1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use broadcaster::BroadcastChannel;

use crate::sync::Mutex;

/// A barrier enables multiple tasks to synchronize the beginning
/// of some computation.
///
/// # Examples
///
/// ```
/// # async_std::task::block_on(async {
/// #
/// use async_std::sync::{Arc, Barrier};
/// use async_std::task;
///
/// let mut handles = Vec::with_capacity(10);
/// let barrier = Arc::new(Barrier::new(10));
/// for _ in 0..10 {
///     let c = barrier.clone();
///     // The same messages will be printed together.
///     // You will NOT see any interleaving.
///     handles.push(task::spawn(async move {
///         println!("before wait");
///         c.wait().await;
///         println!("after wait");
///     }));
/// }
/// // Wait for the other futures to finish.
/// for handle in handles {
///     handle.await;
/// }
/// # });
/// ```
#[cfg(feature = "unstable")]
#[cfg_attr(feature = "docs", doc(cfg(unstable)))]
#[derive(Debug)]
pub struct Barrier {
    state: Mutex<BarrierState>,
    wait: BroadcastChannel<(usize, usize)>,
    n: usize,
}

// The inner state of a double barrier
#[derive(Debug)]
struct BarrierState {
    waker: BroadcastChannel<(usize, usize)>,
    count: usize,
    generation_id: usize,
}

/// A `BarrierWaitResult` is returned by `wait` when all threads in the `Barrier` have rendezvoused.
///
/// [`wait`]: struct.Barrier.html#method.wait
/// [`Barrier`]: struct.Barrier.html
///
/// # Examples
///
/// ```
/// use async_std::sync::Barrier;
///
/// let barrier = Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// ```
#[cfg(feature = "unstable")]
#[cfg_attr(feature = "docs", doc(cfg(unstable)))]
#[derive(Debug, Clone)]
pub struct BarrierWaitResult(bool);

impl Barrier {
    /// Creates a new barrier that can block a given number of tasks.
    ///
    /// A barrier will block `n`-1 tasks which call [`wait`] and then wake up
    /// all tasks at once when the `n`th task calls [`wait`].
    ///
    /// [`wait`]: #method.wait
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Barrier;
    ///
    /// let barrier = Barrier::new(10);
    /// ```
    pub fn new(mut n: usize) -> Barrier {
        let waker = BroadcastChannel::new();
        let wait = waker.clone();

        if n == 0 {
            // if n is 0, it's not clear what behavior the user wants.
            // in std::sync::Barrier, an n of 0 exhibits the same behavior as n == 1, where every
            // .wait() immediately unblocks, so we adopt that here as well.
            n = 1;
        }

        Barrier {
            state: Mutex::new(BarrierState {
                waker,
                count: 0,
                generation_id: 1,
            }),
            n,
            wait,
        }
    }

    /// Blocks the current task until all tasks have rendezvoused here.
    ///
    /// Barriers are re-usable after all tasks have rendezvoused once, and can
    /// be used continuously.
    ///
    /// A single (arbitrary) task will receive a [`BarrierWaitResult`] that
    /// returns `true` from [`is_leader`] when returning from this function, and
    /// all other tasks will receive a result that will return `false` from
    /// [`is_leader`].
    ///
    /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html
    /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::{Arc, Barrier};
    /// use async_std::task;
    ///
    /// let mut handles = Vec::with_capacity(10);
    /// let barrier = Arc::new(Barrier::new(10));
    /// for _ in 0..10 {
    ///     let c = barrier.clone();
    ///     // The same messages will be printed together.
    ///     // You will NOT see any interleaving.
    ///     handles.push(task::spawn(async move {
    ///         println!("before wait");
    ///         c.wait().await;
    ///         println!("after wait");
    ///     }));
    /// }
    /// // Wait for the other futures to finish.
    /// for handle in handles {
    ///     handle.await;
    /// }
    /// # });
    /// ```
    pub async fn wait(&self) -> BarrierWaitResult {
        let mut lock = self.state.lock().await;
        let local_gen = lock.generation_id;

        lock.count += 1;

        if lock.count < self.n {
            let mut wait = self.wait.clone();

            let mut generation_id = lock.generation_id;
            let mut count = lock.count;

            drop(lock);

            while local_gen == generation_id && count < self.n {
                let (g, c) = wait.recv().await.expect("sender has not been closed");
                generation_id = g;
                count = c;
            }

            BarrierWaitResult(false)
        } else {
            lock.count = 0;
            lock.generation_id = lock.generation_id.wrapping_add(1);

            lock.waker
                .send(&(lock.generation_id, lock.count))
                .await
                .expect("there should be at least one receiver");

            BarrierWaitResult(true)
        }
    }
}

impl BarrierWaitResult {
    /// Returns `true` if this task from [`wait`] is the "leader task".
    ///
    /// Only one task will have `true` returned from their result, all other
    /// tasks will have `false` returned.
    ///
    /// [`wait`]: struct.Barrier.html#method.wait
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::Barrier;
    ///
    /// let barrier = Barrier::new(1);
    /// let barrier_wait_result = barrier.wait().await;
    /// println!("{:?}", barrier_wait_result.is_leader());
    /// # });
    /// ```
    pub fn is_leader(&self) -> bool {
        self.0
    }
}

#[cfg(test)]
mod test {
    use futures::channel::mpsc::unbounded;
    use futures::sink::SinkExt;
    use futures::stream::StreamExt;

    use crate::sync::{Arc, Barrier};
    use crate::task;

    #[test]
    fn test_barrier() {
        // NOTE(dignifiedquire): Based on the test in std, I was seeing some
        // race conditions, so running it in a loop to make sure things are
        // solid.

        for _ in 0..1_000 {
            task::block_on(async move {
                const N: usize = 10;

                let barrier = Arc::new(Barrier::new(N));
                let (tx, mut rx) = unbounded();

                for _ in 0..N - 1 {
                    let c = barrier.clone();
                    let mut tx = tx.clone();
                    task::spawn(async move {
                        let res = c.wait().await;

                        tx.send(res.is_leader()).await.unwrap();
                    });
                }

                // At this point, all spawned threads should be blocked,
                // so we shouldn't get anything from the port
                let res = rx.try_next();
                assert!(match res {
                    Err(_err) => true,
                    _ => false,
                });

                let mut leader_found = barrier.wait().await.is_leader();

                // Now, the barrier is cleared and we should get data.
                for _ in 0..N - 1 {
                    if rx.next().await.unwrap() {
                        assert!(!leader_found);
                        leader_found = true;
                    }
                }
                assert!(leader_found);
            });
        }
    }
}