1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use std::cell::UnsafeCell;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::sync::atomic::{AtomicBool, Ordering};

use crate::future::Future;
use crate::sync::WakerSet;
use crate::task::{Context, Poll};

/// A mutual exclusion primitive for protecting shared data.
///
/// This type is an async version of [`std::sync::Mutex`].
///
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
///
/// # Examples
///
/// ```
/// # async_std::task::block_on(async {
/// #
/// use std::sync::Arc;
///
/// use async_std::sync::Mutex;
/// use async_std::task;
///
/// let m = Arc::new(Mutex::new(0));
/// let mut tasks = vec![];
///
/// for _ in 0..10 {
///     let m = m.clone();
///     tasks.push(task::spawn(async move {
///         *m.lock().await += 1;
///     }));
/// }
///
/// for t in tasks {
///     t.await;
/// }
/// assert_eq!(*m.lock().await, 10);
/// #
/// # })
/// ```
pub struct Mutex<T> {
    locked: AtomicBool,
    wakers: WakerSet,
    value: UnsafeCell<T>,
}

unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}

impl<T> Mutex<T> {
    /// Creates a new mutex.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_std::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    pub fn new(t: T) -> Mutex<T> {
        Mutex {
            locked: AtomicBool::new(false),
            wakers: WakerSet::new(),
            value: UnsafeCell::new(t),
        }
    }

    /// Acquires the lock.
    ///
    /// Returns a guard that releases the lock when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use std::sync::Arc;
    ///
    /// use async_std::sync::Mutex;
    /// use async_std::task;
    ///
    /// let m1 = Arc::new(Mutex::new(10));
    /// let m2 = m1.clone();
    ///
    /// task::spawn(async move {
    ///     *m1.lock().await = 20;
    /// })
    /// .await;
    ///
    /// assert_eq!(*m2.lock().await, 20);
    /// #
    /// # })
    /// ```
    pub async fn lock(&self) -> MutexGuard<'_, T> {
        pub struct LockFuture<'a, T> {
            mutex: &'a Mutex<T>,
            opt_key: Option<usize>,
        }

        impl<'a, T> Future for LockFuture<'a, T> {
            type Output = MutexGuard<'a, T>;

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
                loop {
                    // If the current task is in the set, remove it.
                    if let Some(key) = self.opt_key.take() {
                        self.mutex.wakers.remove(key);
                    }

                    // Try acquiring the lock.
                    match self.mutex.try_lock() {
                        Some(guard) => return Poll::Ready(guard),
                        None => {
                            // Insert this lock operation.
                            self.opt_key = Some(self.mutex.wakers.insert(cx));

                            // If the mutex is still locked, return.
                            if self.mutex.locked.load(Ordering::SeqCst) {
                                return Poll::Pending;
                            }
                        }
                    }
                }
            }
        }

        impl<T> Drop for LockFuture<'_, T> {
            fn drop(&mut self) {
                // If the current task is still in the set, that means it is being cancelled now.
                if let Some(key) = self.opt_key {
                    self.mutex.wakers.cancel(key);
                }
            }
        }

        LockFuture {
            mutex: self,
            opt_key: None,
        }
        .await
    }

    /// Attempts to acquire the lock.
    ///
    /// If the lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the lock when dropped.
    ///
    /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use std::sync::Arc;
    ///
    /// use async_std::sync::Mutex;
    /// use async_std::task;
    ///
    /// let m1 = Arc::new(Mutex::new(10));
    /// let m2 = m1.clone();
    ///
    /// task::spawn(async move {
    ///     if let Some(mut guard) = m1.try_lock() {
    ///         *guard = 20;
    ///     } else {
    ///         println!("try_lock failed");
    ///     }
    /// })
    /// .await;
    ///
    /// assert_eq!(*m2.lock().await, 20);
    /// #
    /// # })
    /// ```
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if !self.locked.swap(true, Ordering::SeqCst) {
            Some(MutexGuard(self))
        } else {
            None
        }
    }

    /// Consumes the mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_std::sync::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// assert_eq!(mutex.into_inner(), 10);
    /// ```
    pub fn into_inner(self) -> T {
        self.value.into_inner()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
    /// borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.lock().await, 10);
    /// #
    /// # })
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.value.get() }
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_lock() {
            None => f.debug_struct("Mutex").field("data", &Locked).finish(),
            Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(val: T) -> Mutex<T> {
        Mutex::new(val)
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

/// A guard that releases the lock when dropped.
pub struct MutexGuard<'a, T>(&'a Mutex<T>);

unsafe impl<T: Send> Send for MutexGuard<'_, T> {}
unsafe impl<T: Sync> Sync for MutexGuard<'_, T> {}

impl<T> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        // Use `SeqCst` ordering to synchronize with `WakerSet::insert()` and `WakerSet::update()`.
        self.0.locked.store(false, Ordering::SeqCst);

        // Notify a blocked `lock()` operation if none were notified already.
        self.0.wakers.notify_any();
    }
}

impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.0.value.get() }
    }
}

impl<T> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.0.value.get() }
    }
}