = item.to_token_stream();
}
Err(err) => errors.push(err),
}
} else {
match syn::parse2::<ItemFn>(input.clone()) {
Ok(mut item) => {
expand(
&mut item.attrs,
&mut item.sig,
Some(&mut item.block),
args,
&mut errors,
);
input = item.to_token_stream();
}
Err(err) => errors.push(err),
}
}
for err in errors {
input.extend(err.into_compile_error());
}
input
}
mod kw {
syn::custom_keyword!(Send);
}
#[derive(Default)]
struct Args {
pub lifetime: Option<Lifetime>,
pub local: bool,
}
impl Parse for Args {
fn parse(input: ParseStream) -> Result<Self> {
let mut this = Self::default();
if input.peek(Lifetime) {
this.lifetime = Some(input.parse::<Lifetime>()?);
if input.peek(Token![,]) {
input.parse::<Token![,]>()?;
}
}
if input.peek(Token![?]) {
input.parse::<Token![?]>()?;
input.parse::<kw::Send>()?;
this.local = true;
}
if !input.is_empty() {
return Err(Error::new(
Span::call_site(),
"invalid arguments for #[async_ffi]",
));
}
Ok(this)
}
}
fn expand(
attrs: &mut Vec<Attribute>,
sig: &mut Signature,
body: Option<&mut Block>,
args: Args,
errors: &mut Vec<Error>,
) {
let mut emit_err =
|span: Span, msg: &str| errors.push(Error::new(span, format!("#[async_ffi] {}", msg)));
let async_span = if let Some(tok) = sig.asyncness.take() {
tok.span
} else {
if body.is_some() {
emit_err(sig.fn_token.span, "expects an `async fn`");
}
Span::call_site()
};
attrs.push(parse_quote_spanned!(async_span=> #[allow(clippy::needless_lifetimes)]));
attrs.push(parse_quote_spanned!(async_span=> #[must_use]));
let lifetime = match args.lifetime {
None => Lifetime::new("'static", Span::call_site()),
Some(lifetime) => {
// Add the lifetime into generic parameters, at the end of existing lifetimes.
sig.generics.lt_token.get_or_insert(Token![<](async_span));
sig.generics.gt_token.get_or_insert(Token![>](async_span));
let lifetime_cnt = sig.generics.lifetimes_mut().count();
sig.generics.params.insert(
lifetime_cnt,
GenericParam::Lifetime(LifetimeParam::new(lifetime.clone())),
);
lifetime
}
};
let ffi_future = if args.local {
quote_spanned!(async_span=> ::async_ffi::LocalBorrowingFfiFuture)
} else {
quote_spanned!(async_span=> ::async_ffi::BorrowingFfiFuture)
};
match &mut sig.output {
syn::ReturnType::Default => {
sig.output = parse_quote_spanned!(async_span=> -> #ffi_future<#lifetime, ()>);
}
syn::ReturnType::Type(_r_arrow, ret_ty) => {
*ret_ty = parse_quote_spanned!(async_span=> #ffi_future<#lifetime, #ret_ty>);
}
}
if let Some(va) = &sig.variadic {
emit_err(va.span(), "does not support variadic parameters");
}
// Force capturing all arguments in the returned Future.
// This is the behavior of `async fn`.
let mut param_bindings = TokenStream::new();
for (param, i) in sig.inputs.iter_mut().zip(1..) {
let pat_ty = match param {
FnArg::Receiver(receiver) => {
emit_err(receiver.span(), "does not support `self` parameter");
continue;
}
FnArg::Typed(pat_ty) => pat_ty,
};
let attributes = &pat_ty.attrs;
let param_ident = match &*pat_ty.pat {
Pat::Ident(pat_ident) => {
if pat_ident.ident == "self" {
emit_err(pat_ident.span(), "does not support `self` parameter");
continue;
}
pat_ident.ident.clone()
}
_ => Ident::new(&format!("__param{}", i), pat_ty.span()),
};
// If this is a declaration, only check but not transform.
if body.is_none() {
continue;
}
let old_pat = mem::replace(
&mut *pat_ty.pat,
Pat::Ident(PatIdent {
attrs: Vec::new(),
by_ref: None,
mutability: None,
ident: param_ident.clone(),
subpat: None,
}),
);
// NB.
// - Rebind the parameter once, to ensure their drop order not broken
// by non-moving patterns containing `_`.
// - `mut` is required when the old pattern has `ref mut` inside.
// - Use external (macro) spans, so they won't trigger lints.
param_bindings.extend(quote! {
#(#attributes)*
#[allow(clippy::used_underscore_binding)]
let mut #param_ident = #param_ident;
#(#attributes)*
#[allow(clippy::used_underscore_binding)]
let #old_pat = #param_ident;
});
}
if let Some(body) = body {
let stmts = mem::take(&mut body.stmts);
body.stmts = parse_quote_spanned! {async_span=>
#ffi_future::new(async move {
#param_bindings
#(#stmts)*
})
};
}
}
#[cfg(doctest)]
mod tests {
/// ```compile_fail
/// #[async_ffi_macros::async_ffi]
/// pub fn not_async() {}
/// ```
fn not_async() {}
/// ```compile_fail
/// pub trait Trait {
/// #[async_ffi_macros::async_ffi]
/// async fn method(&self);
/// }
/// ```
fn receiver_trait_method() {}
/// ```compile_fail
/// struct Struct;
/// impl Struct {
/// #[async_ffi_macros::async_ffi]
/// async fn method(&self) {}
/// }
/// ```
fn receiver_impl_method() {}
/// ```compile_fail
/// struct Struct;
/// impl Struct {
/// #[async_ffi_macros::async_ffi]
/// async fn method(self: &mut Self) {}
/// }
/// ```
fn typed_receiver() {}
/// ```compile_fail
/// extern "C" {
/// #[async_ffi_macros::async_ffi]
/// async fn foo(ref mut x: i32);
/// }
/// ```
fn declaration_pattern() {}
}