1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
//! Asynchronous signal handling.
//!
//! This crate provides the [`Signals`] type, which can be used to listen for POSIX signals asynchronously.
//! It can be seen as an asynchronous version of [`signal_hook::iterator::Signals`].
//!
//! [`signal_hook::iterator::Signals`]: https://docs.rs/signal-hook/latest/signal_hook/iterator/struct.Signals.html
//!
//! # Implementation
//!
//! This crate uses the [`signal_hook_registry`] crate to register a listener for each signal. That
//! listener will then send a message through a Unix socket to the [`Signals`] type, which will
//! receive it and notify the user. Asynchronous notification is done through the [`async-io`] crate.
//!
//! Note that the internal pipe has a limited capacity. Once it has reached capacity, additional
//! signals will be dropped.
//!
//! On Windows, a different implementation that only supports `SIGINT` is used. This implementation
//! uses a channel to notify the user.
//!
//! [`signal_hook_registry`]: https://crates.io/crates/signal-hook-registry
//! [`async-io`]: https://crates.io/crates/async-io
//!
//! # Examples
//!
//! ```no_run
//! use async_signal::{Signal, Signals};
//! use futures_lite::prelude::*;
//! use signal_hook::low_level;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # async_io::block_on(async {
//! // Register the signals we want to receive.
//! let mut signals = Signals::new(&[
//!     Signal::Term,
//!     Signal::Quit,
//!     Signal::Int,
//! ])?;
//!
//! // Wait for a signal to be received.
//! while let Some(signal) = signals.next().await {
//!     // Print the signal.
//!     eprintln!("Received signal {:?}", signal);
//!
//!     // After printing it, do whatever the signal was supposed to do in the first place.
//!     low_level::emulate_default_handler(signal.unwrap() as i32).unwrap();
//! }
//! # Ok(())
//! # })
//! # }
//! ```

#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

cfg_if::cfg_if! {
    if #[cfg(windows)] {
        mod channel;
        use channel as sys;
    } else {
        mod pipe;
        use pipe as sys;
    }
}

cfg_if::cfg_if! {
    if #[cfg(unix)] {
        use signal_hook_registry as registry;
    } else if #[cfg(windows)] {
        mod windows_registry;
        use windows_registry as registry;
    }
}

use futures_core::ready;
use futures_core::stream::Stream;
use registry::SigId;

use std::borrow::Borrow;
use std::collections::HashMap;
use std::fmt;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};

#[cfg(unix)]
use std::os::unix::io::{AsFd, AsRawFd, BorrowedFd, RawFd};

mod signum {
    pub(crate) use std::os::raw::c_int;

    macro_rules! sig {
        ($rustix_name:ident, $raw_value:literal) => {{
            #[cfg(unix)]
            {
                rustix::process::Signal::$rustix_name as c_int
            }

            #[cfg(windows)]
            {
                $raw_value
            }
        }};
    }

    // Define these ourselves.
    pub const SIGHUP: c_int = sig!(Hup, 1);
    pub const SIGINT: c_int = sig!(Int, 2);
    pub const SIGQUIT: c_int = sig!(Quit, 3);
    pub const SIGILL: c_int = sig!(Ill, 4);
    pub const SIGTRAP: c_int = sig!(Trap, 5);
    pub const SIGABRT: c_int = sig!(Abort, 6);
    pub const SIGFPE: c_int = sig!(Fpe, 8);
    pub const SIGKILL: c_int = sig!(Kill, 9);
    pub const SIGSEGV: c_int = sig!(Segv, 11);
    pub const SIGPIPE: c_int = sig!(Pipe, 13);
    pub const SIGALRM: c_int = sig!(Alarm, 14);
    pub const SIGTERM: c_int = sig!(Term, 15);
    pub const SIGTTIN: c_int = sig!(Ttin, 21);
    pub const SIGTTOU: c_int = sig!(Ttou, 22);
    pub const SIGXCPU: c_int = sig!(Xcpu, 24);
    pub const SIGXFSZ: c_int = sig!(Xfsz, 25);
    pub const SIGVTALRM: c_int = sig!(Vtalarm, 26);
    pub const SIGPROF: c_int = sig!(Prof, 27);
    pub const SIGWINCH: c_int = sig!(Winch, 28);
    pub const SIGCHLD: c_int = sig!(Child, 17);
    pub const SIGBUS: c_int = sig!(Bus, 7);
    pub const SIGUSR1: c_int = sig!(Usr1, 10);
    pub const SIGUSR2: c_int = sig!(Usr2, 12);
    pub const SIGCONT: c_int = sig!(Cont, 18);
    pub const SIGSTOP: c_int = sig!(Stop, 19);
    pub const SIGTSTP: c_int = sig!(Tstp, 20);
    pub const SIGURG: c_int = sig!(Urg, 23);
    pub const SIGIO: c_int = sig!(Io, 29);
    pub const SIGSYS: c_int = sig!(Sys, 31);
}

macro_rules! define_signal_enum {
    (
        $(#[$outer:meta])*
        pub enum Signal {
            $(
                $(#[$inner:meta])*
                $name:ident = $value:ident,
            )*
        }
    ) => {
        $(#[$outer])*
        #[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash)]
        #[repr(i32)]
        pub enum Signal {
            $(
                $(#[$inner])*
                $name = signum::$value,
            )*
        }

        impl Signal {
            /// Returns the signal number.
            fn number(self) -> std::os::raw::c_int {
                match self {
                    $(
                        Signal::$name => signum::$value,
                    )*
                }
            }

            /// Parse a signal from its number.
            #[cfg(unix)]
            fn from_number(number: std::os::raw::c_int) -> Option<Self> {
                match number {
                    $(
                        signum::$value => Some(Signal::$name),
                    )*
                    _ => None,
                }
            }
        }
    }
}

define_signal_enum! {
    // Copied from https://github.com/bytecodealliance/rustix/blob/main/src/backend/linux_raw/process/types.rs#L81-L161

    /// The signal types that we are able to listen for.
    pub enum Signal {
        /// `SIGHUP`
        Hup = SIGHUP,
        /// `SIGINT`
        Int = SIGINT,
        /// `SIGQUIT`
        Quit = SIGQUIT,
        /// `SIGILL`
        Ill = SIGILL,
        /// `SIGTRAP`
        Trap = SIGTRAP,
        /// `SIGABRT`, aka `SIGIOT`
        #[doc(alias = "Iot")]
        #[doc(alias = "Abrt")]
        Abort = SIGABRT,
        /// `SIGBUS`
        Bus = SIGBUS,
        /// `SIGFPE`
        Fpe = SIGFPE,
        /// `SIGKILL`
        Kill = SIGKILL,
        /// `SIGUSR1`
        Usr1 = SIGUSR1,
        /// `SIGSEGV`
        Segv = SIGSEGV,
        /// `SIGUSR2`
        Usr2 = SIGUSR2,
        /// `SIGPIPE`
        Pipe = SIGPIPE,
        /// `SIGALRM`
        #[doc(alias = "Alrm")]
        Alarm = SIGALRM,
        /// `SIGTERM`
        Term = SIGTERM,
        /// `SIGCHLD`
        #[doc(alias = "Chld")]
        Child = SIGCHLD,
        /// `SIGCONT`
        Cont = SIGCONT,
        /// `SIGSTOP`
        Stop = SIGSTOP,
        /// `SIGTSTP`
        Tstp = SIGTSTP,
        /// `SIGTTIN`
        Ttin = SIGTTIN,
        /// `SIGTTOU`
        Ttou = SIGTTOU,
        /// `SIGURG`
        Urg = SIGURG,
        /// `SIGXCPU`
        Xcpu = SIGXCPU,
        /// `SIGXFSZ`
        Xfsz = SIGXFSZ,
        /// `SIGVTALRM`
        #[doc(alias = "Vtalrm")]
        Vtalarm = SIGVTALRM,
        /// `SIGPROF`
        Prof = SIGPROF,
        /// `SIGWINCH`
        Winch = SIGWINCH,
        /// `SIGIO`, aka `SIGPOLL`
        #[doc(alias = "Poll")]
        Io = SIGIO,
        /// `SIGSYS`, aka `SIGUNUSED`
        #[doc(alias = "Unused")]
        Sys = SIGSYS,
    }
}

/// Wait for a specific set of signals.
///
/// See the [module-level documentation](index.html) for more details.
pub struct Signals {
    /// The strategy used to read the signals.
    notifier: sys::Notifier,

    /// The map between signal numbers and signal IDs.
    signal_ids: HashMap<Signal, SigId>,
}

impl Drop for Signals {
    fn drop(&mut self) {
        for signal in self.signal_ids.values() {
            registry::unregister(*signal);
        }
    }
}

impl fmt::Debug for Signals {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct RegisteredSignals<'a>(&'a HashMap<Signal, SigId>);

        impl fmt::Debug for RegisteredSignals<'_> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.debug_set().entries(self.0.keys()).finish()
            }
        }

        f.debug_struct("Signals")
            .field("notifier", &self.notifier)
            .field("signal_ids", &RegisteredSignals(&self.signal_ids))
            .finish()
    }
}

impl Signals {
    /// Create a new `Signals` instance with a set of signals.
    pub fn new<B>(signals: impl IntoIterator<Item = B>) -> io::Result<Self>
    where
        B: Borrow<Signal>,
    {
        let mut this = Self {
            notifier: sys::Notifier::new()?,
            signal_ids: HashMap::new(),
        };

        // Add the signals to the set of signals to wait for.
        this.add_signals(signals)?;

        Ok(this)
    }

    /// Add signals to the set of signals to wait for.
    ///
    /// One signal cannot be added twice. If a signal that has already been added is passed to this
    /// method, it will be ignored.
    ///
    /// Registering a signal prevents the default behavior of that signal from occurring. For
    /// example, if you register `SIGINT`, pressing `Ctrl+C` will no longer terminate the process.
    /// To run the default signal handler, use [`signal_hook::low_level::emulate_default_handler`]
    /// instead.
    ///
    /// [`signal_hook::low_level::emulate_default_handler`]: https://docs.rs/signal-hook/latest/signal_hook/low_level/fn.emulate_default_handler.html
    pub fn add_signals<B>(&mut self, signals: impl IntoIterator<Item = B>) -> io::Result<()>
    where
        B: Borrow<Signal>,
    {
        for signal in signals {
            let signal = signal.borrow();

            // If we've already registered this signal, skip it.
            if self.signal_ids.contains_key(signal) {
                continue;
            }

            // Get the closure to call when the signal is received.
            let closure = self.notifier.add_signal(*signal)?;

            let id = unsafe {
                // SAFETY: Closure is guaranteed to be signal-safe.
                registry::register(signal.number(), closure)?
            };

            // Add the signal ID to the map.
            self.signal_ids.insert(*signal, id);
        }

        Ok(())
    }

    /// Remove signals from the set of signals to wait for.
    ///
    /// This function can be used to opt out of listening to signals previously registered via
    /// [`add_signals`](Self::add_signals) or [`new`](Self::new). If a signal that has not been
    /// registered is passed to this method, it will be ignored.
    pub fn remove_signals<B>(&mut self, signals: impl IntoIterator<Item = B>) -> io::Result<()>
    where
        B: Borrow<Signal>,
    {
        for signal in signals {
            let signal = signal.borrow();

            // If we haven't registered this signal, skip it.
            let id = match self.signal_ids.remove(signal) {
                Some(id) => id,
                None => continue,
            };

            // Remove the signal from the notifier.
            self.notifier.remove_signal(*signal)?;

            // Use `signal-hook-registry` to unregister the signal.
            registry::unregister(id);
        }

        Ok(())
    }
}

#[cfg(unix)]
impl AsRawFd for Signals {
    fn as_raw_fd(&self) -> RawFd {
        self.notifier.as_raw_fd()
    }
}

#[cfg(unix)]
impl AsFd for Signals {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.notifier.as_fd()
    }
}

impl Unpin for Signals {}

impl Stream for Signals {
    type Item = io::Result<Signal>;

    #[inline]
    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Pin::new(&mut &*self).poll_next(cx)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // This stream is expected to never end.
        (usize::MAX, None)
    }
}

impl Stream for &Signals {
    type Item = io::Result<Signal>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let signal = ready!(self.notifier.poll_next(cx))?;
        Poll::Ready(Some(Ok(signal)))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        // This stream is expected to never end.
        (usize::MAX, None)
    }
}