1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
use core::fmt; use core::future::Future; use core::marker::PhantomData; use core::mem; use core::ptr::NonNull; use core::sync::atomic::Ordering; use core::task::Waker; use crate::header::Header; use crate::raw::RawTask; use crate::state::*; use crate::JoinHandle; /// Creates a new task. /// /// This constructor returns a [`Task`] reference that runs the future and a [`JoinHandle`] that /// awaits its result. /// /// When run, the task polls `future`. When woken up, it gets scheduled for running by the /// `schedule` function. Argument `tag` is an arbitrary piece of data stored inside the task. /// /// The schedule function should not attempt to run the task nor to drop it. Instead, it should /// push the task into some kind of queue so that it can be processed later. /// /// If you need to spawn a future that does not implement [`Send`], consider using the /// [`spawn_local`] function instead. /// /// [`Task`]: struct.Task.html /// [`JoinHandle`]: struct.JoinHandle.html /// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html /// [`spawn_local`]: fn.spawn_local.html /// /// # Examples /// /// ``` /// use crossbeam::channel; /// /// // The future inside the task. /// let future = async { /// println!("Hello, world!"); /// }; /// /// // If the task gets woken up, it will be sent into this channel. /// let (s, r) = channel::unbounded(); /// let schedule = move |task| s.send(task).unwrap(); /// /// // Create a task with the future and the schedule function. /// let (task, handle) = async_task::spawn(future, schedule, ()); /// ``` pub fn spawn<F, R, S, T>(future: F, schedule: S, tag: T) -> (Task<T>, JoinHandle<R, T>) where F: Future<Output = R> + Send + 'static, R: Send + 'static, S: Fn(Task<T>) + Send + Sync + 'static, T: Send + Sync + 'static, { // Allocate large futures on the heap. let raw_task = if mem::size_of::<F>() >= 2048 { let future = alloc::boxed::Box::pin(future); RawTask::<_, R, S, T>::allocate(future, schedule, tag) } else { RawTask::<F, R, S, T>::allocate(future, schedule, tag) }; let task = Task { raw_task, _marker: PhantomData, }; let handle = JoinHandle { raw_task, _marker: PhantomData, }; (task, handle) } /// Creates a new local task. /// /// This constructor returns a [`Task`] reference that runs the future and a [`JoinHandle`] that /// awaits its result. /// /// When run, the task polls `future`. When woken up, it gets scheduled for running by the /// `schedule` function. Argument `tag` is an arbitrary piece of data stored inside the task. /// /// The schedule function should not attempt to run the task nor to drop it. Instead, it should /// push the task into some kind of queue so that it can be processed later. /// /// Unlike [`spawn`], this function does not require the future to implement [`Send`]. If the /// [`Task`] reference is run or dropped on a thread it was not created on, a panic will occur. /// /// **NOTE:** This function is only available when the `std` feature for this crate is enabled (it /// is by default). /// /// [`Task`]: struct.Task.html /// [`JoinHandle`]: struct.JoinHandle.html /// [`spawn`]: fn.spawn.html /// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html /// /// # Examples /// /// ``` /// use crossbeam::channel; /// /// // The future inside the task. /// let future = async { /// println!("Hello, world!"); /// }; /// /// // If the task gets woken up, it will be sent into this channel. /// let (s, r) = channel::unbounded(); /// let schedule = move |task| s.send(task).unwrap(); /// /// // Create a task with the future and the schedule function. /// let (task, handle) = async_task::spawn_local(future, schedule, ()); /// ``` #[cfg(feature = "std")] pub fn spawn_local<F, R, S, T>(future: F, schedule: S, tag: T) -> (Task<T>, JoinHandle<R, T>) where F: Future<Output = R> + 'static, R: 'static, S: Fn(Task<T>) + Send + Sync + 'static, T: Send + Sync + 'static, { extern crate std; use std::mem::ManuallyDrop; use std::pin::Pin; use std::task::{Context, Poll}; use std::thread::{self, ThreadId}; use std::thread_local; #[inline] fn thread_id() -> ThreadId { thread_local! { static ID: ThreadId = thread::current().id(); } ID.try_with(|id| *id) .unwrap_or_else(|_| thread::current().id()) } struct Checked<F> { id: ThreadId, inner: ManuallyDrop<F>, } impl<F> Drop for Checked<F> { fn drop(&mut self) { assert!( self.id == thread_id(), "local task dropped by a thread that didn't spawn it" ); unsafe { ManuallyDrop::drop(&mut self.inner); } } } impl<F: Future> Future for Checked<F> { type Output = F::Output; fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { assert!( self.id == thread_id(), "local task polled by a thread that didn't spawn it" ); unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) } } } // Wrap the future into one that which thread it's on. let future = Checked { id: thread_id(), inner: ManuallyDrop::new(future), }; // Allocate large futures on the heap. let raw_task = if mem::size_of::<F>() >= 2048 { let future = alloc::boxed::Box::pin(future); RawTask::<_, R, S, T>::allocate(future, schedule, tag) } else { RawTask::<_, R, S, T>::allocate(future, schedule, tag) }; let task = Task { raw_task, _marker: PhantomData, }; let handle = JoinHandle { raw_task, _marker: PhantomData, }; (task, handle) } /// A task reference that runs its future. /// /// At any moment in time, there is at most one [`Task`] reference associated with a particular /// task. Running consumes the [`Task`] reference and polls its internal future. If the future is /// still pending after getting polled, the [`Task`] reference simply won't exist until a [`Waker`] /// notifies the task. If the future completes, its result becomes available to the [`JoinHandle`]. /// /// When a task is woken up, its [`Task`] reference is recreated and passed to the schedule /// function. In most executors, scheduling simply pushes the [`Task`] reference into a queue of /// runnable tasks. /// /// If the [`Task`] reference is dropped without getting run, the task is automatically canceled. /// When canceled, the task won't be scheduled again even if a [`Waker`] wakes it. It is possible /// for the [`JoinHandle`] to cancel while the [`Task`] reference exists, in which case an attempt /// to run the task won't do anything. /// /// [`run()`]: struct.Task.html#method.run /// [`JoinHandle`]: struct.JoinHandle.html /// [`Task`]: struct.Task.html /// [`Waker`]: https://doc.rust-lang.org/std/task/struct.Waker.html pub struct Task<T> { /// A pointer to the heap-allocated task. pub(crate) raw_task: NonNull<()>, /// A marker capturing the generic type `T`. pub(crate) _marker: PhantomData<T>, } unsafe impl<T> Send for Task<T> {} unsafe impl<T> Sync for Task<T> {} impl<T> Task<T> { /// Schedules the task. /// /// This is a convenience method that simply reschedules the task by passing it to its schedule /// function. /// /// If the task is canceled, this method won't do anything. pub fn schedule(self) { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; mem::forget(self); unsafe { ((*header).vtable.schedule)(ptr); } } /// Runs the task. /// /// Returns `true` if the task was woken while running, in which case it gets rescheduled at /// the end of this method invocation. /// /// This method polls the task's future. If the future completes, its result will become /// available to the [`JoinHandle`]. And if the future is still pending, the task will have to /// be woken up in order to be rescheduled and run again. /// /// If the task was canceled by a [`JoinHandle`] before it gets run, then this method won't do /// anything. /// /// It is possible that polling the future panics, in which case the panic will be propagated /// into the caller. It is advised that invocations of this method are wrapped inside /// [`catch_unwind`]. If a panic occurs, the task is automatically canceled. /// /// [`JoinHandle`]: struct.JoinHandle.html /// [`catch_unwind`]: https://doc.rust-lang.org/std/panic/fn.catch_unwind.html pub fn run(self) -> bool { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; mem::forget(self); unsafe { ((*header).vtable.run)(ptr) } } /// Cancels the task. /// /// When canceled, the task won't be scheduled again even if a [`Waker`] wakes it. An attempt /// to run it won't do anything. /// /// [`Waker`]: https://doc.rust-lang.org/std/task/struct.Waker.html pub fn cancel(&self) { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; unsafe { (*header).cancel(); } } /// Returns a reference to the tag stored inside the task. pub fn tag(&self) -> &T { let offset = Header::offset_tag::<T>(); let ptr = self.raw_task.as_ptr(); unsafe { let raw = (ptr as *mut u8).add(offset) as *const T; &*raw } } /// Converts this task into a raw pointer to the tag. pub fn into_raw(self) -> *const T { let offset = Header::offset_tag::<T>(); let ptr = self.raw_task.as_ptr(); mem::forget(self); unsafe { (ptr as *mut u8).add(offset) as *const T } } /// Converts a raw pointer to the tag into a task. /// /// This method should only be used with raw pointers returned from [`into_raw`]. /// /// [`into_raw`]: #method.into_raw pub unsafe fn from_raw(raw: *const T) -> Task<T> { let offset = Header::offset_tag::<T>(); let ptr = (raw as *mut u8).sub(offset) as *mut (); Task { raw_task: NonNull::new_unchecked(ptr), _marker: PhantomData, } } /// Returns a waker associated with this task. pub fn waker(&self) -> Waker { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; unsafe { let raw_waker = ((*header).vtable.clone_waker)(ptr); Waker::from_raw(raw_waker) } } } impl<T> Drop for Task<T> { fn drop(&mut self) { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; unsafe { // Cancel the task. (*header).cancel(); // Drop the future. ((*header).vtable.drop_future)(ptr); // Mark the task as unscheduled. let state = (*header).state.fetch_and(!SCHEDULED, Ordering::AcqRel); // Notify the awaiter that the future has been dropped. if state & AWAITER != 0 { (*header).notify(None); } // Drop the task reference. ((*header).vtable.drop_task)(ptr); } } } impl<T: fmt::Debug> fmt::Debug for Task<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let ptr = self.raw_task.as_ptr(); let header = ptr as *const Header; f.debug_struct("Task") .field("header", unsafe { &(*header) }) .field("tag", self.tag()) .finish() } }