async_timer/state.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
//!State module
use core::{ptr, task, hint, mem};
use core::cell::UnsafeCell;
use core::sync::atomic::{AtomicBool, AtomicU8, Ordering};
#[cold]
fn should_not_clone(_: *const()) -> task::RawWaker {
panic!("Impossible Waker Clone");
}
mod plain_fn {
use core::{task, mem};
static VTABLE: task::RawWakerVTable = task::RawWakerVTable::new(super::should_not_clone, action, action, super::noop::action);
unsafe fn action(callback: *const ()) {
let func: fn() = mem::transmute(callback);
func()
}
pub fn waker(data: fn()) -> task::Waker {
unsafe {
task::Waker::from_raw(task::RawWaker::new(data as *const (), &VTABLE))
}
}
}
mod noop {
use core::{ptr, task};
static VTABLE: task::RawWakerVTable = task::RawWakerVTable::new(super::should_not_clone, action, action, action);
pub fn action(_: *const ()) {
}
#[inline(always)]
pub fn waker() -> task::Waker {
unsafe {
task::Waker::from_raw(task::RawWaker::new(ptr::null(), &VTABLE))
}
}
}
/// Idle state
const WAITING: u8 = 0;
/// A new waker value is being registered with the `AtomicWaker` cell.
const REGISTERING: u8 = 0b01;
/// The waker currently registered with the `AtomicWaker` cell is being woken.
const WAKING: u8 = 0b10;
#[doc(hidden)]
/// Atomic waker used by `TimerState`
pub struct AtomicWaker {
state: AtomicU8,
waker: UnsafeCell<task::Waker>,
}
struct StateRestore<F: Fn()>(F);
impl<F: Fn()> Drop for StateRestore<F> {
fn drop(&mut self) {
(self.0)()
}
}
macro_rules! impl_register {
($this:ident($waker:ident) { $($impl:tt)+ }) => {
match $this.state.compare_exchange(WAITING, REGISTERING, Ordering::Acquire, Ordering::Acquire).unwrap_or_else(|err| err) {
WAITING => {
//Make sure we do not stuck in REGISTERING state
let state_guard = StateRestore(|| {
$this.state.store(WAITING, Ordering::Release);
});
unsafe {
$(
$impl
)+
// Release the lock. If the state transitioned to include
// the `WAKING` bit, this means that a wake has been
// called concurrently, so we have to remove the waker and
// wake it.`
//
// Start by assuming that the state is `REGISTERING` as this
// is what we jut set it to.
match $this.state.compare_exchange(REGISTERING, WAITING, Ordering::AcqRel, Ordering::Acquire) {
Ok(_) => {
mem::forget(state_guard);
}
Err(actual) => {
// This branch can only be reached if a
// concurrent thread called `wake`. In this
// case, `actual` **must** be `REGISTERING |
// `WAKING`.
debug_assert_eq!(actual, REGISTERING | WAKING);
let mut waker = noop::waker();
ptr::swap($this.waker.get(), &mut waker);
// Just restore state,
// because no one could change state while state == `REGISTERING` | `WAKING`.
drop(state_guard);
waker.wake();
}
}
}
}
WAKING => {
// Currently in the process of waking the task, i.e.,
// `wake` is currently being called on the old task handle.
// So, we call wake on the new waker
$waker.wake_by_ref();
hint::spin_loop();
}
state => {
// In this case, a concurrent thread is holding the
// "registering" lock. This probably indicates a bug in the
// caller's code as racing to call `register` doesn't make much
// sense.
//
// We just want to maintain memory safety. It is ok to drop the
// call to `register`.
debug_assert!(
state == REGISTERING ||
state == REGISTERING | WAKING
);
}
}
};
}
impl AtomicWaker {
fn new() -> Self {
Self {
state: AtomicU8::new(WAITING),
waker: UnsafeCell::new(noop::waker()),
}
}
///This is the same function as `register` but working with owned version.
fn register(&self, waker: task::Waker) {
impl_register!(self(waker) {
//unconditionally store since we already have ownership
*self.waker.get() = waker;
});
}
fn register_ref(&self, waker: &task::Waker) {
impl_register!(self(waker) {
// Lock acquired, update the waker cell
if !(*self.waker.get()).will_wake(waker) {
//Clone new waker if it is definitely not the same as old one
*self.waker.get() = waker.clone();
}
});
}
fn wake(&self) {
// AcqRel ordering is used in order to acquire the value of the `task`
// cell as well as to establish a `release` ordering with whatever
// memory the `AtomicWaker` is associated with.
match self.state.fetch_or(WAKING, Ordering::AcqRel) {
WAITING => {
// The waking lock has been acquired.
let mut waker = noop::waker();
unsafe {
ptr::swap(self.waker.get(), &mut waker);
}
// Release the lock
self.state.fetch_and(!WAKING, Ordering::Release);
waker.wake();
}
state => {
// There is a concurrent thread currently updating the
// associated task.
//
// Nothing more to do as the `WAKING` bit has been set. It
// doesn't matter if there are concurrent registering threads or
// not.
debug_assert!(
state == REGISTERING ||
state == REGISTERING | WAKING ||
state == WAKING
);
}
}
}
}
unsafe impl Send for AtomicWaker {}
unsafe impl Sync for AtomicWaker {}
///Timer's state
pub struct TimerState {
woken: AtomicBool,
inner: AtomicWaker,
}
impl TimerState {
///Initializes state.
pub fn new() -> Self {
Self {
woken: AtomicBool::new(false),
inner: AtomicWaker::new(),
}
}
#[inline]
///Returns whether notification has been fired.
///
///Namely it checks whether `Waker` is registered
///with `TimerState` or not. It is not intended for user
///to call `is_done` before `register`
pub fn is_done(&self) -> bool {
self.woken.load(Ordering::Acquire)
}
#[inline]
///Resets state, allowing to wake once again.
pub fn reset(&self) {
self.woken.store(false, Ordering::Release);
}
#[inline]
///Informs that timer is cancel, therefore no further callbacks to be passed
pub fn cancel(&self) {
self.woken.store(true, Ordering::Release);
}
#[inline]
///Registers `Callback` with the state.
///
///This callback is used replaces previous one, if any.
pub fn register<C: Callback>(&self, cb: C) {
cb.register(&self.inner);
}
#[inline]
///Notifies underlying `Waker`
///
///After that `Waker` is no longer registered with `TimerState`
pub(crate) fn wake(&self) {
if !self.woken.compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst).unwrap_or_else(|err| err) {
self.inner.wake();
}
}
}
///Interface to timer's callback
///
///It is guaranteed that callback is invoked only once, unless `Timer` is restarted or
///`TimerState::reset` is called(happens when timer is restarted)
pub trait Callback {
#[doc(hidden)]
fn register(self, waker: &AtomicWaker);
}
impl<'a> Callback for &'a task::Waker {
#[inline(always)]
fn register(self, waker: &AtomicWaker) {
waker.register_ref(self)
}
}
impl Callback for task::Waker {
#[inline(always)]
fn register(self, waker: &AtomicWaker) {
waker.register(self)
}
}
impl Callback for fn() {
fn register(self, waker: &AtomicWaker) {
waker.register(plain_fn::waker(self));
}
}