1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
use clock;
use hal::spi::{FullDuplex, Mode, Phase, Polarity};
use nb;
use sercom::pads::*;
use target_device::sercom0::SPI;
use target_device::{PM, SERCOM0, SERCOM1, SERCOM2, SERCOM3};
#[cfg(feature = "samd21g18a")]
use target_device::{SERCOM4, SERCOM5};
use time::Hertz;

pub enum Error {
    Overrun,
}

macro_rules! spi_pinout {
    ([$($Type:ident:
        ($pad0:ident, $pad1:ident, $pad2:ident, $pad3:ident),)+
    ]) => {
$(
/// When configured for SPI, in addition to the normal
/// Sercom pad mapping, the SPI peripheral allows those
/// pads to be assigned to different combinations of
/// DI (data-in), DO (data-out), SCK (clock) and SS (slave select)
/// functions.
/// The SPIXPinOut types represent concrete pad mappings for a
/// given SPI Instance.
/// For slaves, DI is the MOSI function and DO is the MISO function.
/// For masters, DI is the MISO function and DO is the MOSI function.
/// The slave configurations all require an SS pin and are constructed
/// using the enum variants ending with SS.
/// The master confiugrations do not require an SS pin and are constructed
/// using the other variants.
/// The SPI master hardware has support for automatically managing the
/// SS line to enable a slave, but this interface does not expose that
/// functionality.
/// The variant names refer to the Data-in-Data-out configuration that
/// is used to configure the SPI peripheral.
pub enum $Type {
    /// Construct a slave pinout with mosi assigned to pad0,
    /// miso pad2, sck pad3 and ss to pad1.
    Dipo0Dopo1SS{mosi:$pad0, miso:$pad2, sck:$pad3, ss:$pad1},
    Dipo0Dopo2SS{mosi:$pad0, miso:$pad3, sck:$pad1, ss:$pad2},
    Dipo2Dopo3SS{mosi:$pad2, miso:$pad0, sck:$pad3, ss:$pad1},
    Dipo3Dopo0SS{mosi:$pad3, miso:$pad0, sck:$pad1, ss:$pad2},

    /// Construct a master pinout with miso assigned to pad0,
    /// mosi pad2 and sck to pad3
    Dipo0Dopo1{miso:$pad0, mosi:$pad2, sck:$pad3},
    Dipo1Dopo1{miso:$pad1, mosi:$pad2, sck:$pad3},
    Dipo0Dopo2{miso:$pad0, mosi:$pad3, sck:$pad1},

    Dipo1Dopo3{miso:$pad1, mosi:$pad0, sck:$pad3},

    Dipo2Dopo0{miso:$pad2, mosi:$pad0, sck:$pad1},
    Dipo2Dopo2{miso:$pad2, mosi:$pad3, sck:$pad1},
    Dipo2Dopo3{miso:$pad2, mosi:$pad0, sck:$pad3},

    Dipo3Dopo0{miso:$pad3, mosi:$pad0, sck:$pad1},
}

impl $Type {
    /// Return the data-in, data-out values for
    /// this pinout configuration
    fn dipo_dopo(&self) -> (u8, u8) {
        match self {
            &$Type::Dipo0Dopo1SS{..} => (0, 1),
            &$Type::Dipo0Dopo2SS{..} => (0, 2),
            &$Type::Dipo2Dopo3SS{..} => (2, 3),
            &$Type::Dipo3Dopo0SS{..} => (3, 0),

            &$Type::Dipo0Dopo1{..} => (0, 1),
            &$Type::Dipo1Dopo1{..} => (1, 1),
            &$Type::Dipo0Dopo2{..} => (0, 2),

            &$Type::Dipo1Dopo3{..} => (1, 3),

            &$Type::Dipo2Dopo0{..} => (2, 0),
            &$Type::Dipo2Dopo2{..} => (2, 2),
            &$Type::Dipo2Dopo3{..} => (2, 3),

            &$Type::Dipo3Dopo0{..} => (3, 0),
        }
    }
}

)+

}
}

spi_pinout!([
    SPI0Pinout: (Sercom0Pad0, Sercom0Pad1, Sercom0Pad2, Sercom0Pad3),
    SPI1Pinout: (Sercom1Pad0, Sercom1Pad1, Sercom1Pad2, Sercom1Pad3),
    SPI2Pinout: (Sercom2Pad0, Sercom2Pad1, Sercom2Pad2, Sercom2Pad3),
    SPI3Pinout: (Sercom3Pad0, Sercom3Pad1, Sercom3Pad2, Sercom3Pad3),
]);
#[cfg(feature = "samd21g18a")]
spi_pinout!([
    SPI4Pinout: (Sercom4Pad0, Sercom4Pad1, Sercom4Pad2, Sercom4Pad3),
    SPI5Pinout: (Sercom5Pad0, Sercom5Pad1, Sercom5Pad2, Sercom5Pad3),
]);

macro_rules! spi {
    ([
        $($Type:ident: (
                        $PinOut:ident,
                        $SERCOM:ident, $powermask:ident, $clock:ident),)+
    ]) => {
$(

/// SPIMasterX represents the corresponding SERCOMX instance configured to
/// act in the role of an SPI Master.
/// Objects of this type implement the HAL `FullDuplex` and blocking SPI
/// traits.
pub struct $Type {
    pinout: $PinOut,
    sercom: $SERCOM,
}

impl $Type {
    /// Power on and configure SERCOMX to work as an SPI Master operating
    /// with the specified frequency and SPI Mode.  The pinout specifies
    /// which pins are bound to the MISO, MOSI, SCK functions.
    pub fn new<F: Into<Hertz>>(
        clock:&clock::$clock,
        freq: F,
        mode: Mode,
        sercom: $SERCOM,
        pm: &mut PM,
        pinout: $PinOut,
    ) -> Self {
        // Power up the peripheral bus clock.
        // safe because we're exclusively owning SERCOM
        pm.apbcmask.modify(|_, w| w.$powermask().set_bit());

        unsafe {
            // reset the sercom instance
            sercom.spi.ctrla.modify(|_, w| w.swrst().set_bit());
            // wait for reset to complete
            while sercom.spi.syncbusy.read().swrst().bit_is_set()
                || sercom.spi.ctrla.read().swrst().bit_is_set()
            {}

            // Put the hardware into spi master mode
            sercom.spi.ctrla.modify(|_, w| w.mode().spi_master());
            // wait for configuration to take effect
            while sercom.spi.syncbusy.read().enable().bit_is_set() {}

            // 8 bit data size and enable the receiver
            sercom.spi.ctrlb.modify(|_, w|{
                w.chsize().bits(0);
                w.rxen().set_bit()
            });

            // set the baud rate
            let gclk = clock.freq();
            let baud = (gclk.0 / (2 * freq.into().0) - 1) as u8;
            sercom.spi.baud.modify(|_, w| w.baud().bits(baud));

            sercom.spi.ctrla.modify(|_, w| {
                match mode.polarity {
                    Polarity::IdleLow => w.cpol().clear_bit(),
                    Polarity::IdleHigh => w.cpol().set_bit(),
                };

                match mode.phase {
                    Phase::CaptureOnFirstTransition => w.cpha().clear_bit(),
                    Phase::CaptureOnSecondTransition => w.cpha().set_bit(),
                };

                let (dipo, dopo) = pinout.dipo_dopo();
                w.dipo().bits(dipo);
                w.dopo().bits(dopo);

                // MSB first
                w.dord().clear_bit()
            });


            sercom.spi.ctrla.modify(|_, w| w.enable().set_bit());
            // wait for configuration to take effect
            while sercom.spi.syncbusy.read().enable().bit_is_set() {}

        }

        Self {
            pinout,
            sercom,
        }
    }

    /// Tear down the SPI instance and yield the constituent pins and
    /// SERCOM instance.  No explicit de-initialization is performed.
    pub fn free(self) -> ($PinOut, $SERCOM) {
        (self.pinout, self.sercom)
    }

    /// Helper for accessing the spi member of the sercom instance
    fn spi(&mut self) -> &SPI {
        unsafe { &self.sercom.spi }
    }
}

impl FullDuplex<u8> for $Type {
    type Error = Error;

    fn read(&mut self) -> nb::Result<u8, Error> {
        let status = self.spi().status.read();
        if status.bufovf().bit_is_set() {
            return Err(nb::Error::Other(Error::Overrun));
        }

        let intflag = self.spi().intflag.read();
        // rxc is receive complete
        if intflag.rxc().bit_is_set() {
            Ok(self.spi().data.read().data().bits() as u8)
        } else {
            Err(nb::Error::WouldBlock)
        }
    }

    fn send(&mut self, byte: u8) -> nb::Result<(), Error> {
        let intflag = self.spi().intflag.read();
        // dre is data register empty
        if intflag.dre().bit_is_set() {
            self.spi().data.write(|w| unsafe{w.data().bits(byte as u16)});
            Ok(())
        } else {
            Err(nb::Error::WouldBlock)
        }
    }
}

impl ::hal::blocking::spi::transfer::Default<u8> for $Type {}
impl ::hal::blocking::spi::write::Default<u8> for $Type {}


)+
    };
}

spi!([
    SPIMaster0: (SPI0Pinout, SERCOM0, sercom0_, Sercom0CoreClock),
    SPIMaster1: (SPI1Pinout, SERCOM1, sercom1_, Sercom1CoreClock),
    SPIMaster2: (SPI2Pinout, SERCOM2, sercom2_, Sercom2CoreClock),
    SPIMaster3: (SPI3Pinout, SERCOM3, sercom3_, Sercom3CoreClock),
]);
#[cfg(feature = "samd21g18a")]
spi!([
    SPIMaster4: (SPI4Pinout, SERCOM4, sercom4_, Sercom4CoreClock),
    SPIMaster5: (SPI5Pinout, SERCOM5, sercom5_, Sercom5CoreClock),
]);