async_io/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
//! Async I/O and timers.
//!
//! This crate provides two tools:
//!
//! * [`Async`], an adapter for standard networking types (and [many other] types) to use in
//! async programs.
//! * [`Timer`], a future or stream that emits timed events.
//!
//! For concrete async networking types built on top of this crate, see [`async-net`].
//!
//! [many other]: https://github.com/smol-rs/async-io/tree/master/examples
//! [`async-net`]: https://docs.rs/async-net
//!
//! # Implementation
//!
//! The first time [`Async`] or [`Timer`] is used, a thread named "async-io" will be spawned.
//! The purpose of this thread is to wait for I/O events reported by the operating system, and then
//! wake appropriate futures blocked on I/O or timers when they can be resumed.
//!
//! To wait for the next I/O event, the "async-io" thread uses [epoll] on Linux/Android/illumos,
//! [kqueue] on macOS/iOS/BSD, [event ports] on illumos/Solaris, and [IOCP] on Windows. That
//! functionality is provided by the [`polling`] crate.
//!
//! However, note that you can also process I/O events and wake futures on any thread using the
//! [`block_on()`] function. The "async-io" thread is therefore just a fallback mechanism
//! processing I/O events in case no other threads are.
//!
//! [epoll]: https://en.wikipedia.org/wiki/Epoll
//! [kqueue]: https://en.wikipedia.org/wiki/Kqueue
//! [event ports]: https://illumos.org/man/port_create
//! [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
//! [`polling`]: https://docs.rs/polling
//!
//! # Examples
//!
//! Connect to `example.com:80`, or time out after 10 seconds.
//!
//! ```
//! use async_io::{Async, Timer};
//! use futures_lite::{future::FutureExt, io};
//!
//! use std::net::{TcpStream, ToSocketAddrs};
//! use std::time::Duration;
//!
//! # futures_lite::future::block_on(async {
//! let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
//!
//! let stream = Async::<TcpStream>::connect(addr).or(async {
//! Timer::after(Duration::from_secs(10)).await;
//! Err(io::ErrorKind::TimedOut.into())
//! })
//! .await?;
//! # std::io::Result::Ok(()) });
//! ```
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
use std::future::Future;
use std::io::{self, IoSlice, IoSliceMut, Read, Write};
use std::net::{SocketAddr, TcpListener, TcpStream, UdpSocket};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll, Waker};
use std::time::{Duration, Instant};
#[cfg(unix)]
use std::{
os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
os::unix::net::{SocketAddr as UnixSocketAddr, UnixDatagram, UnixListener, UnixStream},
path::Path,
};
#[cfg(windows)]
use std::os::windows::io::{AsRawSocket, AsSocket, BorrowedSocket, OwnedSocket, RawSocket};
use futures_io::{AsyncRead, AsyncWrite};
use futures_lite::stream::{self, Stream};
use futures_lite::{future, pin, ready};
use rustix::io as rio;
use rustix::net as rn;
use crate::reactor::{Reactor, Registration, Source};
mod driver;
mod reactor;
pub mod os;
pub use driver::block_on;
pub use reactor::{Readable, ReadableOwned, Writable, WritableOwned};
/// A future or stream that emits timed events.
///
/// Timers are futures that output a single [`Instant`] when they fire.
///
/// Timers are also streams that can output [`Instant`]s periodically.
///
/// # Precision
///
/// There is a limit on the maximum precision that a `Timer` can provide. This limit is
/// dependent on the current platform; for instance, on Windows, the maximum precision is
/// about 16 milliseconds. Because of this limit, the timer may sleep for longer than the
/// requested duration. It will never sleep for less.
///
/// # Examples
///
/// Sleep for 1 second:
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// Timer::after(Duration::from_secs(1)).await;
/// # });
/// ```
///
/// Timeout after 1 second:
///
/// ```
/// use async_io::Timer;
/// use futures_lite::FutureExt;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// let addrs = async_net::resolve("google.com:80")
/// .or(async {
/// Timer::after(Duration::from_secs(1)).await;
/// Err(std::io::ErrorKind::TimedOut.into())
/// })
/// .await?;
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Timer {
/// This timer's ID and last waker that polled it.
///
/// When this field is set to `None`, this timer is not registered in the reactor.
id_and_waker: Option<(usize, Waker)>,
/// The next instant at which this timer fires.
///
/// If this timer is a blank timer, this value is None. If the timer
/// must be set, this value contains the next instant at which the
/// timer must fire.
when: Option<Instant>,
/// The period.
period: Duration,
}
impl Timer {
/// Creates a timer that will never fire.
///
/// # Examples
///
/// This function may also be useful for creating a function with an optional timeout.
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_io::Timer;
/// use futures_lite::prelude::*;
/// use std::time::Duration;
///
/// async fn run_with_timeout(timeout: Option<Duration>) {
/// let timer = timeout
/// .map(|timeout| Timer::after(timeout))
/// .unwrap_or_else(Timer::never);
///
/// run_lengthy_operation().or(timer).await;
/// }
/// # // Note that since a Timer as a Future returns an Instant,
/// # // this function needs to return an Instant to be used
/// # // in "or".
/// # async fn run_lengthy_operation() -> std::time::Instant {
/// # std::time::Instant::now()
/// # }
///
/// // Times out after 5 seconds.
/// run_with_timeout(Some(Duration::from_secs(5))).await;
/// // Does not time out.
/// run_with_timeout(None).await;
/// # });
/// ```
pub fn never() -> Timer {
Timer {
id_and_waker: None,
when: None,
period: Duration::MAX,
}
}
/// Creates a timer that emits an event once after the given duration of time.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// Timer::after(Duration::from_secs(1)).await;
/// # });
/// ```
pub fn after(duration: Duration) -> Timer {
Instant::now()
.checked_add(duration)
.map_or_else(Timer::never, Timer::at)
}
/// Creates a timer that emits an event once at the given time instant.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let now = Instant::now();
/// let when = now + Duration::from_secs(1);
/// Timer::at(when).await;
/// # });
/// ```
pub fn at(instant: Instant) -> Timer {
Timer::interval_at(instant, Duration::MAX)
}
/// Creates a timer that emits events periodically.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let period = Duration::from_secs(1);
/// Timer::interval(period).next().await;
/// # });
/// ```
pub fn interval(period: Duration) -> Timer {
Instant::now()
.checked_add(period)
.map_or_else(Timer::never, |at| Timer::interval_at(at, period))
}
/// Creates a timer that emits events periodically, starting at `start`.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let start = Instant::now();
/// let period = Duration::from_secs(1);
/// Timer::interval_at(start, period).next().await;
/// # });
/// ```
pub fn interval_at(start: Instant, period: Duration) -> Timer {
Timer {
id_and_waker: None,
when: Some(start),
period,
}
}
/// Indicates whether or not this timer will ever fire.
///
/// [`never()`] will never fire, and timers created with [`after()`] or [`at()`] will fire
/// if the duration is not too large.
///
/// [`never()`]: Timer::never()
/// [`after()`]: Timer::after()
/// [`at()`]: Timer::at()
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_io::Timer;
/// use futures_lite::prelude::*;
/// use std::time::Duration;
///
/// // `never` will never fire.
/// assert!(!Timer::never().will_fire());
///
/// // `after` will fire if the duration is not too large.
/// assert!(Timer::after(Duration::from_secs(1)).will_fire());
/// assert!(!Timer::after(Duration::MAX).will_fire());
///
/// // However, once an `after` timer has fired, it will never fire again.
/// let mut t = Timer::after(Duration::from_secs(1));
/// assert!(t.will_fire());
/// (&mut t).await;
/// assert!(!t.will_fire());
///
/// // Interval timers will fire periodically.
/// let mut t = Timer::interval(Duration::from_secs(1));
/// assert!(t.will_fire());
/// t.next().await;
/// assert!(t.will_fire());
/// # });
/// ```
#[inline]
pub fn will_fire(&self) -> bool {
self.when.is_some()
}
/// Sets the timer to emit an event once after the given duration of time.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_after()`][`Timer::set_after()`] does not remove the waker associated with the task
/// that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::Duration;
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
/// t.set_after(Duration::from_millis(100));
/// # });
/// ```
pub fn set_after(&mut self, duration: Duration) {
match Instant::now().checked_add(duration) {
Some(instant) => self.set_at(instant),
None => {
// Overflow to never going off.
self.clear();
self.when = None;
}
}
}
/// Sets the timer to emit an event once at the given time instant.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_at()`][`Timer::set_at()`] does not remove the waker associated with the task
/// that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let now = Instant::now();
/// let when = now + Duration::from_secs(1);
/// t.set_at(when);
/// # });
/// ```
pub fn set_at(&mut self, instant: Instant) {
self.clear();
// Update the timeout.
self.when = Some(instant);
if let Some((id, waker)) = self.id_and_waker.as_mut() {
// Re-register the timer with the new timeout.
*id = Reactor::get().insert_timer(instant, waker);
}
}
/// Sets the timer to emit events periodically.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_interval()`][`Timer::set_interval()`] does not remove the waker associated with the
/// task that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let period = Duration::from_secs(2);
/// t.set_interval(period);
/// # });
/// ```
pub fn set_interval(&mut self, period: Duration) {
match Instant::now().checked_add(period) {
Some(instant) => self.set_interval_at(instant, period),
None => {
// Overflow to never going off.
self.clear();
self.when = None;
}
}
}
/// Sets the timer to emit events periodically, starting at `start`.
///
/// Note that resetting a timer is different from creating a new timer because
/// [`set_interval_at()`][`Timer::set_interval_at()`] does not remove the waker associated with
/// the task that is polling the timer.
///
/// # Examples
///
/// ```
/// use async_io::Timer;
/// use futures_lite::StreamExt;
/// use std::time::{Duration, Instant};
///
/// # futures_lite::future::block_on(async {
/// let mut t = Timer::after(Duration::from_secs(1));
///
/// let start = Instant::now();
/// let period = Duration::from_secs(2);
/// t.set_interval_at(start, period);
/// # });
/// ```
pub fn set_interval_at(&mut self, start: Instant, period: Duration) {
self.clear();
self.when = Some(start);
self.period = period;
if let Some((id, waker)) = self.id_and_waker.as_mut() {
// Re-register the timer with the new timeout.
*id = Reactor::get().insert_timer(start, waker);
}
}
/// Helper function to clear the current timer.
fn clear(&mut self) {
if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.as_ref()) {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(when, *id);
}
}
}
impl Drop for Timer {
fn drop(&mut self) {
if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.take()) {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(when, id);
}
}
}
impl Future for Timer {
type Output = Instant;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.poll_next(cx) {
Poll::Ready(Some(when)) => Poll::Ready(when),
Poll::Pending => Poll::Pending,
Poll::Ready(None) => unreachable!(),
}
}
}
impl Stream for Timer {
type Item = Instant;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = self.get_mut();
if let Some(ref mut when) = this.when {
// Check if the timer has already fired.
if Instant::now() >= *when {
if let Some((id, _)) = this.id_and_waker.take() {
// Deregister the timer from the reactor.
Reactor::get().remove_timer(*when, id);
}
let result_time = *when;
if let Some(next) = (*when).checked_add(this.period) {
*when = next;
// Register the timer in the reactor.
let id = Reactor::get().insert_timer(next, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
} else {
this.when = None;
}
return Poll::Ready(Some(result_time));
} else {
match &this.id_and_waker {
None => {
// Register the timer in the reactor.
let id = Reactor::get().insert_timer(*when, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
}
Some((id, w)) if !w.will_wake(cx.waker()) => {
// Deregister the timer from the reactor to remove the old waker.
Reactor::get().remove_timer(*when, *id);
// Register the timer in the reactor with the new waker.
let id = Reactor::get().insert_timer(*when, cx.waker());
this.id_and_waker = Some((id, cx.waker().clone()));
}
Some(_) => {}
}
}
}
Poll::Pending
}
}
/// Async adapter for I/O types.
///
/// This type puts an I/O handle into non-blocking mode, registers it in
/// [epoll]/[kqueue]/[event ports]/[IOCP], and then provides an async interface for it.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// [`Async`] is a low-level primitive, and as such it comes with some caveats.
///
/// For higher-level primitives built on top of [`Async`], look into [`async-net`] or
/// [`async-process`] (on Unix).
///
/// The most notable caveat is that it is unsafe to access the inner I/O source mutably
/// using this primitive. Traits likes [`AsyncRead`] and [`AsyncWrite`] are not implemented by
/// default unless it is guaranteed that the resource won't be invalidated by reading or writing.
/// See the [`IoSafe`] trait for more information.
///
/// [`async-net`]: https://github.com/smol-rs/async-net
/// [`async-process`]: https://github.com/smol-rs/async-process
/// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html
/// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html
///
/// ### Supported types
///
/// [`Async`] supports all networking types, as well as some OS-specific file descriptors like
/// [timerfd] and [inotify].
///
/// However, do not use [`Async`] with types like [`File`][`std::fs::File`],
/// [`Stdin`][`std::io::Stdin`], [`Stdout`][`std::io::Stdout`], or [`Stderr`][`std::io::Stderr`]
/// because all operating systems have issues with them when put in non-blocking mode.
///
/// [timerfd]: https://github.com/smol-rs/async-io/blob/master/examples/linux-timerfd.rs
/// [inotify]: https://github.com/smol-rs/async-io/blob/master/examples/linux-inotify.rs
///
/// ### Concurrent I/O
///
/// Note that [`&Async<T>`][`Async`] implements [`AsyncRead`] and [`AsyncWrite`] if `&T`
/// implements those traits, which means tasks can concurrently read and write using shared
/// references.
///
/// But there is a catch: only one task can read a time, and only one task can write at a time. It
/// is okay to have two tasks where one is reading and the other is writing at the same time, but
/// it is not okay to have two tasks reading at the same time or writing at the same time. If you
/// try to do that, conflicting tasks will just keep waking each other in turn, thus wasting CPU
/// time.
///
/// Besides [`AsyncRead`] and [`AsyncWrite`], this caveat also applies to
/// [`poll_readable()`][`Async::poll_readable()`] and
/// [`poll_writable()`][`Async::poll_writable()`].
///
/// However, any number of tasks can be concurrently calling other methods like
/// [`readable()`][`Async::readable()`] or [`read_with()`][`Async::read_with()`].
///
/// ### Closing
///
/// Closing the write side of [`Async`] with [`close()`][`futures_lite::AsyncWriteExt::close()`]
/// simply flushes. If you want to shutdown a TCP or Unix socket, use
/// [`Shutdown`][`std::net::Shutdown`].
///
/// # Examples
///
/// Connect to a server and echo incoming messages back to the server:
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::io;
/// use std::net::TcpStream;
///
/// # futures_lite::future::block_on(async {
/// // Connect to a local server.
/// let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?;
///
/// // Echo all messages from the read side of the stream into the write side.
/// io::copy(&stream, &stream).await?;
/// # std::io::Result::Ok(()) });
/// ```
///
/// You can use either predefined async methods or wrap blocking I/O operations in
/// [`Async::read_with()`], [`Async::read_with_mut()`], [`Async::write_with()`], and
/// [`Async::write_with_mut()`]:
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // These two lines are equivalent:
/// let (stream, addr) = listener.accept().await?;
/// let (stream, addr) = listener.read_with(|inner| inner.accept()).await?;
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Async<T> {
/// A source registered in the reactor.
source: Arc<Source>,
/// The inner I/O handle.
io: Option<T>,
}
impl<T> Unpin for Async<T> {}
#[cfg(unix)]
impl<T: AsFd> Async<T> {
/// Creates an async I/O handle.
///
/// This method will put the handle in non-blocking mode and register it in
/// [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{SocketAddr, TcpListener};
///
/// # futures_lite::future::block_on(async {
/// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
/// let listener = Async::new(listener)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn new(io: T) -> io::Result<Async<T>> {
// Put the file descriptor in non-blocking mode.
set_nonblocking(io.as_fd())?;
Self::new_nonblocking(io)
}
/// Creates an async I/O handle without setting it to non-blocking mode.
///
/// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
/// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
/// and cause a deadlock in an asynchronous context.
pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
// SAFETY: It is impossible to drop the I/O source while it is registered through
// this type.
let registration = unsafe { Registration::new(io.as_fd()) };
Ok(Async {
source: Reactor::get().insert_io(registration)?,
io: Some(io),
})
}
}
#[cfg(unix)]
impl<T: AsRawFd> AsRawFd for Async<T> {
fn as_raw_fd(&self) -> RawFd {
self.get_ref().as_raw_fd()
}
}
#[cfg(unix)]
impl<T: AsFd> AsFd for Async<T> {
fn as_fd(&self) -> BorrowedFd<'_> {
self.get_ref().as_fd()
}
}
#[cfg(unix)]
impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Async<T> {
type Error = io::Error;
fn try_from(value: OwnedFd) -> Result<Self, Self::Error> {
Async::new(value.into())
}
}
#[cfg(unix)]
impl<T: Into<OwnedFd>> TryFrom<Async<T>> for OwnedFd {
type Error = io::Error;
fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
value.into_inner().map(Into::into)
}
}
#[cfg(windows)]
impl<T: AsSocket> Async<T> {
/// Creates an async I/O handle.
///
/// This method will put the handle in non-blocking mode and register it in
/// [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{SocketAddr, TcpListener};
///
/// # futures_lite::future::block_on(async {
/// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
/// let listener = Async::new(listener)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn new(io: T) -> io::Result<Async<T>> {
// Put the socket in non-blocking mode.
set_nonblocking(io.as_socket())?;
Self::new_nonblocking(io)
}
/// Creates an async I/O handle without setting it to non-blocking mode.
///
/// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
///
/// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
/// `AsSocket`.
///
/// [epoll]: https://en.wikipedia.org/wiki/Epoll
/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
/// [event ports]: https://illumos.org/man/port_create
/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
///
/// # Caveats
///
/// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
/// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
/// and cause a deadlock in an asynchronous context.
pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
// Create the registration.
//
// SAFETY: It is impossible to drop the I/O source while it is registered through
// this type.
let registration = unsafe { Registration::new(io.as_socket()) };
Ok(Async {
source: Reactor::get().insert_io(registration)?,
io: Some(io),
})
}
}
#[cfg(windows)]
impl<T: AsRawSocket> AsRawSocket for Async<T> {
fn as_raw_socket(&self) -> RawSocket {
self.get_ref().as_raw_socket()
}
}
#[cfg(windows)]
impl<T: AsSocket> AsSocket for Async<T> {
fn as_socket(&self) -> BorrowedSocket<'_> {
self.get_ref().as_socket()
}
}
#[cfg(windows)]
impl<T: AsSocket + From<OwnedSocket>> TryFrom<OwnedSocket> for Async<T> {
type Error = io::Error;
fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> {
Async::new(value.into())
}
}
#[cfg(windows)]
impl<T: Into<OwnedSocket>> TryFrom<Async<T>> for OwnedSocket {
type Error = io::Error;
fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
value.into_inner().map(Into::into)
}
}
impl<T> Async<T> {
/// Gets a reference to the inner I/O handle.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = listener.get_ref();
/// # std::io::Result::Ok(()) });
/// ```
pub fn get_ref(&self) -> &T {
self.io.as_ref().unwrap()
}
/// Gets a mutable reference to the inner I/O handle.
///
/// # Safety
///
/// The underlying I/O source must not be dropped using this function.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = unsafe { listener.get_mut() };
/// # std::io::Result::Ok(()) });
/// ```
pub unsafe fn get_mut(&mut self) -> &mut T {
self.io.as_mut().unwrap()
}
/// Unwraps the inner I/O handle.
///
/// This method will **not** put the I/O handle back into blocking mode.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// let inner = listener.into_inner()?;
///
/// // Put the listener back into blocking mode.
/// inner.set_nonblocking(false)?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn into_inner(mut self) -> io::Result<T> {
let io = self.io.take().unwrap();
Reactor::get().remove_io(&self.source)?;
Ok(io)
}
/// Waits until the I/O handle is readable.
///
/// This method completes when a read operation on this I/O handle wouldn't block.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Wait until a client can be accepted.
/// listener.readable().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn readable(&self) -> Readable<'_, T> {
Source::readable(self)
}
/// Waits until the I/O handle is readable.
///
/// This method completes when a read operation on this I/O handle wouldn't block.
pub fn readable_owned(self: Arc<Self>) -> ReadableOwned<T> {
Source::readable_owned(self)
}
/// Waits until the I/O handle is writable.
///
/// This method completes when a write operation on this I/O handle wouldn't block.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let stream = Async::<TcpStream>::connect(addr).await?;
///
/// // Wait until the stream is writable.
/// stream.writable().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn writable(&self) -> Writable<'_, T> {
Source::writable(self)
}
/// Waits until the I/O handle is writable.
///
/// This method completes when a write operation on this I/O handle wouldn't block.
pub fn writable_owned(self: Arc<Self>) -> WritableOwned<T> {
Source::writable_owned(self)
}
/// Polls the I/O handle for readability.
///
/// When this method returns [`Poll::Ready`], that means the OS has delivered an event
/// indicating readability since the last time this task has called the method and received
/// [`Poll::Pending`].
///
/// # Caveats
///
/// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
/// will just keep waking each other in turn, thus wasting CPU time.
///
/// Note that the [`AsyncRead`] implementation for [`Async`] also uses this method.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::future;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Wait until a client can be accepted.
/// future::poll_fn(|cx| listener.poll_readable(cx)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.source.poll_readable(cx)
}
/// Polls the I/O handle for writability.
///
/// When this method returns [`Poll::Ready`], that means the OS has delivered an event
/// indicating writability since the last time this task has called the method and received
/// [`Poll::Pending`].
///
/// # Caveats
///
/// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
/// will just keep waking each other in turn, thus wasting CPU time.
///
/// Note that the [`AsyncWrite`] implementation for [`Async`] also uses this method.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use futures_lite::future;
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let stream = Async::<TcpStream>::connect(addr).await?;
///
/// // Wait until the stream is writable.
/// future::poll_fn(|cx| stream.poll_writable(cx)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.source.poll_writable(cx)
}
/// Performs a read operation asynchronously.
///
/// The I/O handle is registered in the reactor and put in non-blocking mode. This method
/// invokes the `op` closure in a loop until it succeeds or returns an error other than
/// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
/// sends a notification that the I/O handle is readable.
///
/// The closure receives a shared reference to the I/O handle.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Accept a new client asynchronously.
/// let (stream, addr) = listener.read_with(|l| l.accept()).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn read_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> {
let mut op = op;
loop {
match op(self.get_ref()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return res,
}
optimistic(self.readable()).await?;
}
}
/// Performs a read operation asynchronously.
///
/// The I/O handle is registered in the reactor and put in non-blocking mode. This method
/// invokes the `op` closure in a loop until it succeeds or returns an error other than
/// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
/// sends a notification that the I/O handle is readable.
///
/// The closure receives a mutable reference to the I/O handle.
///
/// # Safety
///
/// In the closure, the underlying I/O source must not be dropped.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
///
/// // Accept a new client asynchronously.
/// let (stream, addr) = unsafe { listener.read_with_mut(|l| l.accept()).await? };
/// # std::io::Result::Ok(()) });
/// ```
pub async unsafe fn read_with_mut<R>(
&mut self,
op: impl FnMut(&mut T) -> io::Result<R>,
) -> io::Result<R> {
let mut op = op;
loop {
match op(self.get_mut()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return res,
}
optimistic(self.readable()).await?;
}
}
/// Performs a write operation asynchronously.
///
/// The I/O handle is registered in the reactor and put in non-blocking mode. This method
/// invokes the `op` closure in a loop until it succeeds or returns an error other than
/// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
/// sends a notification that the I/O handle is writable.
///
/// The closure receives a shared reference to the I/O handle.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
/// socket.get_ref().connect("127.0.0.1:9000")?;
///
/// let msg = b"hello";
/// let len = socket.write_with(|s| s.send(msg)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn write_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> {
let mut op = op;
loop {
match op(self.get_ref()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return res,
}
optimistic(self.writable()).await?;
}
}
/// Performs a write operation asynchronously.
///
/// The I/O handle is registered in the reactor and put in non-blocking mode. This method
/// invokes the `op` closure in a loop until it succeeds or returns an error other than
/// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
/// sends a notification that the I/O handle is writable.
///
/// # Safety
///
/// The closure receives a mutable reference to the I/O handle. In the closure, the underlying
/// I/O source must not be dropped.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let mut socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
/// socket.get_ref().connect("127.0.0.1:9000")?;
///
/// let msg = b"hello";
/// let len = unsafe { socket.write_with_mut(|s| s.send(msg)).await? };
/// # std::io::Result::Ok(()) });
/// ```
pub async unsafe fn write_with_mut<R>(
&mut self,
op: impl FnMut(&mut T) -> io::Result<R>,
) -> io::Result<R> {
let mut op = op;
loop {
match op(self.get_mut()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return res,
}
optimistic(self.writable()).await?;
}
}
}
impl<T> AsRef<T> for Async<T> {
fn as_ref(&self) -> &T {
self.get_ref()
}
}
impl<T> Drop for Async<T> {
fn drop(&mut self) {
if self.io.is_some() {
// Deregister and ignore errors because destructors should not panic.
Reactor::get().remove_io(&self.source).ok();
// Drop the I/O handle to close it.
self.io.take();
}
}
}
/// Types whose I/O trait implementations do not drop the underlying I/O source.
///
/// The resource contained inside of the [`Async`] cannot be invalidated. This invalidation can
/// happen if the inner resource (the [`TcpStream`], [`UnixListener`] or other `T`) is moved out
/// and dropped before the [`Async`]. Because of this, functions that grant mutable access to
/// the inner type are unsafe, as there is no way to guarantee that the source won't be dropped
/// and a dangling handle won't be left behind.
///
/// Unfortunately this extends to implementations of [`Read`] and [`Write`]. Since methods on those
/// traits take `&mut`, there is no guarantee that the implementor of those traits won't move the
/// source out while the method is being run.
///
/// This trait is an antidote to this predicament. By implementing this trait, the user pledges
/// that using any I/O traits won't destroy the source. This way, [`Async`] can implement the
/// `async` version of these I/O traits, like [`AsyncRead`] and [`AsyncWrite`].
///
/// # Safety
///
/// Any I/O trait implementations for this type must not drop the underlying I/O source. Traits
/// affected by this trait include [`Read`], [`Write`], [`Seek`] and [`BufRead`].
///
/// This trait is implemented by default on top of `libstd` types. In addition, it is implemented
/// for immutable reference types, as it is impossible to invalidate any outstanding references
/// while holding an immutable reference, even with interior mutability. As Rust's current pinning
/// system relies on similar guarantees, I believe that this approach is robust.
///
/// [`BufRead`]: https://doc.rust-lang.org/std/io/trait.BufRead.html
/// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html
/// [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html
/// [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
///
/// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html
/// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html
pub unsafe trait IoSafe {}
/// Reference types can't be mutated.
///
/// The worst thing that can happen is that external state is used to change what kind of pointer
/// `as_fd()` returns. For instance:
///
/// ```
/// # #[cfg(unix)] {
/// use std::cell::Cell;
/// use std::net::TcpStream;
/// use std::os::unix::io::{AsFd, BorrowedFd};
///
/// struct Bar {
/// flag: Cell<bool>,
/// a: TcpStream,
/// b: TcpStream
/// }
///
/// impl AsFd for Bar {
/// fn as_fd(&self) -> BorrowedFd<'_> {
/// if self.flag.replace(!self.flag.get()) {
/// self.a.as_fd()
/// } else {
/// self.b.as_fd()
/// }
/// }
/// }
/// # }
/// ```
///
/// We solve this problem by only calling `as_fd()` once to get the original source. Implementations
/// like this are considered buggy (but not unsound) and are thus not really supported by `async-io`.
unsafe impl<T: ?Sized> IoSafe for &T {}
// Can be implemented on top of libstd types.
unsafe impl IoSafe for std::fs::File {}
unsafe impl IoSafe for std::io::Stderr {}
unsafe impl IoSafe for std::io::Stdin {}
unsafe impl IoSafe for std::io::Stdout {}
unsafe impl IoSafe for std::io::StderrLock<'_> {}
unsafe impl IoSafe for std::io::StdinLock<'_> {}
unsafe impl IoSafe for std::io::StdoutLock<'_> {}
unsafe impl IoSafe for std::net::TcpStream {}
unsafe impl IoSafe for std::process::ChildStdin {}
unsafe impl IoSafe for std::process::ChildStdout {}
unsafe impl IoSafe for std::process::ChildStderr {}
#[cfg(unix)]
unsafe impl IoSafe for std::os::unix::net::UnixStream {}
unsafe impl<T: IoSafe + Read> IoSafe for std::io::BufReader<T> {}
unsafe impl<T: IoSafe + Write> IoSafe for std::io::BufWriter<T> {}
unsafe impl<T: IoSafe + Write> IoSafe for std::io::LineWriter<T> {}
unsafe impl<T: IoSafe + ?Sized> IoSafe for &mut T {}
unsafe impl<T: IoSafe + ?Sized> IoSafe for Box<T> {}
unsafe impl<T: Clone + IoSafe> IoSafe for std::borrow::Cow<'_, T> {}
impl<T: IoSafe + Read> AsyncRead for Async<T> {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
loop {
match unsafe { (*self).get_mut() }.read(buf) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_readable(cx))?;
}
}
fn poll_read_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &mut [IoSliceMut<'_>],
) -> Poll<io::Result<usize>> {
loop {
match unsafe { (*self).get_mut() }.read_vectored(bufs) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_readable(cx))?;
}
}
}
// Since this is through a reference, we can't mutate the inner I/O source.
// Therefore this is safe!
impl<T> AsyncRead for &Async<T>
where
for<'a> &'a T: Read,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
loop {
match (*self).get_ref().read(buf) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_readable(cx))?;
}
}
fn poll_read_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &mut [IoSliceMut<'_>],
) -> Poll<io::Result<usize>> {
loop {
match (*self).get_ref().read_vectored(bufs) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_readable(cx))?;
}
}
}
impl<T: IoSafe + Write> AsyncWrite for Async<T> {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
loop {
match unsafe { (*self).get_mut() }.write(buf) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
loop {
match unsafe { (*self).get_mut() }.write_vectored(bufs) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
loop {
match unsafe { (*self).get_mut() }.flush() {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.poll_flush(cx)
}
}
impl<T> AsyncWrite for &Async<T>
where
for<'a> &'a T: Write,
{
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
loop {
match (*self).get_ref().write(buf) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
loop {
match (*self).get_ref().write_vectored(bufs) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
loop {
match (*self).get_ref().flush() {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
ready!(self.poll_writable(cx))?;
}
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.poll_flush(cx)
}
}
impl Async<TcpListener> {
/// Creates a TCP listener bound to the specified address.
///
/// Binding with port number 0 will request an available port from the OS.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
/// println!("Listening on {}", listener.get_ref().local_addr()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpListener>> {
let addr = addr.into();
Async::new(TcpListener::bind(addr)?)
}
/// Accepts a new incoming TCP connection.
///
/// When a connection is established, it will be returned as a TCP stream together with its
/// remote address.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?;
/// let (stream, addr) = listener.accept().await?;
/// println!("Accepted client: {}", addr);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn accept(&self) -> io::Result<(Async<TcpStream>, SocketAddr)> {
let (stream, addr) = self.read_with(|io| io.accept()).await?;
Ok((Async::new(stream)?, addr))
}
/// Returns a stream of incoming TCP connections.
///
/// The stream is infinite, i.e. it never stops with a [`None`].
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::{pin, stream::StreamExt};
/// use std::net::TcpListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?;
/// let incoming = listener.incoming();
/// pin!(incoming);
///
/// while let Some(stream) = incoming.next().await {
/// let stream = stream?;
/// println!("Accepted client: {}", stream.get_ref().peer_addr()?);
/// }
/// # std::io::Result::Ok(()) });
/// ```
pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<TcpStream>>> + Send + '_ {
stream::unfold(self, |listener| async move {
let res = listener.accept().await.map(|(stream, _)| stream);
Some((res, listener))
})
}
}
impl TryFrom<std::net::TcpListener> for Async<std::net::TcpListener> {
type Error = io::Error;
fn try_from(listener: std::net::TcpListener) -> io::Result<Self> {
Async::new(listener)
}
}
impl Async<TcpStream> {
/// Creates a TCP connection to the specified address.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let stream = Async::<TcpStream>::connect(addr).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn connect<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpStream>> {
// Figure out how to handle this address.
let addr = addr.into();
let (domain, sock_addr) = match addr {
SocketAddr::V4(v4) => (rn::AddressFamily::INET, rn::SocketAddrAny::V4(v4)),
SocketAddr::V6(v6) => (rn::AddressFamily::INET6, rn::SocketAddrAny::V6(v6)),
};
// Begin async connect.
let socket = connect(sock_addr, domain, Some(rn::ipproto::TCP))?;
// Use new_nonblocking because connect already sets socket to non-blocking mode.
let stream = Async::new_nonblocking(TcpStream::from(socket))?;
// The stream becomes writable when connected.
stream.writable().await?;
// Check if there was an error while connecting.
match stream.get_ref().take_error()? {
None => Ok(stream),
Some(err) => Err(err),
}
}
/// Reads data from the stream without removing it from the buffer.
///
/// Returns the number of bytes read. Successive calls of this method read the same data.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use futures_lite::{io::AsyncWriteExt, stream::StreamExt};
/// use std::net::{TcpStream, ToSocketAddrs};
///
/// # futures_lite::future::block_on(async {
/// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
/// let mut stream = Async::<TcpStream>::connect(addr).await?;
///
/// stream
/// .write_all(b"GET / HTTP/1.1\r\nHost: example.com\r\n\r\n")
/// .await?;
///
/// let mut buf = [0u8; 1024];
/// let len = stream.peek(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.read_with(|io| io.peek(buf)).await
}
}
impl TryFrom<std::net::TcpStream> for Async<std::net::TcpStream> {
type Error = io::Error;
fn try_from(stream: std::net::TcpStream) -> io::Result<Self> {
Async::new(stream)
}
}
impl Async<UdpSocket> {
/// Creates a UDP socket bound to the specified address.
///
/// Binding with port number 0 will request an available port from the OS.
///
/// # Examples
///
/// ```
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?;
/// println!("Bound to {}", socket.get_ref().local_addr()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<UdpSocket>> {
let addr = addr.into();
Async::new(UdpSocket::bind(addr)?)
}
/// Receives a single datagram message.
///
/// Returns the number of bytes read and the address the message came from.
///
/// This method must be called with a valid byte slice of sufficient size to hold the message.
/// If the message is too long to fit, excess bytes may get discarded.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
///
/// let mut buf = [0u8; 1024];
/// let (len, addr) = socket.recv_from(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.read_with(|io| io.recv_from(buf)).await
}
/// Receives a single datagram message without removing it from the queue.
///
/// Returns the number of bytes read and the address the message came from.
///
/// This method must be called with a valid byte slice of sufficient size to hold the message.
/// If the message is too long to fit, excess bytes may get discarded.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
///
/// let mut buf = [0u8; 1024];
/// let (len, addr) = socket.peek_from(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.read_with(|io| io.peek_from(buf)).await
}
/// Sends data to the specified address.
///
/// Returns the number of bytes written.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?;
/// let addr = socket.get_ref().local_addr()?;
///
/// let msg = b"hello";
/// let len = socket.send_to(msg, addr).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send_to<A: Into<SocketAddr>>(&self, buf: &[u8], addr: A) -> io::Result<usize> {
let addr = addr.into();
self.write_with(|io| io.send_to(buf, addr)).await
}
/// Receives a single datagram message from the connected peer.
///
/// Returns the number of bytes read.
///
/// This method must be called with a valid byte slice of sufficient size to hold the message.
/// If the message is too long to fit, excess bytes may get discarded.
///
/// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
/// socket.get_ref().connect("127.0.0.1:9000")?;
///
/// let mut buf = [0u8; 1024];
/// let len = socket.recv(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.read_with(|io| io.recv(buf)).await
}
/// Receives a single datagram message from the connected peer without removing it from the
/// queue.
///
/// Returns the number of bytes read and the address the message came from.
///
/// This method must be called with a valid byte slice of sufficient size to hold the message.
/// If the message is too long to fit, excess bytes may get discarded.
///
/// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
/// socket.get_ref().connect("127.0.0.1:9000")?;
///
/// let mut buf = [0u8; 1024];
/// let len = socket.peek(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
self.read_with(|io| io.peek(buf)).await
}
/// Sends data to the connected peer.
///
/// Returns the number of bytes written.
///
/// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
/// socket.get_ref().connect("127.0.0.1:9000")?;
///
/// let msg = b"hello";
/// let len = socket.send(msg).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.write_with(|io| io.send(buf)).await
}
}
impl TryFrom<std::net::UdpSocket> for Async<std::net::UdpSocket> {
type Error = io::Error;
fn try_from(socket: std::net::UdpSocket) -> io::Result<Self> {
Async::new(socket)
}
}
#[cfg(unix)]
impl Async<UnixListener> {
/// Creates a UDS listener bound to the specified path.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
/// println!("Listening on {:?}", listener.get_ref().local_addr()?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixListener>> {
let path = path.as_ref().to_owned();
Async::new(UnixListener::bind(path)?)
}
/// Accepts a new incoming UDS stream connection.
///
/// When a connection is established, it will be returned as a stream together with its remote
/// address.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
/// let (stream, addr) = listener.accept().await?;
/// println!("Accepted client: {:?}", addr);
/// # std::io::Result::Ok(()) });
/// ```
pub async fn accept(&self) -> io::Result<(Async<UnixStream>, UnixSocketAddr)> {
let (stream, addr) = self.read_with(|io| io.accept()).await?;
Ok((Async::new(stream)?, addr))
}
/// Returns a stream of incoming UDS connections.
///
/// The stream is infinite, i.e. it never stops with a [`None`] item.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use futures_lite::{pin, stream::StreamExt};
/// use std::os::unix::net::UnixListener;
///
/// # futures_lite::future::block_on(async {
/// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
/// let incoming = listener.incoming();
/// pin!(incoming);
///
/// while let Some(stream) = incoming.next().await {
/// let stream = stream?;
/// println!("Accepted client: {:?}", stream.get_ref().peer_addr()?);
/// }
/// # std::io::Result::Ok(()) });
/// ```
pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<UnixStream>>> + Send + '_ {
stream::unfold(self, |listener| async move {
let res = listener.accept().await.map(|(stream, _)| stream);
Some((res, listener))
})
}
}
#[cfg(unix)]
impl TryFrom<std::os::unix::net::UnixListener> for Async<std::os::unix::net::UnixListener> {
type Error = io::Error;
fn try_from(listener: std::os::unix::net::UnixListener) -> io::Result<Self> {
Async::new(listener)
}
}
#[cfg(unix)]
impl Async<UnixStream> {
/// Creates a UDS stream connected to the specified path.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixStream;
///
/// # futures_lite::future::block_on(async {
/// let stream = Async::<UnixStream>::connect("/tmp/socket").await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixStream>> {
let address = convert_path_to_socket_address(path.as_ref())?;
// Begin async connect.
let socket = connect(address.into(), rn::AddressFamily::UNIX, None)?;
// Use new_nonblocking because connect already sets socket to non-blocking mode.
let stream = Async::new_nonblocking(UnixStream::from(socket))?;
// The stream becomes writable when connected.
stream.writable().await?;
// On Linux, it appears the socket may become writable even when connecting fails, so we
// must do an extra check here and see if the peer address is retrievable.
stream.get_ref().peer_addr()?;
Ok(stream)
}
/// Creates an unnamed pair of connected UDS stream sockets.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixStream;
///
/// # futures_lite::future::block_on(async {
/// let (stream1, stream2) = Async::<UnixStream>::pair()?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn pair() -> io::Result<(Async<UnixStream>, Async<UnixStream>)> {
let (stream1, stream2) = UnixStream::pair()?;
Ok((Async::new(stream1)?, Async::new(stream2)?))
}
}
#[cfg(unix)]
impl TryFrom<std::os::unix::net::UnixStream> for Async<std::os::unix::net::UnixStream> {
type Error = io::Error;
fn try_from(stream: std::os::unix::net::UnixStream) -> io::Result<Self> {
Async::new(stream)
}
}
#[cfg(unix)]
impl Async<UnixDatagram> {
/// Creates a UDS datagram socket bound to the specified path.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::bind("/tmp/socket")?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixDatagram>> {
let path = path.as_ref().to_owned();
Async::new(UnixDatagram::bind(path)?)
}
/// Creates a UDS datagram socket not bound to any address.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::unbound()?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn unbound() -> io::Result<Async<UnixDatagram>> {
Async::new(UnixDatagram::unbound()?)
}
/// Creates an unnamed pair of connected Unix datagram sockets.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let (socket1, socket2) = Async::<UnixDatagram>::pair()?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn pair() -> io::Result<(Async<UnixDatagram>, Async<UnixDatagram>)> {
let (socket1, socket2) = UnixDatagram::pair()?;
Ok((Async::new(socket1)?, Async::new(socket2)?))
}
/// Receives data from the socket.
///
/// Returns the number of bytes read and the address the message came from.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::bind("/tmp/socket")?;
///
/// let mut buf = [0u8; 1024];
/// let (len, addr) = socket.recv_from(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, UnixSocketAddr)> {
self.read_with(|io| io.recv_from(buf)).await
}
/// Sends data to the specified address.
///
/// Returns the number of bytes written.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::unbound()?;
///
/// let msg = b"hello";
/// let addr = "/tmp/socket";
/// let len = socket.send_to(msg, addr).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> {
self.write_with(|io| io.send_to(buf, &path)).await
}
/// Receives data from the connected peer.
///
/// Returns the number of bytes read and the address the message came from.
///
/// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::bind("/tmp/socket1")?;
/// socket.get_ref().connect("/tmp/socket2")?;
///
/// let mut buf = [0u8; 1024];
/// let len = socket.recv(&mut buf).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.read_with(|io| io.recv(buf)).await
}
/// Sends data to the connected peer.
///
/// Returns the number of bytes written.
///
/// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address.
/// This method will fail if the socket is not connected.
///
/// # Examples
///
/// ```no_run
/// use async_io::Async;
/// use std::os::unix::net::UnixDatagram;
///
/// # futures_lite::future::block_on(async {
/// let socket = Async::<UnixDatagram>::bind("/tmp/socket1")?;
/// socket.get_ref().connect("/tmp/socket2")?;
///
/// let msg = b"hello";
/// let len = socket.send(msg).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.write_with(|io| io.send(buf)).await
}
}
#[cfg(unix)]
impl TryFrom<std::os::unix::net::UnixDatagram> for Async<std::os::unix::net::UnixDatagram> {
type Error = io::Error;
fn try_from(socket: std::os::unix::net::UnixDatagram) -> io::Result<Self> {
Async::new(socket)
}
}
/// Polls a future once, waits for a wakeup, and then optimistically assumes the future is ready.
async fn optimistic(fut: impl Future<Output = io::Result<()>>) -> io::Result<()> {
let mut polled = false;
pin!(fut);
future::poll_fn(|cx| {
if !polled {
polled = true;
fut.as_mut().poll(cx)
} else {
Poll::Ready(Ok(()))
}
})
.await
}
fn connect(
addr: rn::SocketAddrAny,
domain: rn::AddressFamily,
protocol: Option<rn::Protocol>,
) -> io::Result<rustix::fd::OwnedFd> {
#[cfg(windows)]
use rustix::fd::AsFd;
setup_networking();
#[cfg(any(
target_os = "android",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "fuchsia",
target_os = "illumos",
target_os = "linux",
target_os = "netbsd",
target_os = "openbsd"
))]
let socket = rn::socket_with(
domain,
rn::SocketType::STREAM,
rn::SocketFlags::CLOEXEC | rn::SocketFlags::NONBLOCK,
protocol,
)?;
#[cfg(not(any(
target_os = "android",
target_os = "dragonfly",
target_os = "freebsd",
target_os = "fuchsia",
target_os = "illumos",
target_os = "linux",
target_os = "netbsd",
target_os = "openbsd"
)))]
let socket = {
#[cfg(not(any(
target_os = "aix",
target_vendor = "apple",
target_os = "espidf",
windows,
)))]
let flags = rn::SocketFlags::CLOEXEC;
#[cfg(any(
target_os = "aix",
target_vendor = "apple",
target_os = "espidf",
windows,
))]
let flags = rn::SocketFlags::empty();
// Create the socket.
let socket = rn::socket_with(domain, rn::SocketType::STREAM, flags, protocol)?;
// Set cloexec if necessary.
#[cfg(any(target_os = "aix", target_vendor = "apple"))]
rio::fcntl_setfd(&socket, rio::fcntl_getfd(&socket)? | rio::FdFlags::CLOEXEC)?;
// Set non-blocking mode.
set_nonblocking(socket.as_fd())?;
socket
};
// Set nosigpipe if necessary.
#[cfg(any(
target_vendor = "apple",
target_os = "freebsd",
target_os = "netbsd",
target_os = "dragonfly",
))]
rn::sockopt::set_socket_nosigpipe(&socket, true)?;
// Set the handle information to HANDLE_FLAG_INHERIT.
#[cfg(windows)]
unsafe {
if windows_sys::Win32::Foundation::SetHandleInformation(
socket.as_raw_socket() as _,
windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT,
windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT,
) == 0
{
return Err(io::Error::last_os_error());
}
}
#[allow(unreachable_patterns)]
match rn::connect_any(&socket, &addr) {
Ok(_) => {}
#[cfg(unix)]
Err(rio::Errno::INPROGRESS) => {}
Err(rio::Errno::AGAIN) | Err(rio::Errno::WOULDBLOCK) => {}
Err(err) => return Err(err.into()),
}
Ok(socket)
}
#[inline]
fn setup_networking() {
#[cfg(windows)]
{
// On Windows, we need to call WSAStartup before calling any networking code.
// Make sure to call it at least once.
static INIT: std::sync::Once = std::sync::Once::new();
INIT.call_once(|| {
let _ = rustix::net::wsa_startup();
});
}
}
#[inline]
fn set_nonblocking(
#[cfg(unix)] fd: BorrowedFd<'_>,
#[cfg(windows)] fd: BorrowedSocket<'_>,
) -> io::Result<()> {
cfg_if::cfg_if! {
// ioctl(FIONBIO) sets the flag atomically, but we use this only on Linux
// for now, as with the standard library, because it seems to behave
// differently depending on the platform.
// https://github.com/rust-lang/rust/commit/efeb42be2837842d1beb47b51bb693c7474aba3d
// https://github.com/libuv/libuv/blob/e9d91fccfc3e5ff772d5da90e1c4a24061198ca0/src/unix/poll.c#L78-L80
// https://github.com/tokio-rs/mio/commit/0db49f6d5caf54b12176821363d154384357e70a
if #[cfg(any(windows, target_os = "linux"))] {
rustix::io::ioctl_fionbio(fd, true)?;
} else {
let previous = rustix::fs::fcntl_getfl(fd)?;
let new = previous | rustix::fs::OFlags::NONBLOCK;
if new != previous {
rustix::fs::fcntl_setfl(fd, new)?;
}
}
}
Ok(())
}
/// Converts a `Path` to its socket address representation.
///
/// This function is abstract socket-aware.
#[cfg(unix)]
#[inline]
fn convert_path_to_socket_address(path: &Path) -> io::Result<rn::SocketAddrUnix> {
// SocketAddrUnix::new() will throw EINVAL when a path with a zero in it is passed in.
// However, some users expect to be able to pass in paths to abstract sockets, which
// triggers this error as it has a zero in it. Therefore, if a path starts with a zero,
// make it an abstract socket.
#[cfg(any(target_os = "linux", target_os = "android"))]
let address = {
use std::os::unix::ffi::OsStrExt;
let path = path.as_os_str();
match path.as_bytes().first() {
Some(0) => rn::SocketAddrUnix::new_abstract_name(path.as_bytes().get(1..).unwrap())?,
_ => rn::SocketAddrUnix::new(path)?,
}
};
// Only Linux and Android support abstract sockets.
#[cfg(not(any(target_os = "linux", target_os = "android")))]
let address = rn::SocketAddrUnix::new(path)?;
Ok(address)
}