async_io/os/
kqueue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Functionality that is only available for `kqueue`-based platforms.

use __private::QueueableSealed;

use crate::reactor::{Reactor, Readable, Registration};
use crate::Async;

use std::future::Future;
use std::io::{Error, Result};
use std::num::NonZeroI32;
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd};
use std::pin::Pin;
use std::process::Child;
use std::task::{Context, Poll};

/// A wrapper around a queueable object that waits until it is ready.
///
/// The underlying `kqueue` implementation can be used to poll for events besides file descriptor
/// read/write readiness. This API makes these faculties available to the user.
///
/// See the [`Queueable`] trait and its implementors for objects that currently support being registered
/// into the reactor.
#[derive(Debug)]
pub struct Filter<T>(Async<T>);

impl<T> AsRef<T> for Filter<T> {
    fn as_ref(&self) -> &T {
        self.0.as_ref()
    }
}

impl<T> AsMut<T> for Filter<T> {
    fn as_mut(&mut self) -> &mut T {
        self.get_mut()
    }
}

impl<T: Queueable> Filter<T> {
    /// Create a new [`Filter`] around a [`Queueable`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::process::Command;
    /// use async_io::os::kqueue::{Exit, Filter};
    ///
    /// // Create a new process to wait for.
    /// let mut child = Command::new("sleep").arg("5").spawn().unwrap();
    ///
    /// // Wrap the process in an `Async` object that waits for it to exit.
    /// let process = Filter::new(Exit::new(child)).unwrap();
    ///
    /// // Wait for the process to exit.
    /// # async_io::block_on(async {
    /// process.ready().await.unwrap();
    /// # });
    /// ```
    pub fn new(mut filter: T) -> Result<Self> {
        Ok(Self(Async {
            source: Reactor::get().insert_io(filter.registration())?,
            io: Some(filter),
        }))
    }
}

impl<T: AsRawFd> AsRawFd for Filter<T> {
    fn as_raw_fd(&self) -> RawFd {
        self.0.as_raw_fd()
    }
}

impl<T: AsFd> AsFd for Filter<T> {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.0.as_fd()
    }
}

impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Filter<T> {
    type Error = Error;

    fn try_from(fd: OwnedFd) -> Result<Self> {
        Ok(Self(Async::try_from(fd)?))
    }
}

impl<T: Into<OwnedFd>> TryFrom<Filter<T>> for OwnedFd {
    type Error = Error;

    fn try_from(filter: Filter<T>) -> Result<Self> {
        filter.0.try_into()
    }
}

impl<T> Filter<T> {
    /// Gets a reference to the underlying [`Queueable`] object.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::os::kqueue::{Exit, Filter};
    ///
    /// # futures_lite::future::block_on(async {
    /// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
    /// let process = Filter::new(Exit::new(child)).unwrap();
    /// let inner = process.get_ref();
    /// # });
    /// ```
    pub fn get_ref(&self) -> &T {
        self.0.get_ref()
    }

    /// Gets a mutable reference to the underlying [`Queueable`] object.
    ///
    /// Unlike in [`Async`], this method is safe to call, since dropping the [`Filter`] will
    /// not cause any undefined behavior.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::os::kqueue::{Exit, Filter};
    ///
    /// # futures_lite::future::block_on(async {
    /// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
    /// let mut process = Filter::new(Exit::new(child)).unwrap();
    /// let inner = process.get_mut();
    /// # });
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { self.0.get_mut() }
    }

    /// Unwraps the inner [`Queueable`] object.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_io::os::kqueue::{Exit, Filter};
    ///
    /// # futures_lite::future::block_on(async {
    /// let child = std::process::Command::new("sleep").arg("5").spawn().unwrap();
    /// let process = Filter::new(Exit::new(child)).unwrap();
    /// let inner = process.into_inner().unwrap();
    /// # });
    /// ```
    pub fn into_inner(self) -> Result<T> {
        self.0.into_inner()
    }

    /// Waits until the [`Queueable`] object is ready.
    ///
    /// This method completes when the underlying [`Queueable`] object has completed. See the documentation
    /// for the [`Queueable`] object for more information.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::process::Command;
    /// use async_io::os::kqueue::{Exit, Filter};
    ///
    /// # futures_lite::future::block_on(async {
    /// let child = Command::new("sleep").arg("5").spawn()?;
    /// let process = Filter::new(Exit::new(child))?;
    ///
    /// // Wait for the process to exit.
    /// process.ready().await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn ready(&self) -> Ready<'_, T> {
        Ready(self.0.readable())
    }

    /// Polls the I/O handle for readiness.
    ///
    /// When this method returns [`Poll::Ready`], that means that the OS has delivered a notification
    /// that the underlying [`Queueable`] object is ready. See the documentation for the [`Queueable`]
    /// object for more information.
    ///
    /// # Caveats
    ///
    /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
    /// will just keep waking each other in turn, thus wasting CPU time.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::process::Command;
    /// use async_io::os::kqueue::{Exit, Filter};
    /// use futures_lite::future;
    ///
    /// # futures_lite::future::block_on(async {
    /// let child = Command::new("sleep").arg("5").spawn()?;
    /// let process = Filter::new(Exit::new(child))?;
    ///
    /// // Wait for the process to exit.
    /// future::poll_fn(|cx| process.poll_ready(cx)).await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn poll_ready(&self, cx: &mut Context<'_>) -> Poll<Result<()>> {
        self.0.poll_readable(cx)
    }
}

/// Future for [`Filter::ready`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct Ready<'a, T>(Readable<'a, T>);

impl<T> Future for Ready<'_, T> {
    type Output = Result<()>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        Pin::new(&mut self.0).poll(cx)
    }
}

/// Objects that can be registered into the reactor via a [`Async`](crate::Async).
///
/// These objects represent other filters associated with the `kqueue` runtime aside from readability
/// and writability. Rather than waiting on readable/writable, they wait on "readiness". This is
/// typically used for signals and child process exits.
pub trait Queueable: QueueableSealed {}

/// An object representing a signal.
///
/// When registered into [`Async`](crate::Async) via [`with_filter`](AsyncKqueueExt::with_filter),
/// it will return a [`readable`](crate::Async::readable) event when the signal is received.
#[derive(Debug, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub struct Signal(pub i32);

impl QueueableSealed for Signal {
    fn registration(&mut self) -> Registration {
        Registration::Signal(*self)
    }
}
impl Queueable for Signal {}

/// Wait for a child process to exit.
///
/// When registered into [`Async`](crate::Async) via [`with_filter`](AsyncKqueueExt::with_filter),
/// it will return a [`readable`](crate::Async::readable) event when the child process exits.
#[derive(Debug)]
pub struct Exit(NonZeroI32);

impl Exit {
    /// Create a new `Exit` object.
    pub fn new(child: Child) -> Self {
        Self(
            NonZeroI32::new(child.id().try_into().expect("unable to parse pid"))
                .expect("cannot register pid with zero value"),
        )
    }

    /// Create a new `Exit` object from a PID.
    ///
    /// # Safety
    ///
    /// The PID must be tied to an actual child process.
    pub unsafe fn from_pid(pid: NonZeroI32) -> Self {
        Self(pid)
    }
}

impl QueueableSealed for Exit {
    fn registration(&mut self) -> Registration {
        Registration::Process(self.0)
    }
}
impl Queueable for Exit {}

mod __private {
    use crate::reactor::Registration;

    #[doc(hidden)]
    pub trait QueueableSealed {
        /// Get a registration object for this filter.
        fn registration(&mut self) -> Registration;
    }
}