1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Thread parking and unparking.
//!
//! This module exposes the exact same API as the [`parking`][docs-parking] crate. The only
//! difference is that [`Parker`] in this module will wait on epoll/kqueue/wepoll and wake futures
//! blocked on I/O or timers instead of *just* sleeping.
//!
//! Executors may use this mechanism to go to sleep when idle and wake up when more work is
//! scheduled. The benefit is in that when going to sleep using [`Parker`], futures blocked on I/O
//! or timers will often be woken and polled by the same executor thread. This is sometimes a
//! significant optimization because no context switch is needed between waiting on I/O and polling
//! futures.
//!
//! [docs-parking]: https://docs.rs/parking
//!
//! # Examples
//!
//! A simple `block_on()` that runs a single future and waits on I/O when the future is idle:
//!
//! ```
//! use std::future::Future;
//! use std::task::{Context, Poll};
//!
//! use async_io::parking;
//! use futures_lite::{future, pin};
//! use waker_fn::waker_fn;
//!
//! // Blocks on a future to complete, processing I/O events when idle.
//! fn block_on<T>(future: impl Future<Output = T>) -> T {
//!     let (p, u) = parking::pair();
//!     let waker = waker_fn(move || u.unpark());
//!     let cx = &mut Context::from_waker(&waker);
//!
//!     pin!(future);
//!     loop {
//!         match future.as_mut().poll(cx) {
//!             Poll::Ready(t) => return t,
//!             Poll::Pending => {
//!                 // Wait until unparked, processing I/O events in the meantime.
//!                 p.park();
//!             }
//!         }
//!     }
//! }
//!
//! block_on(async {
//!     println!("Hello world!");
//!     future::yield_now().await;
//!     println!("Hello again!");
//! });
//! ```

use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};

use crate::reactor::Reactor;

/// Creates a parker and an associated unparker.
///
/// # Examples
///
/// ```
/// use async_io::parking;
///
/// let (p, u) = parking::pair();
/// ```
pub fn pair() -> (Parker, Unparker) {
    let p = Parker::new();
    let u = p.unparker();
    (p, u)
}

/// Waits for a notification.
#[derive(Debug)]
pub struct Parker {
    /// The inner parker implementation.
    inner: parking::Parker,

    /// Set to `true` when the parker is polling I/O.
    io: Arc<AtomicBool>,
}

impl Parker {
    /// Creates a new parker.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    ///
    /// let p = Parker::new();
    /// ```
    ///
    pub fn new() -> Parker {
        let inner = parking::Parker::new();
        let io = Arc::new(AtomicBool::new(false));
        Reactor::get().increment_parkers();
        Parker { inner, io }
    }

    /// Blocks until notified and then goes back into unnotified state.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// // Notify the parker.
    /// u.unpark();
    ///
    /// // Wakes up immediately because the parker is notified.
    /// p.park();
    /// ```
    pub fn park(&self) {
        self.park_inner(None);
    }

    /// Blocks until notified and then goes back into unnotified state, or times out after
    /// `duration`.
    ///
    /// Returns `true` if notified before the timeout.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    /// use std::time::Duration;
    ///
    /// let p = Parker::new();
    ///
    /// // Wait for a notification, or time out after 500 ms.
    /// p.park_timeout(Duration::from_millis(500));
    /// ```
    pub fn park_timeout(&self, timeout: Duration) -> bool {
        self.park_inner(Some(timeout))
    }

    /// Blocks until notified and then goes back into unnotified state, or times out at `instant`.
    ///
    /// Returns `true` if notified before the deadline.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    /// use std::time::{Duration, Instant};
    ///
    /// let p = Parker::new();
    ///
    /// // Wait for a notification, or time out after 500 ms.
    /// p.park_deadline(Instant::now() + Duration::from_millis(500));
    /// ```
    pub fn park_deadline(&self, deadline: Instant) -> bool {
        self.park_inner(Some(deadline.saturating_duration_since(Instant::now())))
    }

    /// Notifies the parker.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(500));
    ///     u.unpark();
    /// });
    ///
    /// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
    /// p.park();
    /// ```
    pub fn unpark(&self) {
        if self.inner.unpark() && self.io.load(Ordering::SeqCst) {
            Reactor::get().notify();
        }
    }

    /// Returns a handle for unparking.
    ///
    /// The returned [`Unparker`] can be cloned and shared among threads.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// // Notify the parker.
    /// u.unpark();
    ///
    /// // Wakes up immediately because the parker is notified.
    /// p.park();
    /// ```
    pub fn unparker(&self) -> Unparker {
        Unparker {
            inner: self.inner.unparker(),
            io: self.io.clone(),
        }
    }

    fn park_inner(&self, timeout: Option<Duration>) -> bool {
        // If we were previously notified then we consume this notification and return quickly.
        if self.inner.park_timeout(Duration::from_secs(0)) {
            // Process available I/O events.
            if let Some(reactor_lock) = Reactor::get().try_lock() {
                let _ = reactor_lock.react(Some(Duration::from_secs(0)));
            }
            return true;
        }

        // If the timeout is zero, then there is no need to actually block.
        if let Some(dur) = timeout {
            if dur == Duration::from_secs(0) {
                // Process available I/O events.
                if let Some(reactor_lock) = Reactor::get().try_lock() {
                    let _ = reactor_lock.react(Some(Duration::from_secs(0)));
                }
                return false;
            }
        }

        // Otherwise, we need to coordinate going to sleep.
        let deadline = timeout.map(|t| Instant::now() + t);

        loop {
            // Attempt grabbing a lock on the reactor.
            match Reactor::get().try_lock() {
                None => {
                    if let Some(deadline) = deadline {
                        // Wait for a notification or timeout.
                        return self.inner.park_deadline(deadline);
                    } else {
                        // Wait for a notification.
                        self.inner.park();
                        return true;
                    }
                }
                Some(reactor_lock) => {
                    // First let others know this parker is waiting on I/O.
                    self.io.store(true, Ordering::SeqCst);

                    // Check if a notification was received.
                    if self.inner.park_timeout(Duration::from_secs(0)) {
                        self.io.store(false, Ordering::SeqCst);
                        return true;
                    }

                    // Wait for I/O events.
                    let timeout = deadline.map(|d| d.saturating_duration_since(Instant::now()));
                    let _ = reactor_lock.react(timeout);
                    self.io.store(false, Ordering::SeqCst);

                    // Check if a notification was received.
                    if self.inner.park_timeout(Duration::from_secs(0)) {
                        return true;
                    }

                    // Check for timeout.
                    if let Some(deadline) = deadline {
                        if Instant::now() >= deadline {
                            return false;
                        }
                    }
                }
            }
        }
    }
}

impl Drop for Parker {
    fn drop(&mut self) {
        Reactor::get().decrement_parkers();
    }
}

impl Default for Parker {
    fn default() -> Parker {
        Parker::new()
    }
}

/// Notifies a parker.
#[derive(Clone, Debug)]
pub struct Unparker {
    /// The inner unparker implementation.
    inner: parking::Unparker,

    /// Set to `true` when the parker is polling I/O.
    io: Arc<AtomicBool>,
}

impl Unparker {
    /// Notifies the associated parker.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::parking::Parker;
    /// use std::thread;
    /// use std::time::Duration;
    ///
    /// let p = Parker::new();
    /// let u = p.unparker();
    ///
    /// thread::spawn(move || {
    ///     thread::sleep(Duration::from_millis(500));
    ///     u.unpark();
    /// });
    ///
    /// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state.
    /// p.park();
    /// ```
    pub fn unpark(&self) {
        if self.inner.unpark() && self.io.load(Ordering::SeqCst) {
            Reactor::get().notify();
        }
    }
}