1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
use event_listener::{Event, EventListener};
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};
use crate::futures::Lock;
use crate::Mutex;
/// A counter to synchronize multiple tasks at the same time.
#[derive(Debug)]
pub struct Barrier {
n: usize,
state: Mutex<State>,
event: Event,
}
#[derive(Debug)]
struct State {
count: usize,
generation_id: u64,
}
impl Barrier {
/// Creates a barrier that can block the given number of tasks.
///
/// A barrier will block `n`-1 tasks which call [`wait()`] and then wake up all tasks
/// at once when the `n`th task calls [`wait()`].
///
/// [`wait()`]: `Barrier::wait()`
///
/// # Examples
///
/// ```
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(5);
/// ```
pub const fn new(n: usize) -> Barrier {
Barrier {
n,
state: Mutex::new(State {
count: 0,
generation_id: 0,
}),
event: Event::new(),
}
}
/// Blocks the current task until all tasks reach this point.
///
/// Barriers are reusable after all tasks have synchronized, and can be used continuously.
///
/// Returns a [`BarrierWaitResult`] indicating whether this task is the "leader", meaning the
/// last task to call this method.
///
/// # Examples
///
/// ```
/// use async_lock::Barrier;
/// use futures_lite::future;
/// use std::sync::Arc;
/// use std::thread;
///
/// let barrier = Arc::new(Barrier::new(5));
///
/// for _ in 0..5 {
/// let b = barrier.clone();
/// thread::spawn(move || {
/// future::block_on(async {
/// // The same messages will be printed together.
/// // There will NOT be interleaving of "before" and "after".
/// println!("before wait");
/// b.wait().await;
/// println!("after wait");
/// });
/// });
/// }
/// ```
pub fn wait(&self) -> BarrierWait<'_> {
BarrierWait {
barrier: self,
lock: Some(self.state.lock()),
state: WaitState::Initial,
}
}
}
/// The future returned by [`Barrier::wait()`].
pub struct BarrierWait<'a> {
/// The barrier to wait on.
barrier: &'a Barrier,
/// The ongoing mutex lock operation we are blocking on.
lock: Option<Lock<'a, State>>,
/// The current state of the future.
state: WaitState,
}
impl fmt::Debug for BarrierWait<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("BarrierWait { .. }")
}
}
enum WaitState {
/// We are getting the original values of the state.
Initial,
/// We are waiting for the listener to complete.
Waiting { evl: EventListener, local_gen: u64 },
/// Waiting to re-acquire the lock to check the state again.
Reacquiring(u64),
}
impl Future for BarrierWait<'_> {
type Output = BarrierWaitResult;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.get_mut();
loop {
match this.state {
WaitState::Initial => {
// See if the lock is ready yet.
let mut state = ready!(Pin::new(this.lock.as_mut().unwrap()).poll(cx));
this.lock = None;
let local_gen = state.generation_id;
state.count += 1;
if state.count < this.barrier.n {
// We need to wait for the event.
this.state = WaitState::Waiting {
evl: this.barrier.event.listen(),
local_gen,
};
} else {
// We are the last one.
state.count = 0;
state.generation_id = state.generation_id.wrapping_add(1);
this.barrier.event.notify(std::usize::MAX);
return Poll::Ready(BarrierWaitResult { is_leader: true });
}
}
WaitState::Waiting {
ref mut evl,
local_gen,
} => {
ready!(Pin::new(evl).poll(cx));
// We are now re-acquiring the mutex.
this.lock = Some(this.barrier.state.lock());
this.state = WaitState::Reacquiring(local_gen);
}
WaitState::Reacquiring(local_gen) => {
// Acquire the local state again.
let state = ready!(Pin::new(this.lock.as_mut().unwrap()).poll(cx));
this.lock = None;
if local_gen == state.generation_id && state.count < this.barrier.n {
// We need to wait for the event again.
this.state = WaitState::Waiting {
evl: this.barrier.event.listen(),
local_gen,
};
} else {
// We are ready, but not the leader.
return Poll::Ready(BarrierWaitResult { is_leader: false });
}
}
}
}
}
}
/// Returned by [`Barrier::wait()`] when all tasks have called it.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait().await;
/// # });
/// ```
#[derive(Debug, Clone)]
pub struct BarrierWaitResult {
is_leader: bool,
}
impl BarrierWaitResult {
/// Returns `true` if this task was the last to call to [`Barrier::wait()`].
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// use async_lock::Barrier;
/// use futures_lite::future;
///
/// let barrier = Barrier::new(2);
/// let (a, b) = future::zip(barrier.wait(), barrier.wait()).await;
/// assert_eq!(a.is_leader(), false);
/// assert_eq!(b.is_leader(), true);
/// # });
/// ```
pub fn is_leader(&self) -> bool {
self.is_leader
}
}