async_io/os/kqueue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
//! Functionality that is only available for `kqueue`-based platforms.
use __private::QueueableSealed;
use crate::reactor::{Reactor, Readable, Registration};
use crate::Async;
use std::future::Future;
use std::io::{Error, Result};
use std::num::NonZeroI32;
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd};
use std::pin::Pin;
use std::process::Child;
use std::task::{Context, Poll};
/// A wrapper around a queueable object that waits until it is ready.
///
/// The underlying `kqueue` implementation can be used to poll for events besides file descriptor
/// read/write readiness. This API makes these faculties available to the user.
///
/// See the [`Queueable`] trait and its implementors for objects that currently support being registered
/// into the reactor.
#[derive(Debug)]
pub struct Filter<T>(Async<T>);
impl<T> AsRef<T> for Filter<T> {
fn as_ref(&self) -> &T {
self.0.as_ref()
}
}
impl<T> AsMut<T> for Filter<T> {
fn as_mut(&mut self) -> &mut T {
self.get_mut()
}
}
impl<T: Queueable> Filter<T> {
/// Create a new [`Filter`] around a [`Queueable`].
///
/// # Examples
///
/// ```no_run
/// use std::process::Command;
/// use async_io::os::kqueue::{Exit, Filter};
///
/// // Create a new process to wait for.
/// let mut child = Command::new("sleep").arg("5").spawn().unwrap();
///
/// // Wrap the process in an `Async` object that waits for it to exit.
/// let process = Filter::new(Exit::new(child)).unwrap();
///
/// // Wait for the process to exit.
/// # async_io::block_on(async {
/// process.ready().await.unwrap();
/// # });
/// ```
pub fn new(mut filter: T) -> Result<Self> {
Ok(Self(Async {
source: Reactor::get().insert_io(filter.registration())?,
io: Some(filter),
}))
}
}
impl<T: AsRawFd> AsRawFd for Filter<T> {
fn as_raw_fd(&self) -> RawFd {
self.0.as_raw_fd()
}
}
impl<T: AsFd> AsFd for Filter<T> {
fn as_fd(&self) -> BorrowedFd<'_> {
self.0.as_fd()
}
}
impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Filter<T> {
type Error = Error;
fn try_from(fd: OwnedFd) -> Result<Self> {
Ok(Self(Async::try_from(fd)?))
}
}
impl<T: Into<OwnedFd>> TryFrom<Filter<T>> for OwnedFd {
type Error = Error;
fn try_from(filter: Filter<T>) -> Result<Self> {
filter.0.try_into()
}
}
impl<T> Filter<T> {
/// Gets a reference to the underlying [`Queueable`] object.
///
/// # Examples
///
/// ```
/// use async_io::os::kqueue::{Exit, Filter};
///
/// # futures_lite::future::block_on(async {
/// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
/// let process = Filter::new(Exit::new(child)).unwrap();
/// let inner = process.get_ref();
/// # });
/// ```
pub fn get_ref(&self) -> &T {
self.0.get_ref()
}
/// Gets a mutable reference to the underlying [`Queueable`] object.
///
/// Unlike in [`Async`], this method is safe to call, since dropping the [`Filter`] will
/// not cause any undefined behavior.
///
/// # Examples
///
/// ```
/// use async_io::os::kqueue::{Exit, Filter};
///
/// # futures_lite::future::block_on(async {
/// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
/// let mut process = Filter::new(Exit::new(child)).unwrap();
/// let inner = process.get_mut();
/// # });
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe { self.0.get_mut() }
}
/// Unwraps the inner [`Queueable`] object.
///
/// # Examples
///
/// ```
/// use async_io::os::kqueue::{Exit, Filter};
///
/// # futures_lite::future::block_on(async {
/// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
/// let process = Filter::new(Exit::new(child)).unwrap();
/// let inner = process.into_inner().unwrap();
/// # });
/// ```
pub fn into_inner(self) -> Result<T> {
self.0.into_inner()
}
/// Waits until the [`Queueable`] object is ready.
///
/// This method completes when the underlying [`Queueable`] object has completed. See the documentation
/// for the [`Queueable`] object for more information.
///
/// # Examples
///
/// ```no_run
/// use std::process::Command;
/// use async_io::os::kqueue::{Exit, Filter};
///
/// # futures_lite::future::block_on(async {
/// let child = Command::new("sleep").arg("5").spawn()?;
/// let process = Filter::new(Exit::new(child))?;
///
/// // Wait for the process to exit.
/// process.ready().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn ready(&self) -> Ready<'_, T> {
Ready(self.0.readable())
}
/// Polls the I/O handle for readiness.
///
/// When this method returns [`Poll::Ready`], that means that the OS has delivered a notification
/// that the underlying [`Queueable`] object is ready. See the documentation for the [`Queueable`]
/// object for more information.
///
/// # Caveats
///
/// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
/// will just keep waking each other in turn, thus wasting CPU time.
///
/// # Examples
///
/// ```no_run
/// use std::process::Command;
/// use async_io::os::kqueue::{Exit, Filter};
/// use futures_lite::future;
///
/// # futures_lite::future::block_on(async {
/// let child = Command::new("sleep").arg("5").spawn()?;
/// let process = Filter::new(Exit::new(child))?;
///
/// // Wait for the process to exit.
/// future::poll_fn(|cx| process.poll_ready(cx)).await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<()>> {
self.0.poll_readable(cx)
}
}
/// Future for [`Filter::ready`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Ready<'a, T>(Readable<'a, T>);
impl<T> Future for Ready<'_, T> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut self.0).poll(cx)
}
}
/// Objects that can be registered into the reactor via a [`Async`](crate::Async).
///
/// These objects represent other filters associated with the `kqueue` runtime aside from readability
/// and writability. Rather than waiting on readable/writable, they wait on "readiness". This is
/// typically used for signals and child process exits.
pub trait Queueable: QueueableSealed {}
/// An object representing a signal.
///
/// When registered into [`Async`](crate::Async) via [`with_filter`](AsyncKqueueExt::with_filter),
/// it will return a [`readable`](crate::Async::readable) event when the signal is received.
#[derive(Debug, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub struct Signal(pub i32);
impl QueueableSealed for Signal {
fn registration(&mut self) -> Registration {
Registration::Signal(*self)
}
}
impl Queueable for Signal {}
/// Wait for a child process to exit.
///
/// When registered into [`Async`](crate::Async) via [`with_filter`](AsyncKqueueExt::with_filter),
/// it will return a [`readable`](crate::Async::readable) event when the child process exits.
#[derive(Debug)]
pub struct Exit(NonZeroI32);
impl Exit {
/// Create a new `Exit` object.
pub fn new(child: Child) -> Self {
Self(
NonZeroI32::new(child.id().try_into().expect("unable to parse pid"))
.expect("cannot register pid with zero value"),
)
}
/// Create a new `Exit` object from a PID.
///
/// # Safety
///
/// The PID must be tied to an actual child process.
pub unsafe fn from_pid(pid: NonZeroI32) -> Self {
Self(pid)
}
}
impl QueueableSealed for Exit {
fn registration(&mut self) -> Registration {
Registration::Process(self.0)
}
}
impl Queueable for Exit {}
mod __private {
use crate::reactor::Registration;
#[doc(hidden)]
pub trait QueueableSealed {
/// Get a registration object for this filter.
fn registration(&mut self) -> Registration;
}
}