async_io/
reactor.rs

1use std::borrow::Borrow;
2use std::collections::BTreeMap;
3use std::fmt;
4use std::future::Future;
5use std::io;
6use std::marker::PhantomData;
7use std::mem;
8use std::panic;
9use std::pin::Pin;
10use std::sync::atomic::{AtomicUsize, Ordering};
11use std::sync::{Arc, Mutex, MutexGuard};
12use std::task::{Context, Poll, Waker};
13use std::time::{Duration, Instant};
14
15use async_lock::OnceCell;
16use concurrent_queue::ConcurrentQueue;
17use futures_lite::ready;
18use polling::{Event, Events, Poller};
19use slab::Slab;
20
21// Choose the proper implementation of `Registration` based on the target platform.
22cfg_if::cfg_if! {
23    if #[cfg(windows)] {
24        mod windows;
25        pub use windows::Registration;
26    } else if #[cfg(any(
27        target_vendor = "apple",
28        target_os = "freebsd",
29        target_os = "netbsd",
30        target_os = "openbsd",
31        target_os = "dragonfly",
32    ))] {
33        mod kqueue;
34        pub use kqueue::Registration;
35    } else if #[cfg(unix)] {
36        mod unix;
37        pub use unix::Registration;
38    } else {
39        compile_error!("unsupported platform");
40    }
41}
42
43#[cfg(not(target_os = "espidf"))]
44const TIMER_QUEUE_SIZE: usize = 1000;
45
46/// ESP-IDF - being an embedded OS - does not need so many timers
47/// and this saves ~ 20K RAM which is a lot for an MCU with RAM < 400K
48#[cfg(target_os = "espidf")]
49const TIMER_QUEUE_SIZE: usize = 100;
50
51const READ: usize = 0;
52const WRITE: usize = 1;
53
54/// The reactor.
55///
56/// There is only one global instance of this type, accessible by [`Reactor::get()`].
57pub(crate) struct Reactor {
58    /// Portable bindings to epoll/kqueue/event ports/IOCP.
59    ///
60    /// This is where I/O is polled, producing I/O events.
61    pub(crate) poller: Poller,
62
63    /// Ticker bumped before polling.
64    ///
65    /// This is useful for checking what is the current "round" of `ReactorLock::react()` when
66    /// synchronizing things in `Source::readable()` and `Source::writable()`. Both of those
67    /// methods must make sure they don't receive stale I/O events - they only accept events from a
68    /// fresh "round" of `ReactorLock::react()`.
69    ticker: AtomicUsize,
70
71    /// Registered sources.
72    sources: Mutex<Slab<Arc<Source>>>,
73
74    /// Temporary storage for I/O events when polling the reactor.
75    ///
76    /// Holding a lock on this event list implies the exclusive right to poll I/O.
77    events: Mutex<Events>,
78
79    /// An ordered map of registered timers.
80    ///
81    /// Timers are in the order in which they fire. The `usize` in this type is a timer ID used to
82    /// distinguish timers that fire at the same time. The `Waker` represents the task awaiting the
83    /// timer.
84    timers: Mutex<BTreeMap<(Instant, usize), Waker>>,
85
86    /// A queue of timer operations (insert and remove).
87    ///
88    /// When inserting or removing a timer, we don't process it immediately - we just push it into
89    /// this queue. Timers actually get processed when the queue fills up or the reactor is polled.
90    timer_ops: ConcurrentQueue<TimerOp>,
91}
92
93impl Reactor {
94    /// Returns a reference to the reactor.
95    pub(crate) fn get() -> &'static Reactor {
96        static REACTOR: OnceCell<Reactor> = OnceCell::new();
97
98        REACTOR.get_or_init_blocking(|| {
99            crate::driver::init();
100            Reactor {
101                poller: Poller::new().expect("cannot initialize I/O event notification"),
102                ticker: AtomicUsize::new(0),
103                sources: Mutex::new(Slab::new()),
104                events: Mutex::new(Events::new()),
105                timers: Mutex::new(BTreeMap::new()),
106                timer_ops: ConcurrentQueue::bounded(TIMER_QUEUE_SIZE),
107            }
108        })
109    }
110
111    /// Returns the current ticker.
112    pub(crate) fn ticker(&self) -> usize {
113        self.ticker.load(Ordering::SeqCst)
114    }
115
116    /// Registers an I/O source in the reactor.
117    pub(crate) fn insert_io(&self, raw: Registration) -> io::Result<Arc<Source>> {
118        // Create an I/O source for this file descriptor.
119        let source = {
120            let mut sources = self.sources.lock().unwrap();
121            let key = sources.vacant_entry().key();
122            let source = Arc::new(Source {
123                registration: raw,
124                key,
125                state: Default::default(),
126            });
127            sources.insert(source.clone());
128            source
129        };
130
131        // Register the file descriptor.
132        if let Err(err) = source.registration.add(&self.poller, source.key) {
133            let mut sources = self.sources.lock().unwrap();
134            sources.remove(source.key);
135            return Err(err);
136        }
137
138        Ok(source)
139    }
140
141    /// Deregisters an I/O source from the reactor.
142    pub(crate) fn remove_io(&self, source: &Source) -> io::Result<()> {
143        let mut sources = self.sources.lock().unwrap();
144        sources.remove(source.key);
145        source.registration.delete(&self.poller)
146    }
147
148    /// Registers a timer in the reactor.
149    ///
150    /// Returns the inserted timer's ID.
151    pub(crate) fn insert_timer(&self, when: Instant, waker: &Waker) -> usize {
152        // Generate a new timer ID.
153        static ID_GENERATOR: AtomicUsize = AtomicUsize::new(1);
154        let id = ID_GENERATOR.fetch_add(1, Ordering::Relaxed);
155
156        // Push an insert operation.
157        while self
158            .timer_ops
159            .push(TimerOp::Insert(when, id, waker.clone()))
160            .is_err()
161        {
162            // If the queue is full, drain it and try again.
163            let mut timers = self.timers.lock().unwrap();
164            self.process_timer_ops(&mut timers);
165        }
166
167        // Notify that a timer has been inserted.
168        self.notify();
169
170        id
171    }
172
173    /// Deregisters a timer from the reactor.
174    pub(crate) fn remove_timer(&self, when: Instant, id: usize) {
175        // Push a remove operation.
176        while self.timer_ops.push(TimerOp::Remove(when, id)).is_err() {
177            // If the queue is full, drain it and try again.
178            let mut timers = self.timers.lock().unwrap();
179            self.process_timer_ops(&mut timers);
180        }
181    }
182
183    /// Notifies the thread blocked on the reactor.
184    pub(crate) fn notify(&self) {
185        self.poller.notify().expect("failed to notify reactor");
186    }
187
188    /// Locks the reactor, potentially blocking if the lock is held by another thread.
189    pub(crate) fn lock(&self) -> ReactorLock<'_> {
190        let reactor = self;
191        let events = self.events.lock().unwrap();
192        ReactorLock { reactor, events }
193    }
194
195    /// Attempts to lock the reactor.
196    pub(crate) fn try_lock(&self) -> Option<ReactorLock<'_>> {
197        self.events.try_lock().ok().map(|events| {
198            let reactor = self;
199            ReactorLock { reactor, events }
200        })
201    }
202
203    /// Processes ready timers and extends the list of wakers to wake.
204    ///
205    /// Returns the duration until the next timer before this method was called.
206    fn process_timers(&self, wakers: &mut Vec<Waker>) -> Option<Duration> {
207        let span = tracing::trace_span!("process_timers");
208        let _enter = span.enter();
209
210        let mut timers = self.timers.lock().unwrap();
211        self.process_timer_ops(&mut timers);
212
213        let now = Instant::now();
214
215        // Split timers into ready and pending timers.
216        //
217        // Careful to split just *after* `now`, so that a timer set for exactly `now` is considered
218        // ready.
219        let pending = timers.split_off(&(now + Duration::from_nanos(1), 0));
220        let ready = mem::replace(&mut *timers, pending);
221
222        // Calculate the duration until the next event.
223        let dur = if ready.is_empty() {
224            // Duration until the next timer.
225            timers
226                .keys()
227                .next()
228                .map(|(when, _)| when.saturating_duration_since(now))
229        } else {
230            // Timers are about to fire right now.
231            Some(Duration::from_secs(0))
232        };
233
234        // Drop the lock before waking.
235        drop(timers);
236
237        // Add wakers to the list.
238        tracing::trace!("{} ready wakers", ready.len());
239
240        for (_, waker) in ready {
241            wakers.push(waker);
242        }
243
244        dur
245    }
246
247    /// Processes queued timer operations.
248    fn process_timer_ops(&self, timers: &mut MutexGuard<'_, BTreeMap<(Instant, usize), Waker>>) {
249        // Process only as much as fits into the queue, or else this loop could in theory run
250        // forever.
251        self.timer_ops
252            .try_iter()
253            .take(self.timer_ops.capacity().unwrap())
254            .for_each(|op| match op {
255                TimerOp::Insert(when, id, waker) => {
256                    timers.insert((when, id), waker);
257                }
258                TimerOp::Remove(when, id) => {
259                    timers.remove(&(when, id));
260                }
261            });
262    }
263}
264
265/// A lock on the reactor.
266pub(crate) struct ReactorLock<'a> {
267    reactor: &'a Reactor,
268    events: MutexGuard<'a, Events>,
269}
270
271impl ReactorLock<'_> {
272    /// Processes new events, blocking until the first event or the timeout.
273    pub(crate) fn react(&mut self, timeout: Option<Duration>) -> io::Result<()> {
274        let span = tracing::trace_span!("react");
275        let _enter = span.enter();
276
277        let mut wakers = Vec::new();
278
279        // Process ready timers.
280        let next_timer = self.reactor.process_timers(&mut wakers);
281
282        // compute the timeout for blocking on I/O events.
283        let timeout = match (next_timer, timeout) {
284            (None, None) => None,
285            (Some(t), None) | (None, Some(t)) => Some(t),
286            (Some(a), Some(b)) => Some(a.min(b)),
287        };
288
289        // Bump the ticker before polling I/O.
290        let tick = self
291            .reactor
292            .ticker
293            .fetch_add(1, Ordering::SeqCst)
294            .wrapping_add(1);
295
296        self.events.clear();
297
298        // Block on I/O events.
299        let res = match self.reactor.poller.wait(&mut self.events, timeout) {
300            // No I/O events occurred.
301            Ok(0) => {
302                if timeout != Some(Duration::from_secs(0)) {
303                    // The non-zero timeout was hit so fire ready timers.
304                    self.reactor.process_timers(&mut wakers);
305                }
306                Ok(())
307            }
308
309            // At least one I/O event occurred.
310            Ok(_) => {
311                // Iterate over sources in the event list.
312                let sources = self.reactor.sources.lock().unwrap();
313
314                for ev in self.events.iter() {
315                    // Check if there is a source in the table with this key.
316                    if let Some(source) = sources.get(ev.key) {
317                        let mut state = source.state.lock().unwrap();
318
319                        // Collect wakers if a writability event was emitted.
320                        for &(dir, emitted) in &[(WRITE, ev.writable), (READ, ev.readable)] {
321                            if emitted {
322                                state[dir].tick = tick;
323                                state[dir].drain_into(&mut wakers);
324                            }
325                        }
326
327                        // Re-register if there are still writers or readers. This can happen if
328                        // e.g. we were previously interested in both readability and writability,
329                        // but only one of them was emitted.
330                        if !state[READ].is_empty() || !state[WRITE].is_empty() {
331                            // Create the event that we are interested in.
332                            let event = {
333                                let mut event = Event::none(source.key);
334                                event.readable = !state[READ].is_empty();
335                                event.writable = !state[WRITE].is_empty();
336                                event
337                            };
338
339                            // Register interest in this event.
340                            source.registration.modify(&self.reactor.poller, event)?;
341                        }
342                    }
343                }
344
345                Ok(())
346            }
347
348            // The syscall was interrupted.
349            Err(err) if err.kind() == io::ErrorKind::Interrupted => Ok(()),
350
351            // An actual error occureed.
352            Err(err) => Err(err),
353        };
354
355        // Wake up ready tasks.
356        tracing::trace!("{} ready wakers", wakers.len());
357        for waker in wakers {
358            // Don't let a panicking waker blow everything up.
359            panic::catch_unwind(|| waker.wake()).ok();
360        }
361
362        res
363    }
364}
365
366/// A single timer operation.
367enum TimerOp {
368    Insert(Instant, usize, Waker),
369    Remove(Instant, usize),
370}
371
372/// A registered source of I/O events.
373#[derive(Debug)]
374pub(crate) struct Source {
375    /// This source's registration into the reactor.
376    registration: Registration,
377
378    /// The key of this source obtained during registration.
379    key: usize,
380
381    /// Inner state with registered wakers.
382    state: Mutex<[Direction; 2]>,
383}
384
385/// A read or write direction.
386#[derive(Debug, Default)]
387struct Direction {
388    /// Last reactor tick that delivered an event.
389    tick: usize,
390
391    /// Ticks remembered by `Async::poll_readable()` or `Async::poll_writable()`.
392    ticks: Option<(usize, usize)>,
393
394    /// Waker stored by `Async::poll_readable()` or `Async::poll_writable()`.
395    waker: Option<Waker>,
396
397    /// Wakers of tasks waiting for the next event.
398    ///
399    /// Registered by `Async::readable()` and `Async::writable()`.
400    wakers: Slab<Option<Waker>>,
401}
402
403impl Direction {
404    /// Returns `true` if there are no wakers interested in this direction.
405    fn is_empty(&self) -> bool {
406        self.waker.is_none() && self.wakers.iter().all(|(_, opt)| opt.is_none())
407    }
408
409    /// Moves all wakers into a `Vec`.
410    fn drain_into(&mut self, dst: &mut Vec<Waker>) {
411        if let Some(w) = self.waker.take() {
412            dst.push(w);
413        }
414        for (_, opt) in self.wakers.iter_mut() {
415            if let Some(w) = opt.take() {
416                dst.push(w);
417            }
418        }
419    }
420}
421
422impl Source {
423    /// Polls the I/O source for readability.
424    pub(crate) fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
425        self.poll_ready(READ, cx)
426    }
427
428    /// Polls the I/O source for writability.
429    pub(crate) fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
430        self.poll_ready(WRITE, cx)
431    }
432
433    /// Registers a waker from `poll_readable()` or `poll_writable()`.
434    ///
435    /// If a different waker is already registered, it gets replaced and woken.
436    fn poll_ready(&self, dir: usize, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
437        let mut state = self.state.lock().unwrap();
438
439        // Check if the reactor has delivered an event.
440        if let Some((a, b)) = state[dir].ticks {
441            // If `state[dir].tick` has changed to a value other than the old reactor tick,
442            // that means a newer reactor tick has delivered an event.
443            if state[dir].tick != a && state[dir].tick != b {
444                state[dir].ticks = None;
445                return Poll::Ready(Ok(()));
446            }
447        }
448
449        let was_empty = state[dir].is_empty();
450
451        // Register the current task's waker.
452        if let Some(w) = state[dir].waker.take() {
453            if w.will_wake(cx.waker()) {
454                state[dir].waker = Some(w);
455                return Poll::Pending;
456            }
457            // Wake the previous waker because it's going to get replaced.
458            panic::catch_unwind(|| w.wake()).ok();
459        }
460        state[dir].waker = Some(cx.waker().clone());
461        state[dir].ticks = Some((Reactor::get().ticker(), state[dir].tick));
462
463        // Update interest in this I/O handle.
464        if was_empty {
465            // Create the event that we are interested in.
466            let event = {
467                let mut event = Event::none(self.key);
468                event.readable = !state[READ].is_empty();
469                event.writable = !state[WRITE].is_empty();
470                event
471            };
472
473            // Register interest in it.
474            self.registration.modify(&Reactor::get().poller, event)?;
475        }
476
477        Poll::Pending
478    }
479
480    /// Waits until the I/O source is readable.
481    pub(crate) fn readable<T>(handle: &crate::Async<T>) -> Readable<'_, T> {
482        Readable(Self::ready(handle, READ))
483    }
484
485    /// Waits until the I/O source is readable.
486    pub(crate) fn readable_owned<T>(handle: Arc<crate::Async<T>>) -> ReadableOwned<T> {
487        ReadableOwned(Self::ready(handle, READ))
488    }
489
490    /// Waits until the I/O source is writable.
491    pub(crate) fn writable<T>(handle: &crate::Async<T>) -> Writable<'_, T> {
492        Writable(Self::ready(handle, WRITE))
493    }
494
495    /// Waits until the I/O source is writable.
496    pub(crate) fn writable_owned<T>(handle: Arc<crate::Async<T>>) -> WritableOwned<T> {
497        WritableOwned(Self::ready(handle, WRITE))
498    }
499
500    /// Waits until the I/O source is readable or writable.
501    fn ready<H: Borrow<crate::Async<T>> + Clone, T>(handle: H, dir: usize) -> Ready<H, T> {
502        Ready {
503            handle,
504            dir,
505            ticks: None,
506            index: None,
507            _capture: PhantomData,
508        }
509    }
510}
511
512/// Future for [`Async::readable`](crate::Async::readable).
513#[must_use = "futures do nothing unless you `.await` or poll them"]
514pub struct Readable<'a, T>(Ready<&'a crate::Async<T>, T>);
515
516impl<T> Future for Readable<'_, T> {
517    type Output = io::Result<()>;
518
519    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
520        ready!(Pin::new(&mut self.0).poll(cx))?;
521        tracing::trace!(fd = ?self.0.handle.source.registration, "readable");
522        Poll::Ready(Ok(()))
523    }
524}
525
526impl<T> fmt::Debug for Readable<'_, T> {
527    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
528        f.debug_struct("Readable").finish()
529    }
530}
531
532/// Future for [`Async::readable_owned`](crate::Async::readable_owned).
533#[must_use = "futures do nothing unless you `.await` or poll them"]
534pub struct ReadableOwned<T>(Ready<Arc<crate::Async<T>>, T>);
535
536impl<T> Future for ReadableOwned<T> {
537    type Output = io::Result<()>;
538
539    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
540        ready!(Pin::new(&mut self.0).poll(cx))?;
541        tracing::trace!(fd = ?self.0.handle.source.registration, "readable_owned");
542        Poll::Ready(Ok(()))
543    }
544}
545
546impl<T> fmt::Debug for ReadableOwned<T> {
547    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
548        f.debug_struct("ReadableOwned").finish()
549    }
550}
551
552/// Future for [`Async::writable`](crate::Async::writable).
553#[must_use = "futures do nothing unless you `.await` or poll them"]
554pub struct Writable<'a, T>(Ready<&'a crate::Async<T>, T>);
555
556impl<T> Future for Writable<'_, T> {
557    type Output = io::Result<()>;
558
559    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
560        ready!(Pin::new(&mut self.0).poll(cx))?;
561        tracing::trace!(fd = ?self.0.handle.source.registration, "writable");
562        Poll::Ready(Ok(()))
563    }
564}
565
566impl<T> fmt::Debug for Writable<'_, T> {
567    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
568        f.debug_struct("Writable").finish()
569    }
570}
571
572/// Future for [`Async::writable_owned`](crate::Async::writable_owned).
573#[must_use = "futures do nothing unless you `.await` or poll them"]
574pub struct WritableOwned<T>(Ready<Arc<crate::Async<T>>, T>);
575
576impl<T> Future for WritableOwned<T> {
577    type Output = io::Result<()>;
578
579    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
580        ready!(Pin::new(&mut self.0).poll(cx))?;
581        tracing::trace!(fd = ?self.0.handle.source.registration, "writable_owned");
582        Poll::Ready(Ok(()))
583    }
584}
585
586impl<T> fmt::Debug for WritableOwned<T> {
587    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
588        f.debug_struct("WritableOwned").finish()
589    }
590}
591
592struct Ready<H: Borrow<crate::Async<T>>, T> {
593    handle: H,
594    dir: usize,
595    ticks: Option<(usize, usize)>,
596    index: Option<usize>,
597    _capture: PhantomData<fn() -> T>,
598}
599
600impl<H: Borrow<crate::Async<T>>, T> Unpin for Ready<H, T> {}
601
602impl<H: Borrow<crate::Async<T>> + Clone, T> Future for Ready<H, T> {
603    type Output = io::Result<()>;
604
605    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
606        let Self {
607            ref handle,
608            dir,
609            ticks,
610            index,
611            ..
612        } = &mut *self;
613
614        let mut state = handle.borrow().source.state.lock().unwrap();
615
616        // Check if the reactor has delivered an event.
617        if let Some((a, b)) = *ticks {
618            // If `state[dir].tick` has changed to a value other than the old reactor tick,
619            // that means a newer reactor tick has delivered an event.
620            if state[*dir].tick != a && state[*dir].tick != b {
621                return Poll::Ready(Ok(()));
622            }
623        }
624
625        let was_empty = state[*dir].is_empty();
626
627        // Register the current task's waker.
628        let i = match *index {
629            Some(i) => i,
630            None => {
631                let i = state[*dir].wakers.insert(None);
632                *index = Some(i);
633                *ticks = Some((Reactor::get().ticker(), state[*dir].tick));
634                i
635            }
636        };
637        state[*dir].wakers[i] = Some(cx.waker().clone());
638
639        // Update interest in this I/O handle.
640        if was_empty {
641            // Create the event that we are interested in.
642            let event = {
643                let mut event = Event::none(handle.borrow().source.key);
644                event.readable = !state[READ].is_empty();
645                event.writable = !state[WRITE].is_empty();
646                event
647            };
648
649            // Indicate that we are interested in this event.
650            handle
651                .borrow()
652                .source
653                .registration
654                .modify(&Reactor::get().poller, event)?;
655        }
656
657        Poll::Pending
658    }
659}
660
661impl<H: Borrow<crate::Async<T>>, T> Drop for Ready<H, T> {
662    fn drop(&mut self) {
663        // Remove our waker when dropped.
664        if let Some(key) = self.index {
665            let mut state = self.handle.borrow().source.state.lock().unwrap();
666            let wakers = &mut state[self.dir].wakers;
667            if wakers.contains(key) {
668                wakers.remove(key);
669            }
670        }
671    }
672}