1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
// Copyright (c) 2022-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
// The original work for this formula was implmented in aomenc, and this is
// an adaptation of that work:
// https://aomedia.googlesource.com/aom/+/refs/heads/main/examples/photon_noise_table.c
// This implementation creates a film grain table, for use in stills and videos,
// representing the noise that one would get by shooting with a digital camera
// at a given light level. Much of the noise in digital images is photon shot
// noise, which is due to the characteristics of photon arrival and grows in
// standard deviation as the square root of the expected number of photons
// captured.
// https://www.photonstophotos.net/Emil%20Martinec/noise.html#shotnoise
//
// The proxy used by this implementation for the amount of light captured
// is the ISO value such that the focal plane exposure at the time of capture
// would have been mapped by a 35mm camera to the output lightness observed
// in the image. That is, if one were to shoot on a 35mm camera (36×24mm sensor)
// at the nominal exposure for that ISO setting, the resulting image should
// contain noise of the same order of magnitude as generated by this
// implementation.
//
// The (mostly) square-root relationship between light intensity and noise
// amplitude holds in linear light, but AV1 streams are most often encoded
// non-linearly, and the film grain is applied to those non-linear values.
// Therefore, this implementation must account for the non-linearity, and this
// is controlled by the transfer function parameter, which specifies the tone
// response curve that will be used when encoding the actual image. The default
// for this implementation is BT.1886, which is approximately similar to an
// encoding gamma of 1/2.8 (i.e. a decoding gamma of 2.8) though not quite
// identical.
//
// As alluded to above, the implementation assumes that the image is taken from
// the entirety of a 36×24mm (“35mm format”) sensor. If that assumption does not
// hold, then a “35mm-equivalent ISO value” that can be passed to the
// implementation can be obtained by multiplying the true ISO value by the ratio
// of 36×24mm to the area that was actually used. For formats that approximately
// share the same aspect ratio, this is often expressed as the square of the
// “equivalence ratio” which is the ratio of their diagonals. For example, APS-C
// (often ~24×16mm) is said to have an equivalence ratio of 1.5 relative to the
// 35mm format, and therefore ISO 1000 on APS-C and ISO 1000×1.5² = 2250 on 35mm
// produce an image of the same lightness from the same amount of light spread
// onto their respective surface areas (resulting in different focal plane
// exposures), and those images will thus have similar amounts of noise if the
// cameras are of similar technology. https://doi.org/10.1117/1.OE.57.11.110801
//
// The implementation needs to know the resolution of the images to which its
// grain tables will be applied so that it can know how the light on the sensor
// was shared between its pixels. As a general rule, while a higher pixel count
// will lead to more noise per pixel, when the final image is viewed at the same
// physical size, that noise will tend to “average out” to the same amount over
// a given area, since there will be more pixels in it which, in aggregate, will
// have received essentially as much light. Put differently, the amount of noise
// depends on the scale at which it is measured, and the decision for this
// implementation was to make that scale relative to the image instead of its
// constituent samples. For more on this, see:
//
// https://www.photonstophotos.net/Emil%20Martinec/noise-p3.html#pixelsize
// https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2
// https://www.dpreview.com/videos/7940373140/dpreview-tv-why-lower-resolution-sensors-are-not-better-in-low-light
use std::{
fs::File,
io::{BufWriter, Write},
path::Path,
};
use arrayvec::ArrayVec;
use crate::{GrainTableSegment, ScalingPoints, DEFAULT_GRAIN_SEED, NUM_Y_POINTS};
const PQ_M1: f32 = 2610. / 16384.;
const PQ_M2: f32 = 128. * 2523. / 4096.;
const PQ_C1: f32 = 3424. / 4096.;
const PQ_C2: f32 = 32. * 2413. / 4096.;
const PQ_C3: f32 = 32. * 2392. / 4096.;
const BT1886_WHITEPOINT: f32 = 203.;
const BT1886_BLACKPOINT: f32 = 0.1;
const BT1886_GAMMA: f32 = 2.4;
// BT.1886 formula from https://en.wikipedia.org/wiki/ITU-R_BT.1886.
//
// TODO: the inverses, alpha, and beta should all be constants
// once floats in const fns are stabilized and `powf` is const.
// Until then, `inline(always)` gets us close enough.
#[inline(always)]
fn bt1886_inv_whitepoint() -> f32 {
BT1886_WHITEPOINT.powf(1.0 / BT1886_GAMMA)
}
#[inline(always)]
fn bt1886_inv_blackpoint() -> f32 {
BT1886_BLACKPOINT.powf(1.0 / BT1886_GAMMA)
}
/// The variable for user gain:
/// `α = (Lw^(1/λ) - Lb^(1/λ)) ^ λ`
#[inline(always)]
fn bt1886_alpha() -> f32 {
(bt1886_inv_whitepoint() - bt1886_inv_blackpoint()).powf(BT1886_GAMMA)
}
/// The variable for user black level lift:
/// `β = Lb^(1/λ) / (Lw^(1/λ) - Lb^(1/λ))`
#[inline(always)]
fn bt1886_beta() -> f32 {
bt1886_inv_blackpoint() / (bt1886_inv_whitepoint() - bt1886_inv_blackpoint())
}
/// Settings and video data defining how to generate the film grain params.
#[derive(Debug, Clone, Copy)]
pub struct NoiseGenArgs {
pub iso_setting: u32,
pub width: u32,
pub height: u32,
pub transfer_function: TransferFunction,
pub chroma_grain: bool,
pub random_seed: Option<u16>,
}
/// Generates a set of photon noise parameters for a segment of video
/// given a set of `args`.
#[must_use]
pub fn generate_photon_noise_params(
start_time: u64,
end_time: u64,
args: NoiseGenArgs,
) -> GrainTableSegment {
GrainTableSegment {
start_time,
end_time,
scaling_points_y: generate_luma_noise_points(args),
scaling_points_cb: ArrayVec::new(),
scaling_points_cr: ArrayVec::new(),
scaling_shift: 8,
ar_coeff_lag: 0,
ar_coeffs_y: ArrayVec::new(),
ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
.expect("Cannot fail creation from const array"),
ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
.expect("Cannot fail creation from const array"),
ar_coeff_shift: 6,
cb_mult: 0,
cb_luma_mult: 0,
cb_offset: 0,
cr_mult: 0,
cr_luma_mult: 0,
cr_offset: 0,
overlap_flag: true,
chroma_scaling_from_luma: args.chroma_grain,
grain_scale_shift: 0,
random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
}
}
/// Generates a set of film grain parameters for a segment of video
/// given a set of `args`.
///
/// # Panics
/// - This is not yet implemented, so it will always panic
#[must_use]
#[cfg(feature = "unstable")]
pub fn generate_film_grain_params(
start_time: u64,
end_time: u64,
args: NoiseGenArgs,
) -> GrainTableSegment {
todo!("SCIENCE");
// GrainTableSegment {
// start_time,
// end_time,
// scaling_points_y: generate_luma_noise_points(args),
// scaling_points_cb: ArrayVec::new(),
// scaling_points_cr: ArrayVec::new(),
// scaling_shift: 8,
// ar_coeff_lag: 0,
// ar_coeffs_y: ArrayVec::new(),
// ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
// .expect("Cannot fail creation from const array"),
// ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
// .expect("Cannot fail creation from const array"),
// ar_coeff_shift: 6,
// cb_mult: 0,
// cb_luma_mult: 0,
// cb_offset: 0,
// cr_mult: 0,
// cr_luma_mult: 0,
// cr_offset: 0,
// overlap_flag: true,
// chroma_scaling_from_luma: args.chroma_grain,
// grain_scale_shift: 0,
// random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
// }
}
/// Write a set of generated film grain params to a table file,
/// using the standard film grain table format supported by
/// aomenc, rav1e, and svt-av1.
///
/// # Errors
///
/// - If the output file cannot be written to
pub fn write_grain_table<P: AsRef<Path>>(
filename: P,
params: &[GrainTableSegment],
) -> anyhow::Result<()> {
let mut file = BufWriter::new(File::create(filename)?);
writeln!(&mut file, "filmgrn1")?;
for segment in params {
write_film_grain_segment(segment, &mut file)?;
}
file.flush()?;
Ok(())
}
fn write_film_grain_segment(
params: &GrainTableSegment,
output: &mut BufWriter<File>,
) -> anyhow::Result<()> {
writeln!(
output,
"E {} {} 1 {} 1",
params.start_time, params.end_time, params.random_seed,
)?;
writeln!(
output,
"\tp {} {} {} {} {} {} {} {} {} {} {} {}",
params.ar_coeff_lag,
params.ar_coeff_shift,
params.grain_scale_shift,
params.scaling_shift,
u8::from(params.chroma_scaling_from_luma),
u8::from(params.overlap_flag),
params.cb_mult,
params.cb_luma_mult,
params.cb_offset,
params.cr_mult,
params.cr_luma_mult,
params.cr_offset
)?;
write!(output, "\tsY {} ", params.scaling_points_y.len())?;
for point in ¶ms.scaling_points_y {
write!(output, " {} {}", point[0], point[1])?;
}
writeln!(output)?;
write!(output, "\tsCb {}", params.scaling_points_cb.len())?;
for point in ¶ms.scaling_points_cb {
write!(output, " {} {}", point[0], point[1])?;
}
writeln!(output)?;
write!(output, "\tsCr {}", params.scaling_points_cr.len())?;
for point in ¶ms.scaling_points_cr {
write!(output, " {} {}", point[0], point[1])?;
}
writeln!(output)?;
write!(output, "\tcY")?;
for coeff in ¶ms.ar_coeffs_y {
write!(output, " {}", *coeff)?;
}
writeln!(output)?;
write!(output, "\tcCb")?;
for coeff in ¶ms.ar_coeffs_cb {
write!(output, " {}", *coeff)?;
}
writeln!(output)?;
write!(output, "\tcCr")?;
for coeff in ¶ms.ar_coeffs_cr {
write!(output, " {}", *coeff)?;
}
writeln!(output)?;
Ok(())
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TransferFunction {
/// For SDR content
BT1886,
/// For HDR content
SMPTE2084,
}
impl TransferFunction {
#[must_use]
pub fn to_linear(self, x: f32) -> f32 {
match self {
TransferFunction::BT1886 => {
// The screen luminance in cd/m^2:
// L = α * (x + β)^λ
let luma = bt1886_alpha() * (x + bt1886_beta()).powf(BT1886_GAMMA);
// Normalize to between 0.0 and 1.0
luma / BT1886_WHITEPOINT
}
TransferFunction::SMPTE2084 => {
let pq_pow_inv_m2 = x.powf(1. / PQ_M2);
(0_f32.max(pq_pow_inv_m2 - PQ_C1) / PQ_C3.mul_add(-pq_pow_inv_m2, PQ_C2))
.powf(1. / PQ_M1)
}
}
}
#[allow(clippy::wrong_self_convention)]
#[must_use]
pub fn from_linear(self, x: f32) -> f32 {
match self {
TransferFunction::BT1886 => {
// Scale to a raw cd/m^2 value
let luma = x * BT1886_WHITEPOINT;
// The inverse of the `to_linear` formula:
// `(L / α)^(1 / λ) - β = x`
(luma / bt1886_alpha()).powf(1.0 / BT1886_GAMMA) - bt1886_beta()
}
TransferFunction::SMPTE2084 => {
if x < f32::EPSILON {
return 0.0;
}
let linear_pow_m1 = x.powf(PQ_M1);
(PQ_C2.mul_add(linear_pow_m1, PQ_C1) / PQ_C3.mul_add(linear_pow_m1, 1.)).powf(PQ_M2)
}
}
}
#[inline(always)]
#[must_use]
pub fn mid_tone(self) -> f32 {
self.to_linear(0.5)
}
}
fn generate_luma_noise_points(args: NoiseGenArgs) -> ScalingPoints {
// Assumes a daylight-like spectrum.
// https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s
const PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND: f32 = 11260.;
// Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into
// account.
const EFFECTIVE_QUANTUM_EFFICIENCY: f32 = 0.2;
// Also reasonable values for current cameras. The read noise is typically
// higher than this at low ISO settings but it matters less there.
const PHOTO_RESPONSE_NON_UNIFORMITY: f32 = 0.005;
const INPUT_REFERRED_READ_NOISE: f32 = 1.5;
// Assumes a 35mm sensor (36mm × 24mm).
const SENSOR_AREA: f32 = 36_000. * 24_000.;
// Focal plane exposure for a mid-tone (typically a 18% reflectance card), in
// lx·s.
let mid_tone_exposure = 10. / args.iso_setting as f32;
let pixel_area_microns = SENSOR_AREA / (args.width * args.height) as f32;
let mid_tone_electrons_per_pixel = EFFECTIVE_QUANTUM_EFFICIENCY
* PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND
* mid_tone_exposure
* pixel_area_microns;
let max_electrons_per_pixel = mid_tone_electrons_per_pixel / args.transfer_function.mid_tone();
let mut scaling_points = ScalingPoints::default();
for i in 0..NUM_Y_POINTS {
let x = i as f32 / (NUM_Y_POINTS as f32 - 1.);
let linear = args.transfer_function.to_linear(x);
let electrons_per_pixel = max_electrons_per_pixel * linear;
// Quadrature sum of the relevant sources of noise, in electrons rms. Photon
// shot noise is sqrt(electrons) so we can skip the square root and the
// squaring.
// https://en.wikipedia.org/wiki/Addition_in_quadrature
// https://doi.org/10.1117/3.725073
let noise_in_electrons = (PHOTO_RESPONSE_NON_UNIFORMITY
* PHOTO_RESPONSE_NON_UNIFORMITY
* electrons_per_pixel)
.mul_add(
electrons_per_pixel,
INPUT_REFERRED_READ_NOISE.mul_add(INPUT_REFERRED_READ_NOISE, electrons_per_pixel),
)
.sqrt();
let linear_noise = noise_in_electrons / max_electrons_per_pixel;
let linear_range_start = 0_f32.max(2.0f32.mul_add(-linear_noise, linear));
let linear_range_end = 1_f32.min(2_f32.mul_add(linear_noise, linear));
let tf_slope = (args.transfer_function.from_linear(linear_range_end)
- args.transfer_function.from_linear(linear_range_start))
/ (linear_range_end - linear_range_start);
let encoded_noise = linear_noise * tf_slope;
let x = (255. * x).round() as u8;
let encoded_noise = 255_f32.min((255. * 7.88 * encoded_noise).round()) as u8;
scaling_points.push([x, encoded_noise]);
}
scaling_points
}
#[cfg(test)]
mod tests {
use quickcheck::TestResult;
use quickcheck_macros::quickcheck;
use super::*;
#[quickcheck]
fn bt1886_to_linear_within_range(x: f32) -> TestResult {
if !(0.0..=1.0).contains(&x) || x.is_nan() {
return TestResult::discard();
}
let tx = TransferFunction::BT1886;
let res = tx.to_linear(x);
TestResult::from_bool((0.0..=1.0).contains(&res))
}
#[quickcheck]
fn bt1886_to_linear_reverts_correctly(x: f32) -> TestResult {
if !(0.0..=1.0).contains(&x) || x.is_nan() {
return TestResult::discard();
}
let tx = TransferFunction::BT1886;
let res = tx.to_linear(x);
let res = tx.from_linear(res);
TestResult::from_bool((x - res).abs() < f32::EPSILON)
}
#[quickcheck]
fn smpte2084_to_linear_within_range(x: f32) -> TestResult {
if !(0.0..=1.0).contains(&x) || x.is_nan() {
return TestResult::discard();
}
let tx = TransferFunction::SMPTE2084;
let res = tx.to_linear(x);
TestResult::from_bool((0.0..=1.0).contains(&res))
}
#[quickcheck]
fn smpte2084_to_linear_reverts_correctly(x: f32) -> TestResult {
if !(0.0..=1.0).contains(&x) || x.is_nan() {
return TestResult::discard();
}
let tx = TransferFunction::SMPTE2084;
let res = tx.to_linear(x);
let res = tx.from_linear(res);
TestResult::from_bool((x - res).abs() < f32::EPSILON)
}
}