1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
use std::io;
use std::net::{Ipv4Addr, Ipv6Addr, SocketAddr};
#[cfg(unix)]
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd};
#[cfg(windows)]
use std::os::windows::io::{AsRawSocket, AsSocket, BorrowedSocket, OwnedSocket, RawSocket};
use std::sync::Arc;

use async_io::Async;

use crate::addr::AsyncToSocketAddrs;

/// A UDP socket.
///
/// After creating a [`UdpSocket`] by [`bind`][`UdpSocket::bind()`]ing it to a socket address, data
/// can be [sent to] and [received from] any other socket address.
///
/// Cloning a [`UdpSocket`] creates another handle to the same socket. The socket will be closed
/// when all handles to it are dropped.
///
/// Although UDP is a connectionless protocol, this implementation provides an interface to set an
/// address where data should be sent and received from. After setting a remote address with
/// [`connect()`][`UdpSocket::connect()`], data can be sent to and received from that address with
/// [`send()`][`UdpSocket::send()`] and [`recv()`][`UdpSocket::recv()`].
///
/// As stated in the User Datagram Protocol's specification in [IETF RFC 768], UDP is an unordered,
/// unreliable protocol. Refer to [`TcpListener`][`super::TcpListener`] and
/// [`TcpStream`][`super::TcpStream`] for TCP primitives.
///
/// [received from]: UdpSocket::recv_from()
/// [sent to]: UdpSocket::send_to()
/// [IETF RFC 768]: https://tools.ietf.org/html/rfc768
///
/// # Examples
///
/// ```no_run
/// use async_net::UdpSocket;
///
/// # futures_lite::future::block_on(async {
/// let socket = UdpSocket::bind("127.0.0.1:8080").await?;
/// let mut buf = vec![0u8; 20];
///
/// loop {
///     // Receive a single datagram message.
///     // If `buf` is too small to hold the entire message, it will be cut off.
///     let (n, addr) = socket.recv_from(&mut buf).await?;
///
///     // Send the message back to the same address that has sent it.
///     socket.send_to(&buf[..n], &addr).await?;
/// }
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Clone, Debug)]
pub struct UdpSocket {
    inner: Arc<Async<std::net::UdpSocket>>,
}

impl UdpSocket {
    fn new(inner: Arc<Async<std::net::UdpSocket>>) -> UdpSocket {
        UdpSocket { inner }
    }

    /// Creates a new [`UdpSocket`] bound to the given address.
    ///
    /// Binding with a port number of 0 will request that the operating system assigns an available
    /// port to this socket. The assigned port can be queried via the
    /// [`local_addr()`][`UdpSocket::local_addr()`] method.
    ///
    /// If `addr` yields multiple addresses, binding will be attempted with each of the addresses
    /// until one succeeds and returns the socket. If none of the addresses succeed in creating a
    /// socket, the error from the last attempt is returned.
    ///
    /// # Examples
    ///
    /// Create a UDP socket bound to `127.0.0.1:3400`:
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:3400").await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    ///
    /// Create a UDP socket bound to `127.0.0.1:3400`. If that address is unavailable, then try
    /// binding to `127.0.0.1:3401`:
    ///
    /// ```no_run
    /// use async_net::{SocketAddr, UdpSocket};
    ///
    /// # futures_lite::future::block_on(async {
    /// let addrs = [
    ///     SocketAddr::from(([127, 0, 0, 1], 3400)),
    ///     SocketAddr::from(([127, 0, 0, 1], 3401)),
    /// ];
    /// let socket = UdpSocket::bind(&addrs[..]).await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn bind<A: AsyncToSocketAddrs>(addr: A) -> io::Result<UdpSocket> {
        let mut last_err = None;

        for addr in addr.to_socket_addrs().await? {
            match Async::<std::net::UdpSocket>::bind(addr) {
                Ok(socket) => return Ok(UdpSocket::new(Arc::new(socket))),
                Err(err) => last_err = Some(err),
            }
        }

        Err(last_err.unwrap_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "could not bind to any of the addresses",
            )
        }))
    }

    /// Returns the local address this socket is bound to.
    ///
    /// This can be useful, for example, when binding to port 0 to figure out which port was
    /// actually bound.
    ///
    /// # Examples
    ///
    /// Bind to port 0 and then see which port was assigned by the operating system:
    ///
    /// ```no_run
    /// use async_net::{SocketAddr, UdpSocket};
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:0").await?;
    /// println!("Bound to {}", socket.local_addr()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.inner.get_ref().local_addr()
    }

    /// Returns the remote address this socket is connected to.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.connect("192.168.0.1:41203").await?;
    /// println!("Connected to {}", socket.peer_addr()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.inner.get_ref().peer_addr()
    }

    /// Connects the UDP socket to an address.
    ///
    /// When connected, methods [`send()`][`UdpSocket::send()`] and [`recv()`][`UdpSocket::recv()`]
    /// will use the specified address for sending and receiving messages. Additionally, a filter
    /// will be applied to [`recv_from()`][`UdpSocket::recv_from()`] so that it only receives
    /// messages from that same address.
    ///
    /// If `addr` yields multiple addresses, connecting will be attempted with each of the
    /// addresses until the operating system accepts one. If none of the addresses are accepted,
    /// the error from the last attempt is returned.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:3400").await?;
    /// socket.connect("127.0.0.1:8080").await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn connect<A: AsyncToSocketAddrs>(&self, addr: A) -> io::Result<()> {
        let mut last_err = None;

        for addr in addr.to_socket_addrs().await? {
            match self.inner.get_ref().connect(addr) {
                Ok(()) => return Ok(()),
                Err(err) => last_err = Some(err),
            }
        }

        Err(last_err.unwrap_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "could not connect to any of the addresses",
            )
        }))
    }

    /// Receives a single datagram message.
    ///
    /// On success, returns the number of bytes received and the address message came from.
    ///
    /// This method must be called with a valid byte buffer of sufficient size to hold a message.
    /// If the received message is too long to fit into the buffer, it may be truncated.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    ///
    /// let mut buf = vec![0u8; 1024];
    /// let (n, addr) = socket.recv_from(&mut buf).await?;
    /// println!("Received {} bytes from {}", n, addr);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.inner.recv_from(buf).await
    }

    /// Receives a single datagram message without removing it from the queue.
    ///
    /// On success, returns the number of bytes peeked and the address message came from.
    ///
    /// This method must be called with a valid byte buffer of sufficient size to hold a message.
    /// If the received message is too long to fit into the buffer, it may be truncated.
    ///
    /// Successive calls return the same message. This is accomplished by passing `MSG_PEEK` as a
    /// flag to the underlying `recvfrom` system call.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    ///
    /// let mut buf = vec![0u8; 1024];
    /// let (n, addr) = socket.peek_from(&mut buf).await?;
    /// println!("Peeked {} bytes from {}", n, addr);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        self.inner.get_ref().peek_from(buf)
    }

    /// Sends data to the given address.
    ///
    /// On success, returns the number of bytes sent.
    ///
    /// If `addr` yields multiple addresses, the message will only be sent to the first address.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.send_to(b"hello", "127.0.0.1:4242").await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn send_to<A: AsyncToSocketAddrs>(&self, buf: &[u8], addr: A) -> io::Result<usize> {
        let addr = match addr.to_socket_addrs().await?.next() {
            Some(addr) => addr,
            None => {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidInput,
                    "no addresses to send data to",
                ))
            }
        };

        self.inner.send_to(buf, addr).await
    }

    /// Receives a single datagram message from the connected address.
    ///
    /// On success, returns the number of bytes received.
    ///
    /// This method must be called with a valid byte buffer of sufficient size to hold a message.
    /// If the received message is too long to fit into the buffer, it may be truncated.
    ///
    /// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
    /// method will fail if the socket is not connected.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.connect("127.0.0.1:8080").await?;
    ///
    /// let mut buf = vec![0u8; 1024];
    /// let n = socket.recv(&mut buf).await?;
    /// println!("Received {} bytes", n);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.recv(buf).await
    }

    /// Receives a single datagram from the connected address without removing it from the queue.
    ///
    /// On success, returns the number of bytes peeked.
    ///
    /// This method must be called with a valid byte buffer of sufficient size to hold a message.
    /// If the received message is too long to fit into the buffer, it may be truncated.
    ///
    /// Successive calls return the same message. This is accomplished by passing `MSG_PEEK` as a
    /// flag to the underlying `recv` system call.
    ///
    /// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
    /// method will fail if the socket is not connected.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.connect("127.0.0.1:8080").await?;
    ///
    /// let mut buf = vec![0u8; 1024];
    /// let n = socket.peek(&mut buf).await?;
    /// println!("Peeked {} bytes", n);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.peek(buf).await
    }

    /// Sends data to the connected address.
    ///
    /// The [`connect()`][`UdpSocket::connect()`] method connects this socket to an address. This
    /// method will fail if the socket is not connected.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.connect("127.0.0.1:8080").await?;
    /// socket.send(b"hello").await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
        self.inner.send(buf).await
    }

    /// Gets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// If set to `true`, this socket is allowed to send packets to a broadcast address.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// println!("SO_BROADCAST is set to {}", socket.broadcast()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn broadcast(&self) -> io::Result<bool> {
        self.inner.get_ref().broadcast()
    }

    /// Sets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// If set to `true`, this socket is allowed to send packets to a broadcast address.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.set_broadcast(true)?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> {
        self.inner.get_ref().set_broadcast(broadcast)
    }

    /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// If set to `true`, multicast packets will be looped back to the local socket.
    ///
    /// Note that this option may not have any affect on IPv6 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// println!("IP_MULTICAST_LOOP is set to {}", socket.multicast_loop_v4()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn multicast_loop_v4(&self) -> io::Result<bool> {
        self.inner.get_ref().multicast_loop_v4()
    }

    /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// If set to `true`, multicast packets will be looped back to the local socket.
    ///
    /// Note that this option may not have any affect on IPv6 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.set_multicast_loop_v4(true)?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> {
        self.inner
            .get_ref()
            .set_multicast_loop_v4(multicast_loop_v4)
    }

    /// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// Indicates the time-to-live value of outgoing multicast packets for this socket. The default
    /// value is 1, which means that multicast packets don't leave the local network unless
    /// explicitly requested.
    ///
    /// Note that this option may not have any effect on IPv6 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// println!("IP_MULTICAST_TTL is set to {}", socket.multicast_loop_v4()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
        self.inner.get_ref().multicast_ttl_v4()
    }

    /// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// Indicates the time-to-live value of outgoing multicast packets for this socket. The default
    /// value is 1, which means that multicast packets don't leave the local network unless
    /// explicitly requested.
    ///
    /// Note that this option may not have any effect on IPv6 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.set_multicast_ttl_v4(10)?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
        self.inner.get_ref().set_multicast_ttl_v4(ttl)
    }

    /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// Controls whether this socket sees the multicast packets it sends itself.
    ///
    /// Note that this option may not have any effect on IPv4 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// println!("IPV6_MULTICAST_LOOP is set to {}", socket.multicast_loop_v6()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn multicast_loop_v6(&self) -> io::Result<bool> {
        self.inner.get_ref().multicast_loop_v6()
    }

    /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// Controls whether this socket sees the multicast packets it sends itself.
    ///
    /// Note that this option may not have any effect on IPv4 sockets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.set_multicast_loop_v6(true)?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> {
        self.inner
            .get_ref()
            .set_multicast_loop_v6(multicast_loop_v6)
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// This option configures the time-to-live field that is used in every packet sent from this
    /// socket.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// println!("IP_TTL is set to {}", socket.ttl()?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn ttl(&self) -> io::Result<u32> {
        self.inner.get_ref().ttl()
    }

    /// Sets the value of the `IP_TTL` option for this socket.
    ///
    /// This option configures the time-to-live field that is used in every packet sent from this
    /// socket.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use async_net::UdpSocket;
    ///
    /// # futures_lite::future::block_on(async {
    /// let socket = UdpSocket::bind("127.0.0.1:34254").await?;
    /// socket.set_ttl(100)?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.inner.get_ref().set_ttl(ttl)
    }

    /// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
    ///
    /// This method specifies a new multicast group for this socket to join. Argument `multiaddr`
    /// must be a valid multicast address, and `interface` is the address of the local interface
    /// with which the system should join the multicast group. If it's equal to `INADDR_ANY` then
    /// an appropriate interface is chosen by the system.
    pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
        self.inner
            .get_ref()
            .join_multicast_v4(&multiaddr, &interface)
    }

    /// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
    ///
    /// This method leaves a multicast group. Argument `multiaddr` must be a valid multicast
    /// address, and `interface` is the index of the interface to leave.
    pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> {
        self.inner
            .get_ref()
            .leave_multicast_v4(&multiaddr, &interface)
    }

    /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
    ///
    /// This method specifies a new multicast group for this socket to join. Argument `multiaddr`
    /// must be a valid multicast address, and `interface` is the index of the interface to join
    /// (or 0 to indicate any interface).
    pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
        self.inner.get_ref().join_multicast_v6(multiaddr, interface)
    }

    /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
    ///
    /// This method leaves a multicast group. Argument `multiaddr` must be a valid multicast
    /// address, and `interface` is the index of the interface to leave.
    pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> {
        self.inner
            .get_ref()
            .leave_multicast_v6(multiaddr, interface)
    }
}

impl From<Async<std::net::UdpSocket>> for UdpSocket {
    fn from(socket: Async<std::net::UdpSocket>) -> UdpSocket {
        UdpSocket::new(Arc::new(socket))
    }
}

impl TryFrom<std::net::UdpSocket> for UdpSocket {
    type Error = io::Error;

    fn try_from(socket: std::net::UdpSocket) -> io::Result<UdpSocket> {
        Ok(UdpSocket::new(Arc::new(Async::new(socket)?)))
    }
}

impl From<UdpSocket> for Arc<Async<std::net::UdpSocket>> {
    fn from(val: UdpSocket) -> Self {
        val.inner
    }
}

#[cfg(unix)]
impl AsRawFd for UdpSocket {
    fn as_raw_fd(&self) -> RawFd {
        self.inner.as_raw_fd()
    }
}

#[cfg(unix)]
impl AsFd for UdpSocket {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.inner.get_ref().as_fd()
    }
}

#[cfg(unix)]
impl TryFrom<OwnedFd> for UdpSocket {
    type Error = io::Error;

    fn try_from(value: OwnedFd) -> Result<Self, Self::Error> {
        Self::try_from(std::net::UdpSocket::from(value))
    }
}

#[cfg(windows)]
impl AsRawSocket for UdpSocket {
    fn as_raw_socket(&self) -> RawSocket {
        self.inner.as_raw_socket()
    }
}

#[cfg(windows)]
impl AsSocket for UdpSocket {
    fn as_socket(&self) -> BorrowedSocket<'_> {
        self.inner.get_ref().as_socket()
    }
}

#[cfg(windows)]
impl TryFrom<OwnedSocket> for UdpSocket {
    type Error = io::Error;

    fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> {
        Self::try_from(std::net::UdpSocket::from(value))
    }
}