1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
//! Thread parking and unparking. //! //! This module exposes the exact same API as the [`parking`][docs-parking] crate. The only //! difference is that [`Parker`] in this module will wait on epoll/kqueue/wepoll and wake futures //! blocked on I/O or timers instead of *just* sleeping. //! //! Executors may use this mechanism to go to sleep when idle and wake up when more work is //! scheduled. The benefit is in that when going to sleep using [`Parker`], futures blocked on I/O //! or timers will often be woken and polled by the same executor thread. This is sometimes a //! significant optimization because no context switch is needed between waiting on I/O and polling //! futures. //! //! [docs-parking]: https://docs.rs/parking //! //! # Examples //! //! A simple `block_on()` that runs a single future and waits on I/O when the future is idle: //! //! ``` //! use std::future::Future; //! use std::task::{Context, Poll}; //! //! use async_io::parking; //! use futures_lite::{future, pin}; //! use waker_fn::waker_fn; //! //! // Blocks on a future to complete, processing I/O events when idle. //! fn block_on<T>(future: impl Future<Output = T>) -> T { //! let (p, u) = parking::pair(); //! let waker = waker_fn(move || u.unpark()); //! let cx = &mut Context::from_waker(&waker); //! //! pin!(future); //! loop { //! match future.as_mut().poll(cx) { //! Poll::Ready(t) => return t, //! Poll::Pending => { //! // Wait until unparked, processing I/O events in the meantime. //! p.park(); //! } //! } //! } //! } //! //! block_on(async { //! println!("Hello world!"); //! future::yield_now().await; //! println!("Hello again!"); //! }); //! ``` use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; use std::time::{Duration, Instant}; use crate::reactor::Reactor; /// Creates a parker and an associated unparker. /// /// # Examples /// /// ``` /// use async_io::parking; /// /// let (p, u) = parking::pair(); /// ``` pub fn pair() -> (Parker, Unparker) { let p = Parker::new(); let u = p.unparker(); (p, u) } /// Waits for a notification. #[derive(Debug)] pub struct Parker { /// The inner parker implementation. inner: parking::Parker, /// Set to `true` when the parker is polling I/O. io: Arc<AtomicBool>, } impl Parker { /// Creates a new parker. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// /// let p = Parker::new(); /// ``` /// pub fn new() -> Parker { let inner = parking::Parker::new(); let io = Arc::new(AtomicBool::new(false)); Reactor::get().increment_parkers(); Parker { inner, io } } /// Blocks until notified and then goes back into unnotified state. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// /// let p = Parker::new(); /// let u = p.unparker(); /// /// // Notify the parker. /// u.unpark(); /// /// // Wakes up immediately because the parker is notified. /// p.park(); /// ``` pub fn park(&self) { self.park_inner(None); } /// Blocks until notified and then goes back into unnotified state, or times out after /// `duration`. /// /// Returns `true` if notified before the timeout. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// use std::time::Duration; /// /// let p = Parker::new(); /// /// // Wait for a notification, or time out after 500 ms. /// p.park_timeout(Duration::from_millis(500)); /// ``` pub fn park_timeout(&self, timeout: Duration) -> bool { self.park_inner(Some(timeout)) } /// Blocks until notified and then goes back into unnotified state, or times out at `instant`. /// /// Returns `true` if notified before the deadline. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// use std::time::{Duration, Instant}; /// /// let p = Parker::new(); /// /// // Wait for a notification, or time out after 500 ms. /// p.park_deadline(Instant::now() + Duration::from_millis(500)); /// ``` pub fn park_deadline(&self, deadline: Instant) -> bool { self.park_inner(Some(deadline.saturating_duration_since(Instant::now()))) } /// Notifies the parker. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// use std::thread; /// use std::time::Duration; /// /// let p = Parker::new(); /// let u = p.unparker(); /// /// thread::spawn(move || { /// thread::sleep(Duration::from_millis(500)); /// u.unpark(); /// }); /// /// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state. /// p.park(); /// ``` pub fn unpark(&self) { if self.inner.unpark() && self.io.load(Ordering::SeqCst) { Reactor::get().notify(); } } /// Returns a handle for unparking. /// /// The returned [`Unparker`] can be cloned and shared among threads. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// /// let p = Parker::new(); /// let u = p.unparker(); /// /// // Notify the parker. /// u.unpark(); /// /// // Wakes up immediately because the parker is notified. /// p.park(); /// ``` pub fn unparker(&self) -> Unparker { Unparker { inner: self.inner.unparker(), io: self.io.clone(), } } fn park_inner(&self, timeout: Option<Duration>) -> bool { // If we were previously notified then we consume this notification and return quickly. if self.inner.park_timeout(Duration::from_secs(0)) { // Process available I/O events. if let Some(reactor_lock) = Reactor::get().try_lock() { let _ = reactor_lock.react(Some(Duration::from_secs(0))); } return true; } // If the timeout is zero, then there is no need to actually block. if let Some(dur) = timeout { if dur == Duration::from_secs(0) { // Process available I/O events. if let Some(reactor_lock) = Reactor::get().try_lock() { let _ = reactor_lock.react(Some(Duration::from_secs(0))); } return false; } } // Otherwise, we need to coordinate going to sleep. let deadline = timeout.map(|t| Instant::now() + t); loop { // Attempt grabbing a lock on the reactor. match Reactor::get().try_lock() { None => { if let Some(deadline) = deadline { // Wait for a notification or timeout. return self.inner.park_deadline(deadline); } else { // Wait for a notification. self.inner.park(); return true; } } Some(reactor_lock) => { // First let others know this parker is waiting on I/O. self.io.store(true, Ordering::SeqCst); // Check if a notification was received. if self.inner.park_timeout(Duration::from_secs(0)) { self.io.store(false, Ordering::SeqCst); return true; } // Wait for I/O events. let timeout = deadline.map(|d| d.saturating_duration_since(Instant::now())); let _ = reactor_lock.react(timeout); self.io.store(false, Ordering::SeqCst); // Check if a notification was received. if self.inner.park_timeout(Duration::from_secs(0)) { return true; } // Check for timeout. if let Some(deadline) = deadline { if Instant::now() >= deadline { return false; } } } } } } } impl Drop for Parker { fn drop(&mut self) { Reactor::get().decrement_parkers(); } } impl Default for Parker { fn default() -> Parker { Parker::new() } } /// Notifies a parker. #[derive(Clone, Debug)] pub struct Unparker { /// The inner unparker implementation. inner: parking::Unparker, /// Set to `true` when the parker is polling I/O. io: Arc<AtomicBool>, } impl Unparker { /// Notifies the associated parker. /// /// # Examples /// /// ``` /// use async_io::parking::Parker; /// use std::thread; /// use std::time::Duration; /// /// let p = Parker::new(); /// let u = p.unparker(); /// /// thread::spawn(move || { /// thread::sleep(Duration::from_millis(500)); /// u.unpark(); /// }); /// /// // Wakes up when `u.unpark()` notifies and then goes back into unnotified state. /// p.park(); /// ``` pub fn unpark(&self) { if self.inner.unpark() && self.io.load(Ordering::SeqCst) { Reactor::get().notify(); } } }