async_once_cell/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
//! A collection of lazy initialized values that are created by `Future`s.
//!
//! [OnceCell]'s API is similar to the [`once_cell`](https://crates.io/crates/once_cell) crate,
//! [`std::cell::OnceCell`], or [`std::sync::OnceLock`]. It provides an async version of a cell
//! that can only be initialized once, permitting tasks to wait on the initialization if it is
//! already running instead of racing multiple initialization tasks.
//!
//! Unlike threads, tasks can be cancelled at any point where they block. [OnceCell] deals with
//! this by allowing another initializer to run if the task currently initializing the cell is
//! dropped. This also allows for fallible initialization using [OnceCell::get_or_try_init] and
//! for the initializing `Future` to contain borrows or use references to thread-local data.
//!
//! [Lazy] takes the opposite approach: it wraps a single `Future` which is cooperatively run to
//! completion by any polling task. This requires that the initialization function be independent
//! of the calling context, but will never restart an initializing function just because the
//! surrounding task was cancelled. Using a trait object (`Pin<Box<dyn Future>>`) for the future
//! may simplify using this type in data structures.
//!
//! # Overhead
//!
//! Both cells use two `usize`s to store state and do not retain any allocations after
//! initialization is complete. Allocations are only required if there is contention.
//!
//! Accessing an already-initialized cell is as cheap as possible: only one atomic load with
//! Acquire ordering.
//!
//! # Features
//!
//! ## The `critical-section` feature
//!
//! If this feature is enabled, the [`critical-section`](https://crates.io/crates/critical-section)
//! crate is used instead of an `std` mutex. You must depend on that crate and select a locking
//! implementation; see [its documentation](https://docs.rs/critical-section/) for details.
//!
//! ## The `std` feature
//!
//! This is currently a no-op, but might in the future be used to expose APIs that depends on
//! types only in `std`. It does *not* control the locking implementation.
// How it works:
//
// The basic design goal of async_once_cell is to make the simpler, more common cases as fast and
// efficient as possible while reverting to a reasonably performant implementation when that's not
// possible.
//
// The fastest path is "access an already-initialized cell": this takes one atomic load with
// acquire ordering, and doing it with any less is not possible without extreme, platform-specific
// mechanisms (for example, the membarrier system call on Linux) which would make filling the cell
// significantly more expensive.
//
// The fast path for filling a cell is when there is no contention. The types in this crate will
// not allocate in this scenario, which proceeds according to this summary:
//
// 1. A single task runs get_or_try_init, which calls Inner::initialize(true)
// 2. Inner::state transitions from NEW to QINIT_BIT, and a QuickInitGuard is returned
// 3. The init future is run and completes successfully (possibly after yielding)
// 4. The value is written to the UnsafeCell
// 5. Inner::state transitions from QINIT_BIT to READY_BIT during QuickInitGuard's Drop
//
// If the init future fails (due to returning an error or a panic), then:
// 4. The UnsafeCell remains uninitialized
// 5. Inner::state transitions from QINIT_BIT to NEW during QuickInitGuard's Drop
//
// The fast path does not use Inner::queue at all, and only needs to check it once the cell
// transitions to the ready state (in order to handle the edge case where a queue was created but
// was not actually needed).
//
// Slow path:
//
// If a second task attempts to start initialization, it will not succeed in transitioning
// Inner::state from NEW to QINIT_BIT. Instead, it will create a Queue on the heap, storing it in
// Inner::queue and creating a QueueRef pointing at it. This Queue will hold the Wakers for all
// tasks that attempt to perform initialization. When a QuickInitGuard or QueueHead is dropped,
// all tasks are woken and will either proceed directly to obtaining a reference (if initialization
// was successful) or race to create a new QueueHead, with losers re-queuing in a new Waker list.
//
// Once a Queue has been created for an Inner, it remains valid as long as either a reference
// exists (as determined by the reference count in Inner::state) or the state is not ready. A
// QueueRef represents one reference to the Queue (similar to how Arc<Queue> would act).
//
// The wake-up behavior used here is optimized for the common case where an initialization function
// succeeds and a mass wake-up results in all woken tasks able to proceed with returning a
// reference to the just-stored value. If initialization fails, it would in theory be possible to
// only wake one of the pending tasks, since only one task will be able to make useful progress by
// becoming the new QueueHead. However, to avoid a lost wakeup, this would require tracking wakers
// and removing them when a QueueRef is dropped. The extra overhead required to maintain the list
// of wakers is not worth the extra complexity and locking in the common case where the QueueRef
// was dropped due to a successful initialization.
#![cfg_attr(feature = "critical-section", no_std)]
extern crate alloc;
#[cfg(any(not(feature = "critical-section"), feature = "std"))]
extern crate std;
use alloc::{boxed::Box, vec, vec::Vec};
use core::{
cell::UnsafeCell,
convert::Infallible,
fmt,
future::{Future, IntoFuture},
marker::{PhantomData, PhantomPinned},
mem::{self, ManuallyDrop, MaybeUninit},
panic::{RefUnwindSafe, UnwindSafe},
pin::{pin, Pin},
ptr,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
task,
};
#[cfg(feature = "critical-section")]
struct Mutex<T> {
data: UnsafeCell<T>,
locked: core::sync::atomic::AtomicBool,
}
#[cfg(feature = "critical-section")]
impl<T> Mutex<T> {
const fn new(data: T) -> Self {
Mutex { data: UnsafeCell::new(data), locked: core::sync::atomic::AtomicBool::new(false) }
}
}
#[cfg(not(feature = "critical-section"))]
use std::sync::Mutex;
#[cfg(feature = "critical-section")]
fn with_lock<T, R>(mutex: &Mutex<T>, f: impl FnOnce(&mut T) -> R) -> R {
struct Guard<'a, T>(&'a Mutex<T>);
impl<'a, T> Drop for Guard<'a, T> {
fn drop(&mut self) {
self.0.locked.store(false, Ordering::Relaxed);
}
}
critical_section::with(|_| {
if mutex.locked.swap(true, Ordering::Relaxed) {
// Note: this can in theory happen if the delegated Clone impl on a Waker provided in
// an initialization context turns around and tries to initialize the same cell. This
// is an absurd thing to do, but it's safe so we can't assume nobody will ever do it.
panic!("Attempted reentrant locking");
}
let guard = Guard(mutex);
// Safety: we just checked that we were the one to set `locked` to true, and the data in
// this Mutex will only be accessed while the lock is true. We use Relaxed memory ordering
// instead of Acquire/Release because critical_section::with itself must provide an
// Acquire/Release barrier around its closure, and also guarantees that there will not be
// more than one such closure executing at a time.
let rv = unsafe { f(&mut *mutex.data.get()) };
drop(guard);
rv
})
}
#[cfg(not(feature = "critical-section"))]
fn with_lock<T, R>(mutex: &Mutex<T>, f: impl FnOnce(&mut T) -> R) -> R {
f(&mut *mutex.lock().unwrap())
}
/// A cell which can be written to only once.
///
/// This allows initialization using an async closure that borrows from its environment.
///
/// ```
/// use std::rc::Rc;
/// use std::sync::Arc;
/// use async_once_cell::OnceCell;
///
/// # async fn run() {
/// let non_send_value = Rc::new(4);
/// let shared = Arc::new(OnceCell::new());
///
/// let value : &i32 = shared.get_or_init(async {
/// *non_send_value
/// }).await;
/// assert_eq!(value, &4);
///
/// // A second init is not called
/// let second = shared.get_or_init(async {
/// unreachable!()
/// }).await;
/// assert_eq!(second, &4);
///
/// # }
/// # use std::future::Future;
/// # struct NeverWake;
/// # impl std::task::Wake for NeverWake {
/// # fn wake(self: Arc<Self>) {}
/// # }
/// # let w = Arc::new(NeverWake).into();
/// # let mut cx = std::task::Context::from_waker(&w);
/// # assert!(std::pin::pin!(run()).poll(&mut cx).is_ready());
/// ```
pub struct OnceCell<T> {
value: UnsafeCell<MaybeUninit<T>>,
inner: Inner,
_marker: PhantomData<T>,
}
// Safety: our UnsafeCell should be treated like an RwLock<T>
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}
impl<T> Unpin for OnceCell<T> {}
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}
/// Monomorphic portion of the state of a OnceCell or Lazy.
///
/// The top two bits of state are flags (READY_BIT and QINIT_BIT) that define the state of the
/// cell. The rest of the bits count the number of QueueRef objects associated with this Inner.
///
/// The queue pointer starts out as NULL. If contention is detected during the initialization of
/// the object, it is initialized to a Box<Queue>, and will remain pointing at that Queue until the
/// state has changed to ready with zero active QueueRefs.
struct Inner {
state: AtomicUsize,
queue: AtomicPtr<Queue>,
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let state = self.state.load(Ordering::Relaxed);
let queue = self.queue.load(Ordering::Relaxed);
fmt.debug_struct("Inner")
.field("ready", &(state & READY_BIT != 0))
.field("quick_init", &(state & QINIT_BIT != 0))
.field("refcount", &(state & (QINIT_BIT - 1)))
.field("queue", &queue)
.finish()
}
}
/// Transient state during initialization
///
/// Unlike the sync OnceCell, this cannot be a linked list through stack frames, because Futures
/// can be freed at any point by any thread. Instead, this structure is allocated on the heap
/// during the first initialization call and freed after the value is set (or when the OnceCell is
/// dropped, if the value never gets set).
struct Queue {
wakers: Mutex<Option<Vec<task::Waker>>>,
}
/// A reference to the Queue held inside an Inner.
///
/// This is somewhat like Arc<Queue>, the refcount is held in Inner instead of Queue so it can be
/// freed once the cell's initialization is complete.
///
/// Holding a QueueRef guarantees that either:
/// - queue points to a valid Queue that will not be freed until this QueueRef is dropped
/// - inner.state is ready
///
/// The value of QueueRef::queue may be dangling or null if inner.state was ready at the time the
/// value was loaded. The holder of a QueueRef must observe a non-ready state prior to using
/// queue; because this is already done by all holders of QueueRef for other reasons, this second
/// check is not included in Inner::initialize.
///
/// The creation of a QueueRef performs an Acquire ordering operation on Inner::state; its Drop
/// performs a Release on the same value.
///
/// The value of QueueRef::queue may also become dangling during QueueRef's Drop impl even when the
/// lifetime 'a is still valid, so a raw pointer is required for correctness.
struct QueueRef<'a> {
inner: &'a Inner,
queue: *const Queue,
}
// Safety: the queue is a reference (only the lack of a valid lifetime requires it to be a pointer)
unsafe impl<'a> Sync for QueueRef<'a> {}
unsafe impl<'a> Send for QueueRef<'a> {}
/// A write guard for an active initialization of the associated UnsafeCell
///
/// This is created on the fast (no-allocation) path only.
#[derive(Debug)]
struct QuickInitGuard<'a> {
inner: &'a Inner,
ready: bool,
}
/// A Future that waits for acquisition of a QueueHead
struct QueueWaiter<'a> {
guard: Option<QueueRef<'a>>,
}
/// A write guard for the active initialization of the associated UnsafeCell
///
/// Creation of a QueueHead must always be done with the Queue's Mutex held. If no QuickInitGuard
/// exists, the task creating the QueueHead is the task that transitions the contents of the Mutex
/// from None to Some; it must verify QINIT_BIT is unset with the lock held.
///
/// Only QueueHead::drop may transition the contents of the Mutex from Some to None.
///
/// Dropping this object will wake all tasks that have blocked on the currently-running
/// initialization.
struct QueueHead<'a> {
guard: QueueRef<'a>,
}
const NEW: usize = 0x0;
const QINIT_BIT: usize = 1 + (usize::MAX >> 2);
const READY_BIT: usize = 1 + (usize::MAX >> 1);
const EMPTY_STATE: usize = !0;
impl Inner {
const fn new() -> Self {
Inner { state: AtomicUsize::new(NEW), queue: AtomicPtr::new(ptr::null_mut()) }
}
const fn new_ready() -> Self {
Inner { state: AtomicUsize::new(READY_BIT), queue: AtomicPtr::new(ptr::null_mut()) }
}
/// Initialize the queue (if needed) and return a waiter that can be polled to get a QueueHead
/// that gives permission to initialize the OnceCell.
///
/// The Queue referenced in the returned QueueRef will not be freed until the cell is populated
/// and all references have been dropped. If any references remain, further calls to
/// initialize will return the existing queue.
#[cold]
fn initialize(&self, try_quick: bool) -> Result<QueueWaiter, QuickInitGuard> {
if try_quick {
if self
.state
.compare_exchange(NEW, QINIT_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
// On success, we know that there were no other QueueRef objects active, and we
// just set QINIT_BIT which makes us the only party allowed to create a QueueHead.
// This remains true even if the queue is created later.
return Err(QuickInitGuard { inner: self, ready: false });
}
}
// Increment the queue's reference count. This ensures that queue won't be freed until we exit.
let prev_state = self.state.fetch_add(1, Ordering::Acquire);
// Note: unlike Arc, refcount overflow is impossible. The only way to increment the
// refcount is by calling poll on the Future returned by get_or_try_init, which is !Unpin.
// The poll call requires a Pinned pointer to this Future, and the contract of Pin requires
// Drop to be called on any !Unpin value that was pinned before the memory is reused.
// Because the Drop impl of QueueRef decrements the refcount, an overflow would require
// more than (usize::MAX / 4) QueueRef objects in memory, which is impossible as these
// objects take up more than 4 bytes.
let mut guard = QueueRef { inner: self, queue: self.queue.load(Ordering::Acquire) };
if guard.queue.is_null() && prev_state & READY_BIT == 0 {
let wakers = Mutex::new(None);
// Race with other callers of initialize to create the queue
let new_queue = Box::into_raw(Box::new(Queue { wakers }));
match self.queue.compare_exchange(
ptr::null_mut(),
new_queue,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_null) => {
// Normal case: it was actually set. The Release part of AcqRel orders this
// with all Acquires on the queue.
guard.queue = new_queue;
}
Err(actual) => {
// we lost the race, but we have the (non-null) value now.
guard.queue = actual;
// Safety: we just allocated it, and nobody else has seen it
unsafe {
drop(Box::from_raw(new_queue));
}
}
}
}
Ok(QueueWaiter { guard: Some(guard) })
}
fn set_ready(&self) {
// This Release pairs with the Acquire any time we check READY_BIT, and ensures that the
// writes to the cell's value are visible to the cell's readers.
let prev_state = self.state.fetch_or(READY_BIT, Ordering::Release);
debug_assert_eq!(prev_state & READY_BIT, 0, "Invalid state: someone else set READY_BIT");
}
}
impl<'a> Drop for QueueRef<'a> {
fn drop(&mut self) {
// Release the reference to queue
let prev_state = self.inner.state.fetch_sub(1, Ordering::Release);
// Note: as of now, self.queue may be invalid
let curr_state = prev_state - 1;
if curr_state == READY_BIT || curr_state == READY_BIT | QINIT_BIT {
// We just removed the only waiter on an initialized cell. This means the
// queue is no longer needed. Acquire the queue again so we can free it.
let queue = self.inner.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
// Safety: the last guard is being freed, and queue is only used by guard-holders.
// Due to the swap, we are the only one who is freeing this particular queue.
unsafe {
drop(Box::from_raw(queue));
}
}
}
}
}
impl<'a> Drop for QuickInitGuard<'a> {
fn drop(&mut self) {
// When our QuickInitGuard was created, Inner::state was changed to QINIT_BIT. If it is
// either unchanged or has changed back to that value, we can finish on the fast path.
let fast_target = if self.ready { READY_BIT } else { NEW };
if self
.inner
.state
.compare_exchange(QINIT_BIT, fast_target, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
// Because the exchange succeeded, we know there are no active QueueRefs and so no
// wakers need to be woken. If self.ready is true, the Release ordering pairs with
// the Acquire on another thread's access to state to check READY_BIT.
if self.ready {
// It's possible (though unlikely) that someone created the queue but abandoned
// their QueueRef before we finished our poll, resulting in us not observing
// them. No wakes are needed in this case because there are no waiting tasks,
// but we should still clean up the allocation.
let queue = self.inner.queue.swap(ptr::null_mut(), Ordering::Relaxed);
if !queue.is_null() {
// Synchronize with both the fetch_sub that lowered the refcount and the
// queue initialization.
core::sync::atomic::fence(Ordering::Acquire);
// Safety: we observed no active QueueRefs, and queue is only used by
// guard-holders. Due to the swap, we are the only one who is freeing this
// particular queue.
unsafe {
drop(Box::from_raw(queue));
}
}
}
return;
}
// Slow path: get a guard, create the QueueHead we should have been holding, then drop it
// so that the tasks are woken as intended. This is needed regardless of if we succeeded
// or not - either waiters need to run init themselves, or they need to read the value we
// set.
//
// The guard is guaranteed to have been created with no QueueHead available because
// QINIT_BIT is still set.
let waiter = self.inner.initialize(false).expect("Got a QuickInitGuard in slow init");
let guard = waiter.guard.expect("No guard available even without polling");
// Safety: the guard holds a place on the waiter list, and we know READY_BIT was not yet
// set when Inner::initialize was called, so the queue must be present. It will remain
// valid until guard is dropped.
debug_assert!(!guard.queue.is_null(), "Queue must not be NULL when READY_BIT is not set");
let queue = unsafe { &*guard.queue };
with_lock(&queue.wakers, |lock| {
// Creating a QueueHead requires that the Mutex contain Some. While this is likely
// already true, it is not guaranteed because the first concurrent thread might have
// been preempted before it was able to start its first QueueWaiter::poll call. Ensure
// that nobody else can grab the QueueHead between when we release QINIT_BIT and when
// our QueueHead is dropped.
lock.get_or_insert_with(Vec::new);
// We must clear QINIT_BIT, which will allow someone else to take the head position
// once we drop it.
//
// If our initialization was successful, we also need to set READY_BIT. These
// operations can be combined because we know the current state of both bits (only
// QINIT_BIT is set) and because READY_BIT == 2 * QINIT_BIT.
//
// Ordering for QINIT_BIT is handled by the Mutex, but ordering for READY_BIT is not;
// it needs Release ordering to ensure that the UnsafeCell's value is visible prior to
// that bit being observed as set by other threads.
let prev_state = if self.ready {
self.inner.state.fetch_add(QINIT_BIT, Ordering::Release)
} else {
self.inner.state.fetch_sub(QINIT_BIT, Ordering::Relaxed)
};
debug_assert_eq!(
prev_state & (QINIT_BIT | READY_BIT),
QINIT_BIT,
"Invalid state during QuickInitGuard drop"
);
});
// Safety: we just took the head position
drop(QueueHead { guard })
}
}
impl Drop for Inner {
fn drop(&mut self) {
let queue = *self.queue.get_mut();
if !queue.is_null() {
// Safety: nobody else could have a reference
unsafe {
drop(Box::from_raw(queue));
}
}
}
}
impl<'a> Future for QueueWaiter<'a> {
type Output = Option<QueueHead<'a>>;
fn poll(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
) -> task::Poll<Option<QueueHead<'a>>> {
let guard = self.guard.as_ref().expect("Polled future after finished");
// Fast path for waiters that get notified after the value is set
let state = guard.inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
// Safety: the guard holds a place on the waiter list and we just checked that the state is
// not ready, so the queue is non-null and will remain valid until guard is dropped.
let queue = unsafe { &*guard.queue };
let rv = with_lock(&queue.wakers, |lock| {
// Another task might have set READY_BIT between our optimistic lock-free check and our
// lock acquisition. Don't return a QueueHead unless we know for sure that we are
// allowed to initialize.
let state = guard.inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
match lock.as_mut() {
None if state & QINIT_BIT == 0 => {
// take the head position and start a waker queue
*lock = Some(Vec::new());
task::Poll::Ready(Some(()))
}
None => {
// Someone else has a QuickInitGuard; they will wake us when they finish.
let waker = cx.waker().clone();
*lock = Some(vec![waker]);
task::Poll::Pending
}
Some(wakers) => {
// Wait for the QueueHead to be dropped
let my_waker = cx.waker();
for waker in wakers.iter() {
if waker.will_wake(my_waker) {
return task::Poll::Pending;
}
}
wakers.push(my_waker.clone());
task::Poll::Pending
}
}
});
// Safety: If rv is Ready/Some, we know:
// - we are holding a QueueRef (in guard) that prevents state from being 0
// - creating a new QuickInitGuard requires the state to be 0
// - we just checked QINIT_BIT and saw there isn't a QuickInitGuard active
// - the queue was None, meaning there are no current QueueHeads
// - we just set the queue to Some, claiming the head
//
// If rv is Ready/None, this is due to READY_BIT being set.
// If rv is Pending, we have a waker in the queue.
rv.map(|o| o.map(|()| QueueHead { guard: self.guard.take().unwrap() }))
}
}
impl<'a> Drop for QueueHead<'a> {
fn drop(&mut self) {
// Safety: if queue is not null, then it is valid as long as the guard is alive, and a
// QueueHead is never created with a NULL queue (that requires READY_BIT to have been set
// inside Inner::initialize, and in that case no QueueHead objects will be created).
let queue = unsafe { &*self.guard.queue };
// Take the waker queue, allowing another QueueHead to be created if READY_BIT is unset.
let wakers =
with_lock(&queue.wakers, Option::take).expect("QueueHead dropped without a waker list");
for waker in wakers {
waker.wake();
}
}
}
enum Step<'a> {
Start { inner: &'a Inner },
Quick { guard: QuickInitGuard<'a> },
Wait { guard: QueueWaiter<'a> },
Run { head: QueueHead<'a> },
Done,
}
enum EitherHead<'a, 'b> {
Quick(&'b mut QuickInitGuard<'a>),
Normal(&'b QueueHead<'a>),
}
impl EitherHead<'_, '_> {
fn set_ready(&mut self) {
match self {
Self::Quick(guard) => guard.ready = true,
Self::Normal(head) => head.guard.inner.set_ready(),
}
}
}
impl<'a> Step<'a> {
/// Run one step the state machine.
///
/// - The provided `done` value will only be returned only if READY_BIT is observed
/// - The `init` closure will be run when the initialization lock is acquired. It should call
/// [EitherHead::set_ready] in order to set READY_BIT if it succeeds; this will cause tasks
/// that are waiting on initialization to wake up.
fn poll_init<F, R>(&mut self, cx: &mut task::Context<'_>, done: R, mut init: F) -> task::Poll<R>
where
F: FnMut(&mut task::Context<'_>, EitherHead<'a, '_>) -> task::Poll<R>,
{
loop {
match mem::replace(self, Step::Done) {
Step::Start { inner } => {
let state = inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
*self = match inner.initialize(state == NEW) {
Err(guard) => Step::Quick { guard },
Ok(guard) => Step::Wait { guard },
};
continue;
}
// Safety: we just saw READY_BIT set
return task::Poll::Ready(done);
}
Step::Quick { mut guard } => {
let rv = init(cx, EitherHead::Quick(&mut guard));
if rv.is_pending() {
*self = Step::Quick { guard };
}
return rv;
}
Step::Wait { mut guard } => match Pin::new(&mut guard).poll(cx) {
task::Poll::Pending => {
*self = Step::Wait { guard };
return task::Poll::Pending;
}
task::Poll::Ready(None) => {
// Safety: getting None from QueueWaiter means it is ready
return task::Poll::Ready(done);
}
task::Poll::Ready(Some(head)) => {
*self = Step::Run { head };
continue;
}
},
Step::Run { head } => {
let rv = init(cx, EitherHead::Normal(&head));
if rv.is_pending() {
*self = Step::Run { head };
}
// drop of QueueHead notifies other Futures
// drop of QueueRef (might) free the Queue
return rv;
}
Step::Done => {
panic!("Polled future after completion");
}
}
}
}
}
struct InitFuture<'a, T, F> {
cell: &'a OnceCell<T>,
init: F,
step: Step<'a>,
}
impl<'a, T, F> InitFuture<'a, T, F> {
fn new<R>(cell: &'a OnceCell<T>, init: F) -> Self
where
F: for<'c> FnMut(&mut task::Context<'c>) -> task::Poll<R> + Unpin,
{
Self { cell, init, step: Step::Start { inner: &cell.inner } }
}
}
impl<'a, T, F, E> Future for InitFuture<'a, T, F>
where
F: for<'c> FnMut(&mut task::Context<'c>) -> task::Poll<Result<T, E>> + Unpin,
{
type Output = Result<&'a T, E>;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<Self::Output> {
struct Filled;
let this = self.get_mut();
let cell = this.cell;
let init = &mut this.init;
this.step
.poll_init(cx, Ok(Filled), |cx, mut head| {
let value = task::ready!(init(cx))?;
// Safety: We hold the head, so nobody else can write to value
unsafe {
(*cell.value.get()).write(value);
}
head.set_ready();
task::Poll::Ready(Ok(Filled))
})
.map(|r| {
// Safety: a Filled struct is only returned when either READY_BIT was seen or when
// we wrote the value.
r.map(|Filled| unsafe { (*this.cell.value.get()).assume_init_ref() })
})
}
}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> Self {
Self {
value: UnsafeCell::new(MaybeUninit::uninit()),
inner: Inner::new(),
_marker: PhantomData,
}
}
/// Creates a new cell with the given contents.
pub const fn new_with(value: T) -> Self {
Self {
value: UnsafeCell::new(MaybeUninit::new(value)),
inner: Inner::new_ready(),
_marker: PhantomData,
}
}
/// Gets the contents of the cell, initializing it with `init` if the cell was empty.
///
/// Many tasks may call `get_or_init` concurrently with different initializing futures, but
/// it is guaranteed that only one future will be executed as long as the resulting future is
/// polled to completion.
///
/// If `init` panics, the panic is propagated to the caller, and the cell remains uninitialized.
///
/// If the Future returned by this function is dropped prior to completion, the cell remains
/// uninitialized, and another `init` function will be started (if any are available).
///
/// Attempting to reentrantly initialize the cell from `init` will generally cause a deadlock;
/// the reentrant call will immediately yield and wait for the pending initialization. If the
/// actual initialization can complete despite this (for example, by polling multiple futures
/// and discarding incomplete ones instead of polling them to completion), then the cell will
/// successfully be initialized.
pub async fn get_or_init(&self, init: impl Future<Output = T>) -> &T {
let mut init = pin!(init);
// TODO replace this match to Result::into_ok when that is stabilized
match InitFuture::new(self, |cx| init.as_mut().poll(cx).map(Ok::<T, Infallible>)).await {
Ok(t) => t,
Err(e) => match e {},
}
}
/// Gets the contents of the cell, initializing it with `init` if the cell was empty. If the
/// cell was empty and `init` failed, an error is returned.
///
/// Many tasks may call `get_or_init` and/or `get_or_try_init` concurrently with different
/// initializing futures, but it is guaranteed that only one of the futures will be executed as
/// long as the resulting future is polled to completion.
///
/// If `init` panics or returns an error, the panic or error is propagated to the caller, and
/// the cell remains uninitialized. In this case, another `init` function from a concurrent
/// caller will be selected to execute, if one is available.
///
/// If the Future returned by this function is dropped prior to completion, the cell remains
/// uninitialized, and another `init` function will be started (if any are available).
///
/// Attempting to reentrantly initialize the cell from `init` will generally cause a deadlock;
/// the reentrant call will immediately yield and wait for the pending initialization. If the
/// actual initialization can complete despite this (for example, by polling multiple futures
/// and discarding incomplete ones instead of polling them to completion), then the cell will
/// successfully be initialized.
pub async fn get_or_try_init<E>(
&self,
init: impl Future<Output = Result<T, E>>,
) -> Result<&T, E> {
let mut init = pin!(init);
InitFuture::new(self, |cx| init.as_mut().poll(cx)).await
}
/// Gets the reference to the underlying value.
///
/// Returns `None` if the cell is empty or being initialized. This method never blocks.
pub fn get(&self) -> Option<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
None
} else {
Some(unsafe { (*self.value.get()).assume_init_ref() })
}
}
/// Gets a mutable reference to the underlying value.
pub fn get_mut(&mut self) -> Option<&mut T> {
let state = *self.inner.state.get_mut();
if state & READY_BIT == 0 {
None
} else {
Some(unsafe { self.value.get_mut().assume_init_mut() })
}
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
pub fn take(&mut self) -> Option<T> {
let state = *self.inner.state.get_mut();
self.inner = Inner::new();
if state & READY_BIT == 0 {
None
} else {
Some(unsafe { self.value.get_mut().assume_init_read() })
}
}
/// Consumes the OnceCell, returning the wrapped value. Returns None if the cell was empty.
pub fn into_inner(mut self) -> Option<T> {
self.take()
}
}
impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let value = self.get();
fmt.debug_struct("OnceCell").field("value", &value).field("inner", &self.inner).finish()
}
}
impl<T> Drop for OnceCell<T> {
fn drop(&mut self) {
let state = *self.inner.state.get_mut();
if state & READY_BIT != 0 {
unsafe {
self.value.get_mut().assume_init_drop();
}
}
}
}
impl<T> Default for OnceCell<T> {
fn default() -> Self {
Self::new()
}
}
impl<T> From<T> for OnceCell<T> {
fn from(value: T) -> Self {
Self::new_with(value)
}
}
#[cfg(test)]
mod test {
use super::*;
use alloc::sync::Arc;
use core::pin::pin;
#[derive(Default)]
struct CountWaker(AtomicUsize);
impl alloc::task::Wake for CountWaker {
fn wake(self: Arc<Self>) {
self.0.fetch_add(1, Ordering::Relaxed);
}
}
struct CmdWait<'a>(&'a AtomicUsize);
impl Future for CmdWait<'_> {
type Output = usize;
fn poll(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> task::Poll<usize> {
match self.0.load(Ordering::Relaxed) {
0 => task::Poll::Pending,
n => task::Poll::Ready(n),
}
}
}
impl Drop for CmdWait<'_> {
fn drop(&mut self) {
if self.0.load(Ordering::Relaxed) == 6 {
panic!("Panic on drop");
}
}
}
async fn maybe(cmd: &AtomicUsize, cell: &OnceCell<usize>) -> Result<usize, usize> {
cell.get_or_try_init(async {
match dbg!(CmdWait(cmd).await) {
1 => Err(1),
2 => Ok(2),
_ => unreachable!(),
}
})
.await
.map(|v| *v)
}
async fn never_init(cell: &OnceCell<usize>) {
let v = cell.get_or_init(async { unreachable!() }).await;
assert_eq!(v, &2);
}
#[test]
fn slow_path() {
let w = Arc::new(CountWaker::default()).into();
let mut cx = std::task::Context::from_waker(&w);
let cmd = AtomicUsize::new(0);
let cell = OnceCell::new();
let mut f1 = pin!(maybe(&cmd, &cell));
let mut f2 = pin!(never_init(&cell));
println!("{:?}", cell);
assert!(f1.as_mut().poll(&mut cx).is_pending());
println!("{:?}", cell);
assert!(f2.as_mut().poll(&mut cx).is_pending());
println!("{:?}", cell);
cmd.store(2, Ordering::Relaxed);
assert!(f2.as_mut().poll(&mut cx).is_pending());
assert!(f1.as_mut().poll(&mut cx).is_ready());
println!("{:?}", cell);
assert!(f2.as_mut().poll(&mut cx).is_ready());
}
#[test]
fn fast_path_tricked() {
// f1 will complete on the fast path, but a queue was created anyway
let w = Arc::new(CountWaker::default()).into();
let mut cx = std::task::Context::from_waker(&w);
let cmd = AtomicUsize::new(0);
let cell = OnceCell::new();
let mut f1 = pin!(maybe(&cmd, &cell));
let mut f2 = pin!(never_init(&cell));
println!("{:?}", cell);
assert!(f1.as_mut().poll(&mut cx).is_pending());
println!("{:?}", cell);
assert!(f2.as_mut().poll(&mut cx).is_pending());
println!("{:?}", cell);
cmd.store(2, Ordering::Relaxed);
f2.set(never_init(&cell));
println!("{:?}", cell);
assert!(f1.as_mut().poll(&mut cx).is_ready());
println!("{:?}", cell);
assert!(f2.as_mut().poll(&mut cx).is_ready());
}
#[test]
fn second_try() {
let waker = Arc::new(CountWaker::default());
let w = waker.clone().into();
let mut cx = std::task::Context::from_waker(&w);
let cmd = AtomicUsize::new(0);
let cell = OnceCell::new();
let mut f1 = pin!(maybe(&cmd, &cell));
let mut f2 = pin!(maybe(&cmd, &cell));
let mut f3 = pin!(maybe(&cmd, &cell));
let mut f4 = pin!(maybe(&cmd, &cell));
assert!(f1.as_mut().poll(&mut cx).is_pending());
assert_eq!(cell.inner.state.load(Ordering::Relaxed), QINIT_BIT);
assert!(f2.as_mut().poll(&mut cx).is_pending());
assert!(f3.as_mut().poll(&mut cx).is_pending());
assert!(f4.as_mut().poll(&mut cx).is_pending());
assert_eq!(cell.inner.state.load(Ordering::Relaxed), QINIT_BIT | 3);
cmd.store(1, Ordering::Relaxed);
// f2 should do nothing, as f1 holds QuickInitGuard
assert!(f2.as_mut().poll(&mut cx).is_pending());
assert_eq!(waker.0.load(Ordering::Relaxed), 0);
// f1 fails, as commanded
assert_eq!(f1.as_mut().poll(&mut cx), task::Poll::Ready(Err(1)));
// it released QINIT_BIT (and doesn't still hold a reference)
assert_eq!(cell.inner.state.load(Ordering::Relaxed), 3);
// f1 caused a wake to be sent (only one, as they have the same waker)
assert_eq!(waker.0.load(Ordering::Relaxed), 1);
// drop one waiting task and check that the refcount drops
f4.set(maybe(&cmd, &cell));
assert_eq!(cell.inner.state.load(Ordering::Relaxed), 2);
// have f2 start init
cmd.store(0, Ordering::Relaxed);
assert!(f2.as_mut().poll(&mut cx).is_pending());
// allow f2 to actually complete init
cmd.store(2, Ordering::Relaxed);
// f3 should add itself to the queue again, but not complete
assert!(f3.as_mut().poll(&mut cx).is_pending());
assert_eq!(waker.0.load(Ordering::Relaxed), 1);
assert_eq!(f2.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));
// Nobody else should run their closure
cmd.store(3, Ordering::Relaxed);
// Other tasks can now immediately access the value
assert_eq!(f4.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));
// f3 is still waiting; the queue should not be freed yet, and it should have seen a wake
assert_eq!(waker.0.load(Ordering::Relaxed), 2);
assert_eq!(cell.inner.state.load(Ordering::Relaxed), READY_BIT | 1);
assert!(!cell.inner.queue.load(Ordering::Relaxed).is_null());
assert_eq!(f3.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));
// the cell should be fully ready, with the queue deallocated
assert_eq!(cell.inner.state.load(Ordering::Relaxed), READY_BIT);
assert!(cell.inner.queue.load(Ordering::Relaxed).is_null());
// no more wakes were sent
assert_eq!(waker.0.load(Ordering::Relaxed), 2);
}
#[test]
fn lazy_panic() {
let w = Arc::new(CountWaker::default()).into();
let cmd = AtomicUsize::new(6);
let lz = Lazy::new(CmdWait(&cmd));
assert_eq!(std::mem::size_of_val(&lz), 3 * std::mem::size_of::<usize>(), "Extra overhead?");
// A panic during F::drop must properly transition the Lazy to ready in order to avoid a
// double-drop of F or a drop of an invalid T
assert!(std::panic::catch_unwind(|| {
let mut cx = std::task::Context::from_waker(&w);
pin!(lz.get_unpin()).poll(&mut cx)
})
.is_err());
assert_eq!(lz.try_get(), Some(&6));
}
}
union LazyState<T, F> {
running: ManuallyDrop<F>,
ready: ManuallyDrop<T>,
_empty: (),
}
/// A value which is computed on demand by running a future.
///
/// Unlike [OnceCell], if a task is cancelled, the initializing future's execution will be
/// continued by other (concurrent or future) callers of [Lazy::get].
///
/// ```
/// use std::sync::Arc;
/// use async_once_cell::Lazy;
///
/// # async fn run() {
/// struct Data {
/// id: u32,
/// }
///
/// let shared = Arc::pin(Lazy::new(async move {
/// Data { id: 4 }
/// }));
///
/// assert_eq!(shared.as_ref().await.id, 4);
/// # }
/// # use std::future::Future;
/// # struct NeverWake;
/// # impl std::task::Wake for NeverWake {
/// # fn wake(self: Arc<Self>) {}
/// # }
/// # let w = Arc::new(NeverWake).into();
/// # let mut cx = std::task::Context::from_waker(&w);
/// # assert!(std::pin::pin!(run()).poll(&mut cx).is_ready());
/// ```
///
/// Using this type with an `async` block in a `static` item requries unstable rust:
///
/// ```no_build
/// #![feature(const_async_blocks)]
/// #![feature(type_alias_impl_trait)]
/// mod example {
/// use async_once_cell::Lazy;
/// use std::future::Future;
/// type H = impl Future<Output=i32> + 'static;
/// static LAZY: Lazy<i32, H> = Lazy::new(async { 4 });
/// }
/// ```
///
/// However, it is possile to use if you have a named struct that implements `Future`:
///
/// ```
/// use async_once_cell::Lazy;
/// use std::{future::Future, pin::Pin, task};
///
/// struct F;
/// impl Future for F {
/// type Output = i32;
/// fn poll(self: Pin<&mut Self>, _: &mut task::Context) -> task::Poll<i32> {
/// return task::Poll::Ready(4);
/// }
/// }
///
/// static LAZY: Lazy<i32, F> = Lazy::new(F);
/// ```
///
/// And this type of struct can still use `async` syntax in its implementation:
///
/// ```
/// use async_once_cell::Lazy;
/// use std::{future::Future, pin::Pin, task};
///
/// struct F(Option<Pin<Box<dyn Future<Output=i32> + Send>>>);
/// impl Future for F {
/// type Output = i32;
/// fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context) -> task::Poll<i32> {
/// Pin::new(self.0.get_or_insert_with(|| Box::pin(async {
/// 4
/// }))).poll(cx)
/// }
/// }
///
/// static LAZY: Lazy<i32, F> = Lazy::new(F(None));
/// ```
pub struct Lazy<T, F> {
value: UnsafeCell<LazyState<T, F>>,
inner: Inner,
}
// Safety: our UnsafeCell should be treated like (RwLock<T>, Mutex<F>)
unsafe impl<T: Send + Sync, F: Send> Sync for Lazy<T, F> {}
unsafe impl<T: Send, F: Send> Send for Lazy<T, F> {}
impl<T: Unpin, F: Unpin> Unpin for Lazy<T, F> {}
impl<T: RefUnwindSafe + UnwindSafe, F: UnwindSafe> RefUnwindSafe for Lazy<T, F> {}
impl<T: UnwindSafe, F: UnwindSafe> UnwindSafe for Lazy<T, F> {}
impl<T, F> Lazy<T, F>
where
F: Future<Output = T>,
{
/// Creates a new lazy value with the given initializing future.
pub const fn new(future: F) -> Self {
Self::from_future(future)
}
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to calling `.await` on a pinned reference, but is more explicit.
///
/// The [Pin::static_ref] function may be useful if this is a static value.
pub async fn get(self: Pin<&Self>) -> Pin<&T> {
self.await
}
}
/// A helper struct for both of [Lazy]'s [IntoFuture]s
///
/// Note: the Lazy value may or may not be pinned, depending on what public struct wraps this one.
struct LazyFuture<'a, T, F> {
lazy: &'a Lazy<T, F>,
step: Step<'a>,
// This is needed to guarantee Inner's refcount never overflows
_pin: PhantomPinned,
}
impl<'a, T, F> LazyFuture<'a, T, F>
where
F: Future<Output = T>,
{
fn poll(&mut self, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
struct ReplaceGuard<'a, 'b, T, F> {
this: &'a Lazy<T, F>,
value: ManuallyDrop<T>,
head: EitherHead<'a, 'b>,
}
// Prevent double-drop in case of panic in ManuallyDrop::drop
impl<T, F> Drop for ReplaceGuard<'_, '_, T, F> {
fn drop(&mut self) {
// Safety: the union is currently empty and must be filled with a ready value
unsafe {
let value = ManuallyDrop::take(&mut self.value);
(*self.this.value.get()).ready = ManuallyDrop::new(value);
}
self.head.set_ready();
}
}
let this = &self.lazy;
self.step
.poll_init(cx, (), |cx, head| {
// Safety: this closure is only called when we have the queue head, so the
// union is in the running state and is pinned like self
let init = unsafe { Pin::new_unchecked(&mut *(*this.value.get()).running) };
let value = ManuallyDrop::new(task::ready!(init.poll(cx)));
// Safety: the guard will cause the replace and set-ready operations to happen
// even if the future panics on drop, so the union will not be vacant even on
// unwind.
unsafe {
let guard = ReplaceGuard { this, value, head };
ManuallyDrop::drop(&mut (*this.value.get()).running);
drop(guard);
}
// Safety: just initialized
task::Poll::Ready(())
})
.map(|()| {
// Safety: Ready is only returned when either READY_BIT was seen or we returned Ready
// from our closure
unsafe { &*(*this.value.get()).ready }
})
}
}
/// A helper struct for [Lazy]'s [IntoFuture]
pub struct LazyFuturePin<'a, T, F>(LazyFuture<'a, T, F>);
impl<'a, T, F> IntoFuture for Pin<&'a Lazy<T, F>>
where
F: Future<Output = T>,
{
type Output = Pin<&'a T>;
type IntoFuture = LazyFuturePin<'a, T, F>;
fn into_future(self) -> Self::IntoFuture {
// Safety: this is Pin::deref, but with a lifetime of 'a
let lazy = unsafe { Pin::into_inner_unchecked(self) };
LazyFuturePin(LazyFuture {
lazy,
step: Step::Start { inner: &lazy.inner },
_pin: PhantomPinned,
})
}
}
impl<'a, T, F> Future for LazyFuturePin<'a, T, F>
where
F: Future<Output = T>,
{
type Output = Pin<&'a T>;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<Pin<&'a T>> {
// Safety: we don't move anything that needs to be pinned.
let inner = unsafe { &mut Pin::into_inner_unchecked(self).0 };
// Safety: because the original Lazy was pinned, the T it produces is also pinned
inner.poll(cx).map(|p| unsafe { Pin::new_unchecked(p) })
}
}
impl<T, F> Lazy<T, F>
where
F: Future<Output = T> + Unpin,
{
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to calling `.await` on a reference, but may be clearer to call
/// explicitly.
///
/// Unlike [Self::get], this does not require pinning the object.
pub async fn get_unpin(&self) -> &T {
self.await
}
}
/// A helper struct for [Lazy]'s [IntoFuture]
pub struct LazyFutureUnpin<'a, T, F>(LazyFuture<'a, T, F>);
impl<'a, T, F> IntoFuture for &'a Lazy<T, F>
where
F: Future<Output = T> + Unpin,
{
type Output = &'a T;
type IntoFuture = LazyFutureUnpin<'a, T, F>;
fn into_future(self) -> Self::IntoFuture {
LazyFutureUnpin(LazyFuture {
lazy: self,
step: Step::Start { inner: &self.inner },
_pin: PhantomPinned,
})
}
}
impl<'a, T, F> Future for LazyFutureUnpin<'a, T, F>
where
F: Future<Output = T> + Unpin,
{
type Output = &'a T;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
// Safety: we don't move anything that needs to be pinned.
unsafe { Pin::into_inner_unchecked(self) }.0.poll(cx)
}
}
impl<T, F> Lazy<T, F> {
/// Creates a new lazy value with the given initializing future.
///
/// This is equivalent to [Self::new] but with no type bound.
pub const fn from_future(future: F) -> Self {
Self {
value: UnsafeCell::new(LazyState { running: ManuallyDrop::new(future) }),
inner: Inner::new(),
}
}
/// Creates an already-initialized lazy value.
pub const fn with_value(value: T) -> Self {
Self {
value: UnsafeCell::new(LazyState { ready: ManuallyDrop::new(value) }),
inner: Inner::new_ready(),
}
}
/// Gets the value without blocking or starting the initialization.
pub fn try_get(&self) -> Option<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
None
} else {
// Safety: just checked ready
unsafe { Some(&(*self.value.get()).ready) }
}
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
// Safety: unpinning for access
let this = unsafe { self.get_unchecked_mut() };
let state = *this.inner.state.get_mut();
if state & READY_BIT == 0 {
None
} else {
// Safety: just checked ready, and pinned as a projection
unsafe { Some(Pin::new_unchecked(&mut this.value.get_mut().ready)) }
}
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut_unpin(&mut self) -> Option<&mut T> {
let state = *self.inner.state.get_mut();
if state & READY_BIT == 0 {
None
} else {
// Safety: just checked ready
unsafe { Some(&mut self.value.get_mut().ready) }
}
}
/// Takes ownership of the value if it was set.
///
/// Similar to the try_get functions, this returns None if the future has not yet completed,
/// even if the value would be available without blocking.
pub fn into_inner(self) -> Option<T> {
self.into_parts().ok()
}
/// Takes ownership of the value or the initializing future.
pub fn into_parts(mut self) -> Result<T, F> {
let state = *self.inner.state.get_mut();
// Safety: we can take ownership of the contents of self.value as long as we avoid dropping
// it when self goes out of scope. The value EMPTY_STATE (!0) is used as a sentinel to
// indicate that the union is empty - it's impossible for state to be set to that value
// normally by the same logic that prevents refcount overflow.
//
// Note: it is not safe to do this in a &mut self method because none of the get()
// functions handle EMPTY_STATE; that's not relevant here as we took ownership of self.
// A working "Lazy::take(&mut self)" function would also need to create a new initializing
// future, and at that point it's best done by just using mem::replace with a new Lazy.
unsafe {
*self.inner.state.get_mut() = EMPTY_STATE;
if state & READY_BIT == 0 {
Err(ptr::read(&*self.value.get_mut().running))
} else {
Ok(ptr::read(&*self.value.get_mut().ready))
}
}
}
/// Takes ownership of the value from a pinned object.
///
/// This is equivalent to `mem::replace(self, replacement).into_inner()` but does not require
/// that `F` be `Unpin` like that expression would.
pub fn replace_and_take(self: Pin<&mut Self>, replacement: Self) -> Option<T>
where
T: Unpin,
{
// Safety: this reads fields and then open-codes Pin::set
let this = unsafe { self.get_unchecked_mut() };
let state = *this.inner.state.get_mut();
let value = if state & READY_BIT == 0 {
None
} else {
*this.inner.state.get_mut() = EMPTY_STATE;
Some(unsafe { ptr::read(&*this.value.get_mut().ready) })
};
*this = replacement;
value
}
}
impl<T, F> Drop for Lazy<T, F> {
fn drop(&mut self) {
let state = *self.inner.state.get_mut();
// Safety: the state always reflects the variant of the union that we must drop
unsafe {
if state == EMPTY_STATE {
// do nothing (see into_inner and the _empty variant)
} else if state & READY_BIT == 0 {
ManuallyDrop::drop(&mut self.value.get_mut().running);
} else {
ManuallyDrop::drop(&mut self.value.get_mut().ready);
}
}
}
}
impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let value = self.try_get();
fmt.debug_struct("Lazy").field("value", &value).field("inner", &self.inner).finish()
}
}