async_openai_wasm/types/completion.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
use std::collections::HashMap;
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use crate::client::OpenAIEventStream;
use crate::error::OpenAIError;
use super::{ChatCompletionStreamOptions, Choice, CompletionUsage, Prompt, Stop};
#[derive(Clone, Serialize, Deserialize, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateCompletionRequest {
/// ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
pub model: String,
/// The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
///
/// Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
pub prompt: Prompt,
/// The suffix that comes after a completion of inserted text.
///
/// This parameter is only supported for `gpt-3.5-turbo-instruct`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) that can be generated in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min: 0, max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
/// How many completions to generate for each prompt.
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
///
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max: 128, default: 1
/// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message.
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>, // nullable: true
#[serde(skip_serializing_if = "Option::is_none")]
pub stream_options: Option<ChatCompletionStreamOptions>,
/// Include the log probabilities on the `logprobs` most likely output tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
///
/// The maximum value for `logprobs` is 5.
#[serde(skip_serializing_if = "Option::is_none")]
pub logprobs: Option<u8>, // min:0 , max: 5, default: null, nullable: true
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
pub echo: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Stop>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
///
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of: Option<u8>, //min: 0, max: 20, default: 1
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
/// If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
///
/// Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
#[serde(skip_serializing_if = "Option::is_none")]
pub seed: Option<i64>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateCompletionResponse {
/// A unique identifier for the completion.
pub id: String,
pub choices: Vec<Choice>,
/// The Unix timestamp (in seconds) of when the completion was created.
pub created: u32,
/// The model used for completion.
pub model: String,
/// This fingerprint represents the backend configuration that the model runs with.
///
/// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been
/// made that might impact determinism.
pub system_fingerprint: Option<String>,
/// The object type, which is always "text_completion"
pub object: String,
pub usage: Option<CompletionUsage>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type CompletionResponseStream = OpenAIEventStream<CreateCompletionResponse>;