1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
//! Async interface for working with processes.
//!
//! This crate is an async version of [`std::process`].
//!
//! # Implementation
//!
//! A background thread named "async-process" is lazily created on first use, which waits for
//! spawned child processes to exit and then calls the `wait()` syscall to clean up the "zombie"
//! processes. This is unlike the `process` API in the standard library, where dropping a running
//! `Child` leaks its resources.
//!
//! This crate uses [`async-io`] for async I/O on Unix-like systems and [`blocking`] for async I/O
//! on Windows.
//!
//! [`async-io`]: https://docs.rs/async-io
//! [`blocking`]: https://docs.rs/blocking
//!
//! # Examples
//!
//! Spawn a process and collect its output:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::Command;
//!
//! let out = Command::new("echo").arg("hello").arg("world").output().await?;
//! assert_eq!(out.stdout, b"hello world\n");
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Read the output line-by-line as it gets produced:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::{Command, Stdio};
//! use futures_lite::{io::BufReader, prelude::*};
//!
//! let mut child = Command::new("find")
//!     .arg(".")
//!     .stdout(Stdio::piped())
//!     .spawn()?;
//!
//! let mut lines = BufReader::new(child.stdout.take().unwrap()).lines();
//!
//! while let Some(line) = lines.next().await {
//!     println!("{}", line?);
//! }
//! # std::io::Result::Ok(()) });
//! ```

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

use std::convert::Infallible;
use std::ffi::OsStr;
use std::fmt;
use std::path::Path;
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::{Arc, Mutex};
use std::task::{Context, Poll};
use std::thread;

#[cfg(unix)]
use async_io::Async;
#[cfg(unix)]
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd};

#[cfg(windows)]
use blocking::Unblock;

use async_lock::OnceCell;
use futures_lite::{future, io, prelude::*};

#[doc(no_inline)]
pub use std::process::{ExitStatus, Output, Stdio};

#[cfg(unix)]
pub mod unix;
#[cfg(windows)]
pub mod windows;

mod reaper;

mod sealed {
    pub trait Sealed {}
}

#[cfg(test)]
static DRIVER_THREAD_SPAWNED: std::sync::atomic::AtomicBool =
    std::sync::atomic::AtomicBool::new(false);

/// The zombie process reaper.
///
/// This structure reaps zombie processes and emits the `SIGCHLD` signal.
struct Reaper {
    /// Underlying system reaper.
    sys: reaper::Reaper,

    /// The number of tasks polling the SIGCHLD event.
    ///
    /// If this is zero, the `async-process` thread must be spawned.
    drivers: AtomicUsize,

    /// Number of live `Child` instances currently running.
    ///
    /// This is used to prevent the reaper thread from being spawned right as the program closes,
    /// when the reaper thread isn't needed. This represents the number of active processes.
    child_count: AtomicUsize,
}

impl Reaper {
    /// Get the singleton instance of the reaper.
    fn get() -> &'static Self {
        static REAPER: OnceCell<Reaper> = OnceCell::new();

        REAPER.get_or_init_blocking(|| Reaper {
            sys: reaper::Reaper::new(),
            drivers: AtomicUsize::new(0),
            child_count: AtomicUsize::new(0),
        })
    }

    /// Ensure that the reaper is driven.
    ///
    /// If there are no active `driver()` callers, this will spawn the `async-process` thread.
    #[inline]
    fn ensure_driven(&'static self) {
        if self
            .drivers
            .compare_exchange(0, 1, Ordering::SeqCst, Ordering::Acquire)
            .is_ok()
        {
            self.start_driver_thread();
        }
    }

    /// Start the `async-process` thread.
    #[cold]
    fn start_driver_thread(&'static self) {
        #[cfg(test)]
        DRIVER_THREAD_SPAWNED
            .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
            .unwrap_or_else(|_| unreachable!("Driver thread already spawned"));

        thread::Builder::new()
            .name("async-process".to_string())
            .spawn(move || {
                let driver = async move {
                    // No need to bump self.drivers, it was already bumped in ensure_driven.
                    let guard = self.sys.lock().await;
                    self.sys.reap(guard).await
                };

                #[cfg(unix)]
                async_io::block_on(driver);

                #[cfg(not(unix))]
                future::block_on(driver);
            })
            .expect("cannot spawn async-process thread");
    }

    /// Register a process with this reaper.
    fn register(&'static self, child: std::process::Child) -> io::Result<reaper::ChildGuard> {
        self.ensure_driven();
        self.sys.register(child)
    }
}

cfg_if::cfg_if! {
    if #[cfg(windows)] {
        // Wraps a sync I/O type into an async I/O type.
        fn wrap<T>(io: T) -> io::Result<Unblock<T>> {
            Ok(Unblock::new(io))
        }
    } else if #[cfg(unix)] {
        /// Wrap a file descriptor into a non-blocking I/O type.
        fn wrap<T: std::os::unix::io::AsFd>(io: T) -> io::Result<Async<T>> {
            Async::new(io)
        }
    }
}

/// A guard that can kill child processes, or push them into the zombie list.
struct ChildGuard {
    inner: reaper::ChildGuard,
    reap_on_drop: bool,
    kill_on_drop: bool,
    reaper: &'static Reaper,
}

impl ChildGuard {
    fn get_mut(&mut self) -> &mut std::process::Child {
        self.inner.get_mut()
    }
}

// When the last reference to the child process is dropped, push it into the zombie list.
impl Drop for ChildGuard {
    fn drop(&mut self) {
        if self.kill_on_drop {
            self.get_mut().kill().ok();
        }
        if self.reap_on_drop {
            self.inner.reap(&self.reaper.sys);
        }

        // Decrement number of children.
        self.reaper.child_count.fetch_sub(1, Ordering::Acquire);
    }
}

/// A spawned child process.
///
/// The process can be in running or exited state. Use [`status()`][`Child::status()`] or
/// [`output()`][`Child::output()`] to wait for it to exit.
///
/// If the [`Child`] is dropped, the process keeps running in the background.
///
/// # Examples
///
/// Spawn a process and wait for it to complete:
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// Command::new("cp").arg("a.txt").arg("b.txt").status().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub struct Child {
    /// The handle for writing to the child's standard input (stdin), if it has been captured.
    pub stdin: Option<ChildStdin>,

    /// The handle for reading from the child's standard output (stdout), if it has been captured.
    pub stdout: Option<ChildStdout>,

    /// The handle for reading from the child's standard error (stderr), if it has been captured.
    pub stderr: Option<ChildStderr>,

    /// The inner child process handle.
    child: Arc<Mutex<ChildGuard>>,
}

impl Child {
    /// Wraps the inner child process handle and registers it in the global process list.
    ///
    /// The "async-process" thread waits for processes in the global list and cleans up the
    /// resources when they exit.
    fn new(cmd: &mut Command) -> io::Result<Child> {
        // Make sure the reaper exists before we spawn the child process.
        let reaper = Reaper::get();
        let mut child = cmd.inner.spawn()?;

        // Convert sync I/O types into async I/O types.
        let stdin = child.stdin.take().map(wrap).transpose()?.map(ChildStdin);
        let stdout = child.stdout.take().map(wrap).transpose()?.map(ChildStdout);
        let stderr = child.stderr.take().map(wrap).transpose()?.map(ChildStderr);

        // Bump the child count.
        reaper.child_count.fetch_add(1, Ordering::Relaxed);

        // Register the child process in the global list.
        let inner = reaper.register(child)?;

        Ok(Child {
            stdin,
            stdout,
            stderr,
            child: Arc::new(Mutex::new(ChildGuard {
                inner,
                reap_on_drop: cmd.reap_on_drop,
                kill_on_drop: cmd.kill_on_drop,
                reaper,
            })),
        })
    }

    /// Returns the OS-assigned process identifier associated with this child.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("ls").spawn()?;
    /// println!("id: {}", child.id());
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn id(&self) -> u32 {
        self.child.lock().unwrap().get_mut().id()
    }

    /// Forces the child process to exit.
    ///
    /// If the child has already exited, an [`InvalidInput`] error is returned.
    ///
    /// This is equivalent to sending a SIGKILL on Unix platforms.
    ///
    /// [`InvalidInput`]: `std::io::ErrorKind::InvalidInput`
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("yes").spawn()?;
    /// child.kill()?;
    /// println!("exit status: {}", child.status().await?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn kill(&mut self) -> io::Result<()> {
        self.child.lock().unwrap().get_mut().kill()
    }

    /// Returns the exit status if the process has exited.
    ///
    /// Unlike [`status()`][`Child::status()`], this method will not drop the stdin handle.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let mut child = Command::new("ls").spawn()?;
    ///
    /// match child.try_status()? {
    ///     None => println!("still running"),
    ///     Some(status) => println!("exited with: {}", status),
    /// }
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn try_status(&mut self) -> io::Result<Option<ExitStatus>> {
        self.child.lock().unwrap().get_mut().try_wait()
    }

    /// Drops the stdin handle and waits for the process to exit.
    ///
    /// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
    /// not block waiting for input from the parent process while the parent waits for the child to
    /// exit.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::{Command, Stdio};
    ///
    /// let mut child = Command::new("cp")
    ///     .arg("a.txt")
    ///     .arg("b.txt")
    ///     .spawn()?;
    ///
    /// println!("exit status: {}", child.status().await?);
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
        self.stdin.take();
        let child = self.child.clone();

        async move { Reaper::get().sys.status(&child).await }
    }

    /// Drops the stdin handle and collects the output of the process.
    ///
    /// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
    /// not block waiting for input from the parent process while the parent waits for the child to
    /// exit.
    ///
    /// In order to capture the output of the process, [`Command::stdout()`] and
    /// [`Command::stderr()`] must be configured with [`Stdio::piped()`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::{Command, Stdio};
    ///
    /// let child = Command::new("ls")
    ///     .stdout(Stdio::piped())
    ///     .stderr(Stdio::piped())
    ///     .spawn()?;
    ///
    /// let out = child.output().await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn output(mut self) -> impl Future<Output = io::Result<Output>> {
        // A future that waits for the exit status.
        let status = self.status();

        // A future that collects stdout.
        let stdout = self.stdout.take();
        let stdout = async move {
            let mut v = Vec::new();
            if let Some(mut s) = stdout {
                s.read_to_end(&mut v).await?;
            }
            io::Result::Ok(v)
        };

        // A future that collects stderr.
        let stderr = self.stderr.take();
        let stderr = async move {
            let mut v = Vec::new();
            if let Some(mut s) = stderr {
                s.read_to_end(&mut v).await?;
            }
            io::Result::Ok(v)
        };

        async move {
            let (stdout, stderr) = future::try_zip(stdout, stderr).await?;
            let status = status.await?;
            Ok(Output {
                status,
                stdout,
                stderr,
            })
        }
    }
}

impl fmt::Debug for Child {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Child")
            .field("stdin", &self.stdin)
            .field("stdout", &self.stdout)
            .field("stderr", &self.stderr)
            .finish()
    }
}

/// A handle to a child process's standard input (stdin).
///
/// When a [`ChildStdin`] is dropped, the underlying handle gets closed. If the child process was
/// previously blocked on input, it becomes unblocked after dropping.
#[derive(Debug)]
pub struct ChildStdin(
    #[cfg(windows)] Unblock<std::process::ChildStdin>,
    #[cfg(unix)] Async<std::process::ChildStdin>,
);

impl ChildStdin {
    /// Convert async_process::ChildStdin into std::process::Stdio.
    ///
    /// You can use it to associate to the next process.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    /// use std::process::Stdio;
    ///
    /// let mut ls_child = Command::new("ls").stdin(Stdio::piped()).spawn()?;
    /// let stdio:Stdio = ls_child.stdin.take().unwrap().into_stdio().await?;
    ///
    /// let mut echo_child = Command::new("echo").arg("./").stdout(stdio).spawn()?;
    ///
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn into_stdio(self) -> io::Result<std::process::Stdio> {
        cfg_if::cfg_if! {
            if #[cfg(windows)] {
                Ok(self.0.into_inner().await.into())
            } else if #[cfg(unix)] {
                let child_stdin = self.0.into_inner()?;
                blocking_fd(rustix::fd::AsFd::as_fd(&child_stdin))?;
                Ok(child_stdin.into())
            }
        }
    }
}

impl io::AsyncWrite for ChildStdin {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_write(cx, buf)
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.0).poll_flush(cx)
    }

    fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut self.0).poll_close(cx)
    }
}

#[cfg(unix)]
impl AsRawFd for ChildStdin {
    fn as_raw_fd(&self) -> RawFd {
        self.0.as_raw_fd()
    }
}

#[cfg(unix)]
impl AsFd for ChildStdin {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.0.as_fd()
    }
}

#[cfg(unix)]
impl TryFrom<ChildStdin> for OwnedFd {
    type Error = io::Error;

    fn try_from(value: ChildStdin) -> Result<Self, Self::Error> {
        value.0.try_into()
    }
}

// TODO(notgull): Add mirroring AsRawHandle impls for all of the child handles
//
// at the moment this is pretty hard to do because of how they're wrapped in
// Unblock, meaning that we can't always access the underlying handle. async-fs
// gets around this by putting the handle in an Arc, but there's still some decision
// to be made about how to handle this (no pun intended)

/// A handle to a child process's standard output (stdout).
///
/// When a [`ChildStdout`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStdout(
    #[cfg(windows)] Unblock<std::process::ChildStdout>,
    #[cfg(unix)] Async<std::process::ChildStdout>,
);

impl ChildStdout {
    /// Convert async_process::ChildStdout into std::process::Stdio.
    ///
    /// You can use it to associate to the next process.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    /// use std::process::Stdio;
    /// use std::io::Read;
    /// use futures_lite::AsyncReadExt;
    ///
    /// let mut ls_child = Command::new("ls").stdout(Stdio::piped()).spawn()?;
    /// let stdio:Stdio = ls_child.stdout.take().unwrap().into_stdio().await?;
    ///
    /// let mut echo_child = Command::new("echo").stdin(stdio).stdout(Stdio::piped()).spawn()?;
    /// let mut buf = vec![];
    /// echo_child.stdout.take().unwrap().read(&mut buf).await;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn into_stdio(self) -> io::Result<std::process::Stdio> {
        cfg_if::cfg_if! {
            if #[cfg(windows)] {
                Ok(self.0.into_inner().await.into())
            } else if #[cfg(unix)] {
                let child_stdout = self.0.into_inner()?;
                blocking_fd(rustix::fd::AsFd::as_fd(&child_stdout))?;
                Ok(child_stdout.into())
            }
        }
    }
}

impl io::AsyncRead for ChildStdout {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_read(cx, buf)
    }
}

#[cfg(unix)]
impl AsRawFd for ChildStdout {
    fn as_raw_fd(&self) -> RawFd {
        self.0.as_raw_fd()
    }
}

#[cfg(unix)]
impl AsFd for ChildStdout {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.0.as_fd()
    }
}

#[cfg(unix)]
impl TryFrom<ChildStdout> for OwnedFd {
    type Error = io::Error;

    fn try_from(value: ChildStdout) -> Result<Self, Self::Error> {
        value.0.try_into()
    }
}

/// A handle to a child process's standard error (stderr).
///
/// When a [`ChildStderr`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStderr(
    #[cfg(windows)] Unblock<std::process::ChildStderr>,
    #[cfg(unix)] Async<std::process::ChildStderr>,
);

impl ChildStderr {
    /// Convert async_process::ChildStderr into std::process::Stdio.
    ///
    /// You can use it to associate to the next process.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    /// use std::process::Stdio;
    ///
    /// let mut ls_child = Command::new("ls").arg("x").stderr(Stdio::piped()).spawn()?;
    /// let stdio:Stdio = ls_child.stderr.take().unwrap().into_stdio().await?;
    ///
    /// let mut echo_child = Command::new("echo").stdin(stdio).spawn()?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub async fn into_stdio(self) -> io::Result<std::process::Stdio> {
        cfg_if::cfg_if! {
            if #[cfg(windows)] {
                Ok(self.0.into_inner().await.into())
            } else if #[cfg(unix)] {
                let child_stderr = self.0.into_inner()?;
                blocking_fd(rustix::fd::AsFd::as_fd(&child_stderr))?;
                Ok(child_stderr.into())
            }
        }
    }
}

impl io::AsyncRead for ChildStderr {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut self.0).poll_read(cx, buf)
    }
}

#[cfg(unix)]
impl AsRawFd for ChildStderr {
    fn as_raw_fd(&self) -> RawFd {
        self.0.as_raw_fd()
    }
}

#[cfg(unix)]
impl AsFd for ChildStderr {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.0.as_fd()
    }
}

#[cfg(unix)]
impl TryFrom<ChildStderr> for OwnedFd {
    type Error = io::Error;

    fn try_from(value: ChildStderr) -> Result<Self, Self::Error> {
        value.0.try_into()
    }
}

/// Runs the driver for the asynchronous processes.
///
/// This future takes control of global structures related to driving [`Child`]ren and reaping
/// zombie processes. These responsibilities include listening for the `SIGCHLD` signal and
/// making sure zombie processes are successfully waited on.
///
/// If multiple tasks run `driver()` at once, only one will actually drive the reaper; the other
/// ones will just sleep. If a task that is driving the reaper is dropped, a previously sleeping
/// task will take over. If all tasks driving the reaper are dropped, the "async-process" thread
/// will be spawned. The "async-process" thread just blocks on this future and will automatically
/// be spawned if no tasks are driving the reaper once a [`Child`] is created.
///
/// This future will never complete. It is intended to be ran on a background task in your
/// executor of choice.
///
/// # Examples
///
/// ```no_run
/// use async_executor::Executor;
/// use async_process::{driver, Command};
///
/// # futures_lite::future::block_on(async {
/// // Create an executor and run on it.
/// let ex = Executor::new();
/// ex.run(async {
///     // Run the driver future in the background.
///     ex.spawn(driver()).detach();
///
///     // Run a command.
///     Command::new("ls").output().await.ok();
/// }).await;
/// # });
/// ```
#[allow(clippy::manual_async_fn)]
#[inline]
pub fn driver() -> impl Future<Output = Infallible> + Send + 'static {
    async {
        // Get the reaper.
        let reaper = Reaper::get();

        // Make sure the reaper knows we're driving it.
        reaper.drivers.fetch_add(1, Ordering::SeqCst);

        // Decrement the driver count when this future is dropped.
        let _guard = CallOnDrop(|| {
            let prev_count = reaper.drivers.fetch_sub(1, Ordering::SeqCst);

            // If this was the last driver, and there are still resources actively using the
            // reaper, make sure that there is a thread driving the reaper.
            if prev_count == 1
                && (reaper.child_count.load(Ordering::SeqCst) > 0 || reaper.sys.has_zombies())
            {
                reaper.ensure_driven();
            }
        });

        // Acquire the reaper lock and start polling the SIGCHLD event.
        let guard = reaper.sys.lock().await;
        reaper.sys.reap(guard).await
    }
}

/// A builder for spawning processes.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let output = if cfg!(target_os = "windows") {
///     Command::new("cmd").args(&["/C", "echo hello"]).output().await?
/// } else {
///     Command::new("sh").arg("-c").arg("echo hello").output().await?
/// };
/// # std::io::Result::Ok(()) });
/// ```
pub struct Command {
    inner: std::process::Command,
    stdin: bool,
    stdout: bool,
    stderr: bool,
    reap_on_drop: bool,
    kill_on_drop: bool,
}

impl Command {
    /// Constructs a new [`Command`] for launching `program`.
    ///
    /// The initial configuration (the working directory and environment variables) is inherited
    /// from the current process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// ```
    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
        Self::from(std::process::Command::new(program))
    }

    /// Adds a single argument to pass to the program.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("echo");
    /// cmd.arg("hello");
    /// cmd.arg("world");
    /// ```
    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
        self.inner.arg(arg);
        self
    }

    /// Adds multiple arguments to pass to the program.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("echo");
    /// cmd.args(&["hello", "world"]);
    /// ```
    pub fn args<I, S>(&mut self, args: I) -> &mut Command
    where
        I: IntoIterator<Item = S>,
        S: AsRef<OsStr>,
    {
        self.inner.args(args);
        self
    }

    /// Configures an environment variable for the new process.
    ///
    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
    /// and case-sensitive on all other platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env("PATH", "/bin");
    /// ```
    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
    where
        K: AsRef<OsStr>,
        V: AsRef<OsStr>,
    {
        self.inner.env(key, val);
        self
    }

    /// Configures multiple environment variables for the new process.
    ///
    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
    /// and case-sensitive on all other platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.envs(vec![("PATH", "/bin"), ("TERM", "xterm-256color")]);
    /// ```
    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
    where
        I: IntoIterator<Item = (K, V)>,
        K: AsRef<OsStr>,
        V: AsRef<OsStr>,
    {
        self.inner.envs(vars);
        self
    }

    /// Removes an environment variable mapping.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env_remove("PATH");
    /// ```
    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
        self.inner.env_remove(key);
        self
    }

    /// Removes all environment variable mappings.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.env_clear();
    /// ```
    pub fn env_clear(&mut self) -> &mut Command {
        self.inner.env_clear();
        self
    }

    /// Configures the working directory for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::Command;
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.current_dir("/");
    /// ```
    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
        self.inner.current_dir(dir);
        self
    }

    /// Configures the standard input (stdin) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.stdin(Stdio::null());
    /// ```
    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stdin = true;
        self.inner.stdin(cfg);
        self
    }

    /// Configures the standard output (stdout) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.stdout(Stdio::piped());
    /// ```
    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stdout = true;
        self.inner.stdout(cfg);
        self
    }

    /// Configures the standard error (stderr) for the new process.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("ls");
    /// cmd.stderr(Stdio::piped());
    /// ```
    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
        self.stderr = true;
        self.inner.stderr(cfg);
        self
    }

    /// Configures whether to reap the zombie process when [`Child`] is dropped.
    ///
    /// When the process finishes, it becomes a "zombie" and some resources associated with it
    /// remain until [`Child::try_status()`], [`Child::status()`], or [`Child::output()`] collects
    /// its exit code.
    ///
    /// If its exit code is never collected, the resources may leak forever. This crate has a
    /// background thread named "async-process" that collects such "zombie" processes and then
    /// "reaps" them, thus preventing the resource leaks.
    ///
    /// The default value of this option is `true`.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.reap_on_drop(false);
    /// ```
    pub fn reap_on_drop(&mut self, reap_on_drop: bool) -> &mut Command {
        self.reap_on_drop = reap_on_drop;
        self
    }

    /// Configures whether to kill the process when [`Child`] is dropped.
    ///
    /// The default value of this option is `false`.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_process::{Command, Stdio};
    ///
    /// let mut cmd = Command::new("cat");
    /// cmd.kill_on_drop(true);
    /// ```
    pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command {
        self.kill_on_drop = kill_on_drop;
        self
    }

    /// Executes the command and returns the [`Child`] handle to it.
    ///
    /// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let child = Command::new("ls").spawn()?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn spawn(&mut self) -> io::Result<Child> {
        if !self.stdin {
            self.inner.stdin(Stdio::inherit());
        }
        if !self.stdout {
            self.inner.stdout(Stdio::inherit());
        }
        if !self.stderr {
            self.inner.stderr(Stdio::inherit());
        }

        Child::new(self)
    }

    /// Executes the command, waits for it to exit, and returns the exit status.
    ///
    /// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let status = Command::new("cp")
    ///     .arg("a.txt")
    ///     .arg("b.txt")
    ///     .status()
    ///     .await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
        let child = self.spawn();
        async { child?.status().await }
    }

    /// Executes the command and collects its output.
    ///
    /// If not configured, stdin will be set to [`Stdio::null()`], and stdout and stderr will be
    /// set to [`Stdio::piped()`].
    ///
    /// # Examples
    ///
    /// ```no_run
    /// # futures_lite::future::block_on(async {
    /// use async_process::Command;
    ///
    /// let output = Command::new("cat")
    ///     .arg("a.txt")
    ///     .output()
    ///     .await?;
    /// # std::io::Result::Ok(()) });
    /// ```
    pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
        if !self.stdin {
            self.inner.stdin(Stdio::null());
        }
        if !self.stdout {
            self.inner.stdout(Stdio::piped());
        }
        if !self.stderr {
            self.inner.stderr(Stdio::piped());
        }

        let child = Child::new(self);
        async { child?.output().await }
    }
}

impl From<std::process::Command> for Command {
    fn from(inner: std::process::Command) -> Self {
        Self {
            inner,
            stdin: false,
            stdout: false,
            stderr: false,
            reap_on_drop: true,
            kill_on_drop: false,
        }
    }
}

impl fmt::Debug for Command {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if f.alternate() {
            f.debug_struct("Command")
                .field("inner", &self.inner)
                .field("stdin", &self.stdin)
                .field("stdout", &self.stdout)
                .field("stderr", &self.stderr)
                .field("reap_on_drop", &self.reap_on_drop)
                .field("kill_on_drop", &self.kill_on_drop)
                .finish()
        } else {
            // Stdlib outputs command-line in Debug for Command. This does the
            // same, if not in "alternate" (long pretty-printed) mode.
            // This is useful for logs, for example.
            fmt::Debug::fmt(&self.inner, f)
        }
    }
}

/// Moves `Fd` out of non-blocking mode.
#[cfg(unix)]
fn blocking_fd(fd: rustix::fd::BorrowedFd<'_>) -> io::Result<()> {
    cfg_if::cfg_if! {
        // ioctl(FIONBIO) sets the flag atomically, but we use this only on Linux
        // for now, as with the standard library, because it seems to behave
        // differently depending on the platform.
        // https://github.com/rust-lang/rust/commit/efeb42be2837842d1beb47b51bb693c7474aba3d
        // https://github.com/libuv/libuv/blob/e9d91fccfc3e5ff772d5da90e1c4a24061198ca0/src/unix/poll.c#L78-L80
        // https://github.com/tokio-rs/mio/commit/0db49f6d5caf54b12176821363d154384357e70a
        if #[cfg(target_os = "linux")] {
            rustix::io::ioctl_fionbio(fd, false)?;
        } else {
            let previous = rustix::fs::fcntl_getfl(fd)?;
            let new = previous & !rustix::fs::OFlags::NONBLOCK;
            if new != previous {
                rustix::fs::fcntl_setfl(fd, new)?;
            }
        }
    }
    Ok(())
}

struct CallOnDrop<F: FnMut()>(F);

impl<F: FnMut()> Drop for CallOnDrop<F> {
    fn drop(&mut self) {
        (self.0)();
    }
}

#[cfg(test)]
mod test {
    #[test]
    fn polled_driver() {
        use super::{driver, Command};
        use futures_lite::future;
        use futures_lite::prelude::*;

        let is_thread_spawned =
            || super::DRIVER_THREAD_SPAWNED.load(std::sync::atomic::Ordering::SeqCst);

        #[cfg(unix)]
        fn command() -> Command {
            let mut cmd = Command::new("sh");
            cmd.arg("-c").arg("echo hello");
            cmd
        }

        #[cfg(windows)]
        fn command() -> Command {
            let mut cmd = Command::new("cmd");
            cmd.arg("/C").arg("echo hello");
            cmd
        }

        #[cfg(unix)]
        const OUTPUT: &[u8] = b"hello\n";
        #[cfg(windows)]
        const OUTPUT: &[u8] = b"hello\r\n";

        future::block_on(async {
            // Thread should not be spawned off the bat.
            assert!(!is_thread_spawned());

            // Spawn a driver.
            let mut driver1 = Box::pin(driver());
            future::poll_once(&mut driver1).await;
            assert!(!is_thread_spawned());

            // We should be able to run the driver in parallel with a process future.
            async {
                (&mut driver1).await;
            }
            .or(async {
                let output = command().output().await.unwrap();
                assert_eq!(output.stdout, OUTPUT);
            })
            .await;
            assert!(!is_thread_spawned());

            // Spawn a second driver.
            let mut driver2 = Box::pin(driver());
            future::poll_once(&mut driver2).await;
            assert!(!is_thread_spawned());

            // Poll both drivers in parallel.
            async {
                (&mut driver1).await;
            }
            .or(async {
                (&mut driver2).await;
            })
            .or(async {
                let output = command().output().await.unwrap();
                assert_eq!(output.stdout, OUTPUT);
            })
            .await;
            assert!(!is_thread_spawned());

            // Once one is dropped, the other should take over.
            drop(driver1);
            assert!(!is_thread_spawned());

            // Poll driver2 in parallel with a process future.
            async {
                (&mut driver2).await;
            }
            .or(async {
                let output = command().output().await.unwrap();
                assert_eq!(output.stdout, OUTPUT);
            })
            .await;
            assert!(!is_thread_spawned());

            // Once driver2 is dropped, the thread should not be spawned, as there are no active
            // child processes..
            drop(driver2);
            assert!(!is_thread_spawned());

            // We should now be able to poll the process future independently, it will spawn the
            // thread.
            let output = command().output().await.unwrap();
            assert_eq!(output.stdout, OUTPUT);
            assert!(is_thread_spawned());
        });
    }
}