atomig_macro/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
extern crate proc_macro;

use proc_macro::TokenStream;
use proc_macro2::{Ident, Span, TokenStream as TokenStream2};
use quote::quote;
use syn::{
    parse_macro_input, Data, DataEnum, DataStruct, DeriveInput, Error, Fields,
    Meta, NestedMeta,
    spanned::Spanned,
};


/// Custom derive for the `Atom` trait. Please see the trait's documentation
/// for more information on this derive.
#[proc_macro_derive(Atom)]
pub fn derive_atom(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    gen_atom_impl(&input)
        .unwrap_or_else(|e| e.to_compile_error())
        .into()
}

/// Custom derive for the `AtomLogic` trait. Please see the trait's
/// documentation for more information on this derive.
#[proc_macro_derive(AtomLogic)]
pub fn derive_atom_logic(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    gen_marker_trait_impl("AtomLogic", &input)
        .unwrap_or_else(|e| e.to_compile_error())
        .into()
}

/// Custom derive for the `AtomInteger` trait. Please see the trait's
/// documentation for more information on this derive.
#[proc_macro_derive(AtomInteger)]
pub fn derive_atom_integer(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    gen_marker_trait_impl("AtomInteger", &input)
        .unwrap_or_else(|e| e.to_compile_error())
        .into()
}

fn gen_marker_trait_impl(trait_name: &str, input: &DeriveInput) -> Result<TokenStream2, Error> {
    match input.data {
        Data::Struct(_) => {
            let type_name = &input.ident;
            let trait_name = Ident::new(trait_name, Span::call_site());
            let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
            Ok(quote! {
                impl #impl_generics atomig::#trait_name
                    for #type_name #ty_generics #where_clause {}
            })
        }
        Data::Enum(_) => {
            let msg = format!(
                "`{}` cannot be derived for enums as this is almost always incorrect to do. \
                    Please read the documentation of `{}` carefully. If you still think you \
                    want to implement this trait, you have to do it manually.",
                trait_name,
                trait_name,
            );
            Err(Error::new(Span::call_site(), msg))
        }
        Data::Union(_) => {
            let msg = format!("`{}` cannot be derived for unions", trait_name);
            Err(Error::new(Span::call_site(), msg))
        }
    }
}

/// The actual implementation for `derive(Atom)`.
fn gen_atom_impl(input: &DeriveInput) -> Result<TokenStream2, Error> {
    // Generate the body of the impl block.
    let impl_body = match &input.data {
        Data::Struct(s) => atom_impl_for_struct(s),
        Data::Enum(e) => atom_impl_for_enum(input, e),
        Data::Union(_) => Err(Error::new(Span::call_site(), "unions cannot derive `Atom`")),
    }?;

    // Combine everything into a finshed impl block.
    let type_name = &input.ident;
    let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
    Ok(quote! {
        impl #impl_generics atomig::Atom for #type_name #ty_generics #where_clause {
            #impl_body
        }
    })
}

/// Generates the body of the `impl Atom` block for the given struct definition.
fn atom_impl_for_struct(s: &DataStruct) -> Result<TokenStream2, Error> {
    let mut it = s.fields.iter();

    // Get first field
    let field = it.next().ok_or_else(|| {
        let msg = "struct has no fields, but `derive(Atom)` works only for \
            structs with exactly one field";
        Error::new(s.fields.span(), msg)
    })?;

    // Make sure there are no other fields
    if it.next().is_some() {
        let msg = "struct has more than one field, but `derive(Atom)` works only for \
            structs with exactly one field";
        return Err(Error::new(s.fields.span(), msg));
    }

    // Generate the code for `pack` and `unpack` which depends on whether it is
    // a named or tuple-struct field.
    let (field_access, struct_init) = match &field.ident {
        Some(name) => (quote! { self.#name }, quote! { Self { #name: src } }),
        None => (quote! { self.0 }, quote!{ Self(src) }),
    };

    let field_type = &field.ty;
    Ok(quote! {
        type Repr = <#field_type as atomig::Atom>::Repr;

        fn pack(self) -> Self::Repr {
            <#field_type as atomig::Atom>::pack(#field_access)
        }
        fn unpack(src: Self::Repr) -> Self {
            let src = <#field_type as atomig::Atom>::unpack(src);
            #struct_init
        }
    })
}

/// Generates the body of the `impl Atom` block for the given enum definition.
fn atom_impl_for_enum(input: &DeriveInput, e: &DataEnum) -> Result<TokenStream2, Error> {
    // Make sure we have a `repr` attribute on the enum.
    let repr_attr = input.attrs.iter()
        .filter_map(|attr| attr.parse_meta().ok())
        .find(|meta| meta.path().is_ident("repr"))
        .ok_or_else(|| {
            let msg = format!(
                "no `repr(_)` attribute on enum '{}', but such an attribute is \
                    required to automatically derive `Atom`",
                input.ident,
            );
            Error::new(Span::call_site(), msg)
        })?;

    // Make sure the `repr` attribute has the correct syntax and actually
    // specifies the primitive representation.
    const INTEGER_NAMES: &[&str] = &[
        "u8", "u16", "u32", "u64", "u128", "usize",
        "i8", "i16", "i32", "i64", "i128", "isize",
    ];
    let repr_type = match &repr_attr {
        Meta::List(list) => {
            list.nested.iter()
                .find_map(|nested| {
                    match &nested {
                        NestedMeta::Meta(Meta::Path(p)) => p.get_ident()
                            .filter(|ident| INTEGER_NAMES.iter().any(|int| ident == int)),
                        _ => return None,
                    }
                })
                .ok_or_else(|| {
                    let msg = "`repr(_)` attribute does not specify the primitive \
                        representation (a primitive integer), but this is required \
                        for `derive(Atom)`";
                    Error::new(repr_attr.span(), msg)
                })?
        }
        _ => {
            let msg = format!(
                "`repr` attribute on enum '{}' does not have the form `repr(_)`, but \
                    it should have for `derive(Atom)`",
                input.ident,
            );
            return Err(Error::new(repr_attr.span(), msg));
        }
    };

    // Check that all variants have no fields. In other words: that the enum is
    // C-like.
    let variant_with_fields = e.variants.iter().find(|variant| {
        match variant.fields {
            Fields::Unit => false,
            _ => true,
        }
    });
    if let Some(v) = variant_with_fields  {
        let msg = "this variant has fields, but `derive(Atom)` only works \
            for C-like enums";
        return Err(Error::new(v.span(), msg));
    }

    // Generate the code for `unpack` which is more complicated than the `pack`
    // code. For `pack` we can simply use the `as` cast, but for unpack we have
    // to assemble a list of `if` statements. If you would hand code such a
    // method, you would use a `match` statement. But we use 'ifs' so that we
    // don't have to check for the discriminant values ourselves. That might be
    // very hard.
    let type_name = &input.ident;
    let unpack_code = {
        let checks: Vec<_> = e.variants.iter().map(|variant| {
            let variant_name = &variant.ident;
            quote! {
                if src == #type_name::#variant_name as #repr_type {
                    return #type_name::#variant_name;
                }
            }
        }).collect();

        let error = format!(
            "invalid '{}' value '{{}}' for enum '{}' in `Atom::unpack`",
            repr_type,
            type_name,
        );
        quote! {
            #(#checks)*
            panic!(#error, src);
        }
    };


    Ok(quote! {
        type Repr = #repr_type;

        fn pack(self) -> Self::Repr {
            self as #repr_type
        }
        fn unpack(src: Self::Repr) -> Self {
            #unpack_code
        }
    })
}