1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
use broadcaster::BroadcastChannel; use crate::sync::Mutex; /// A barrier enables multiple tasks to synchronize the beginning /// of some computation. /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::{Arc, Barrier}; /// use async_std::task; /// /// let mut handles = Vec::with_capacity(10); /// let barrier = Arc::new(Barrier::new(10)); /// for _ in 0..10 { /// let c = barrier.clone(); /// // The same messages will be printed together. /// // You will NOT see any interleaving. /// handles.push(task::spawn(async move { /// println!("before wait"); /// c.wait().await; /// println!("after wait"); /// })); /// } /// // Wait for the other futures to finish. /// for handle in handles { /// handle.await; /// } /// # }); /// ``` #[cfg(feature = "unstable")] #[cfg_attr(feature = "docs", doc(cfg(unstable)))] #[derive(Debug)] pub struct Barrier { state: Mutex<BarrierState>, wait: BroadcastChannel<(usize, usize)>, n: usize, } // The inner state of a double barrier #[derive(Debug)] struct BarrierState { waker: BroadcastChannel<(usize, usize)>, count: usize, generation_id: usize, } /// A `BarrierWaitResult` is returned by `wait` when all threads in the `Barrier` have rendezvoused. /// /// [`wait`]: struct.Barrier.html#method.wait /// [`Barrier`]: struct.Barrier.html /// /// # Examples /// /// ``` /// use async_std::sync::Barrier; /// /// let barrier = Barrier::new(1); /// let barrier_wait_result = barrier.wait(); /// ``` #[cfg(feature = "unstable")] #[cfg_attr(feature = "docs", doc(cfg(unstable)))] #[derive(Debug, Clone)] pub struct BarrierWaitResult(bool); impl Barrier { /// Creates a new barrier that can block a given number of tasks. /// /// A barrier will block `n`-1 tasks which call [`wait`] and then wake up /// all tasks at once when the `n`th task calls [`wait`]. /// /// [`wait`]: #method.wait /// /// # Examples /// /// ``` /// use std::sync::Barrier; /// /// let barrier = Barrier::new(10); /// ``` pub fn new(mut n: usize) -> Barrier { let waker = BroadcastChannel::new(); let wait = waker.clone(); if n == 0 { // if n is 0, it's not clear what behavior the user wants. // in std::sync::Barrier, an n of 0 exhibits the same behavior as n == 1, where every // .wait() immediately unblocks, so we adopt that here as well. n = 1; } Barrier { state: Mutex::new(BarrierState { waker, count: 0, generation_id: 1, }), n, wait, } } /// Blocks the current task until all tasks have rendezvoused here. /// /// Barriers are re-usable after all tasks have rendezvoused once, and can /// be used continuously. /// /// A single (arbitrary) task will receive a [`BarrierWaitResult`] that /// returns `true` from [`is_leader`] when returning from this function, and /// all other tasks will receive a result that will return `false` from /// [`is_leader`]. /// /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::{Arc, Barrier}; /// use async_std::task; /// /// let mut handles = Vec::with_capacity(10); /// let barrier = Arc::new(Barrier::new(10)); /// for _ in 0..10 { /// let c = barrier.clone(); /// // The same messages will be printed together. /// // You will NOT see any interleaving. /// handles.push(task::spawn(async move { /// println!("before wait"); /// c.wait().await; /// println!("after wait"); /// })); /// } /// // Wait for the other futures to finish. /// for handle in handles { /// handle.await; /// } /// # }); /// ``` pub async fn wait(&self) -> BarrierWaitResult { let mut lock = self.state.lock().await; let local_gen = lock.generation_id; lock.count += 1; if lock.count < self.n { let mut wait = self.wait.clone(); let mut generation_id = lock.generation_id; let mut count = lock.count; drop(lock); while local_gen == generation_id && count < self.n { let (g, c) = wait.recv().await.expect("sender has not been closed"); generation_id = g; count = c; } BarrierWaitResult(false) } else { lock.count = 0; lock.generation_id = lock.generation_id.wrapping_add(1); lock.waker .send(&(lock.generation_id, lock.count)) .await .expect("there should be at least one receiver"); BarrierWaitResult(true) } } } impl BarrierWaitResult { /// Returns `true` if this task from [`wait`] is the "leader task". /// /// Only one task will have `true` returned from their result, all other /// tasks will have `false` returned. /// /// [`wait`]: struct.Barrier.html#method.wait /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::Barrier; /// /// let barrier = Barrier::new(1); /// let barrier_wait_result = barrier.wait().await; /// println!("{:?}", barrier_wait_result.is_leader()); /// # }); /// ``` pub fn is_leader(&self) -> bool { self.0 } } #[cfg(test)] mod test { use futures::channel::mpsc::unbounded; use futures::sink::SinkExt; use futures::stream::StreamExt; use crate::sync::{Arc, Barrier}; use crate::task; #[test] fn test_barrier() { // NOTE(dignifiedquire): Based on the test in std, I was seeing some // race conditions, so running it in a loop to make sure things are // solid. for _ in 0..1_000 { task::block_on(async move { const N: usize = 10; let barrier = Arc::new(Barrier::new(N)); let (tx, mut rx) = unbounded(); for _ in 0..N - 1 { let c = barrier.clone(); let mut tx = tx.clone(); task::spawn(async move { let res = c.wait().await; tx.send(res.is_leader()).await.unwrap(); }); } // At this point, all spawned threads should be blocked, // so we shouldn't get anything from the port let res = rx.try_next(); assert!(match res { Err(_err) => true, _ => false, }); let mut leader_found = barrier.wait().await.is_leader(); // Now, the barrier is cleared and we should get data. for _ in 0..N - 1 { if rx.next().await.unwrap() { assert!(!leader_found); leader_found = true; } } assert!(leader_found); }); } } }