1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Copyright (c) 2022-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.

// The original work for this formula was implmented in aomenc, and this is
// an adaptation of that work:
// https://aomedia.googlesource.com/aom/+/refs/heads/main/examples/photon_noise_table.c

// This implementation creates a film grain table, for use in stills and videos,
// representing the noise that one would get by shooting with a digital camera
// at a given light level. Much of the noise in digital images is photon shot
// noise, which is due to the characteristics of photon arrival and grows in
// standard deviation as the square root of the expected number of photons
// captured.
// https://www.photonstophotos.net/Emil%20Martinec/noise.html#shotnoise
//
// The proxy used by this implementation for the amount of light captured
// is the ISO value such that the focal plane exposure at the time of capture
// would have been mapped by a 35mm camera to the output lightness observed
// in the image. That is, if one were to shoot on a 35mm camera (36×24mm sensor)
// at the nominal exposure for that ISO setting, the resulting image should
// contain noise of the same order of magnitude as generated by this
// implementation.
//
// The (mostly) square-root relationship between light intensity and noise
// amplitude holds in linear light, but AV1 streams are most often encoded
// non-linearly, and the film grain is applied to those non-linear values.
// Therefore, this implementation must account for the non-linearity, and this
// is controlled by the transfer function parameter, which specifies the tone
// response curve that will be used when encoding the actual image. The default
// for this implementation is BT.1886, which is approximately similar to an
// encoding gamma of 1/2.8 (i.e. a decoding gamma of 2.8) though not quite
// identical.
//
// As alluded to above, the implementation assumes that the image is taken from
// the entirety of a 36×24mm (“35mm format”) sensor. If that assumption does not
// hold, then a “35mm-equivalent ISO value” that can be passed to the
// implementation can be obtained by multiplying the true ISO value by the ratio
// of 36×24mm to the area that was actually used. For formats that approximately
// share the same aspect ratio, this is often expressed as the square of the
// “equivalence ratio” which is the ratio of their diagonals. For example, APS-C
// (often ~24×16mm) is said to have an equivalence ratio of 1.5 relative to the
// 35mm format, and therefore ISO 1000 on APS-C and ISO 1000×1.5² = 2250 on 35mm
// produce an image of the same lightness from the same amount of light spread
// onto their respective surface areas (resulting in different focal plane
// exposures), and those images will thus have similar amounts of noise if the
// cameras are of similar technology. https://doi.org/10.1117/1.OE.57.11.110801
//
// The implementation needs to know the resolution of the images to which its
// grain tables will be applied so that it can know how the light on the sensor
// was shared between its pixels. As a general rule, while a higher pixel count
// will lead to more noise per pixel, when the final image is viewed at the same
// physical size, that noise will tend to “average out” to the same amount over
// a given area, since there will be more pixels in it which, in aggregate, will
// have received essentially as much light. Put differently, the amount of noise
// depends on the scale at which it is measured, and the decision for this
// implementation was to make that scale relative to the image instead of its
// constituent samples. For more on this, see:
//
// https://www.photonstophotos.net/Emil%20Martinec/noise-p3.html#pixelsize
// https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2
// https://www.dpreview.com/videos/7940373140/dpreview-tv-why-lower-resolution-sensors-are-not-better-in-low-light

use std::{
    fs::File,
    io::{BufWriter, Write},
    path::Path,
};

use arrayvec::ArrayVec;

use crate::{GrainTableSegment, ScalingPoints, DEFAULT_GRAIN_SEED, NUM_Y_POINTS};

const PQ_M1: f32 = 2610. / 16384.;
const PQ_M2: f32 = 128. * 2523. / 4096.;
const PQ_C1: f32 = 3424. / 4096.;
const PQ_C2: f32 = 32. * 2413. / 4096.;
const PQ_C3: f32 = 32. * 2392. / 4096.;

const BT1886_WHITEPOINT: f32 = 203.;
const BT1886_BLACKPOINT: f32 = 0.1;
const BT1886_GAMMA: f32 = 2.4;

// BT.1886 formula from https://en.wikipedia.org/wiki/ITU-R_BT.1886.
//
// TODO: the inverses, alpha, and beta should all be constants
// once floats in const fns are stabilized and `powf` is const.
// Until then, `inline(always)` gets us close enough.

#[inline(always)]
fn bt1886_inv_whitepoint() -> f32 {
    BT1886_WHITEPOINT.powf(1.0 / BT1886_GAMMA)
}

#[inline(always)]
fn bt1886_inv_blackpoint() -> f32 {
    BT1886_BLACKPOINT.powf(1.0 / BT1886_GAMMA)
}

/// The variable for user gain:
/// `α = (Lw^(1/λ) - Lb^(1/λ)) ^ λ`
#[inline(always)]
fn bt1886_alpha() -> f32 {
    (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()).powf(BT1886_GAMMA)
}

/// The variable for user black level lift:
/// `β = Lb^(1/λ) / (Lw^(1/λ) - Lb^(1/λ))`
#[inline(always)]
fn bt1886_beta() -> f32 {
    bt1886_inv_blackpoint() / (bt1886_inv_whitepoint() - bt1886_inv_blackpoint())
}

/// Settings and video data defining how to generate the film grain params.
#[derive(Debug, Clone, Copy)]
pub struct NoiseGenArgs {
    pub iso_setting: u32,
    pub width: u32,
    pub height: u32,
    pub transfer_function: TransferFunction,
    pub chroma_grain: bool,
    pub random_seed: Option<u16>,
}

/// Generates a set of photon noise parameters for a segment of video
/// given a set of `args`.
#[must_use]
pub fn generate_photon_noise_params(
    start_time: u64,
    end_time: u64,
    args: NoiseGenArgs,
) -> GrainTableSegment {
    GrainTableSegment {
        start_time,
        end_time,
        scaling_points_y: generate_luma_noise_points(args),
        scaling_points_cb: ArrayVec::new(),
        scaling_points_cr: ArrayVec::new(),
        scaling_shift: 8,
        ar_coeff_lag: 0,
        ar_coeffs_y: ArrayVec::new(),
        ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
            .expect("Cannot fail creation from const array"),
        ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
            .expect("Cannot fail creation from const array"),
        ar_coeff_shift: 6,
        cb_mult: 0,
        cb_luma_mult: 0,
        cb_offset: 0,
        cr_mult: 0,
        cr_luma_mult: 0,
        cr_offset: 0,
        overlap_flag: true,
        chroma_scaling_from_luma: args.chroma_grain,
        grain_scale_shift: 0,
        random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
    }
}

/// Generates a set of film grain parameters for a segment of video
/// given a set of `args`.
///
/// # Panics
/// - This is not yet implemented, so it will always panic
#[must_use]
#[cfg(feature = "unstable")]
pub fn generate_film_grain_params(
    start_time: u64,
    end_time: u64,
    args: NoiseGenArgs,
) -> GrainTableSegment {
    todo!("SCIENCE");
    // GrainTableSegment {
    //     start_time,
    //     end_time,
    //     scaling_points_y: generate_luma_noise_points(args),
    //     scaling_points_cb: ArrayVec::new(),
    //     scaling_points_cr: ArrayVec::new(),
    //     scaling_shift: 8,
    //     ar_coeff_lag: 0,
    //     ar_coeffs_y: ArrayVec::new(),
    //     ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
    //         .expect("Cannot fail creation from const array"),
    //     ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
    //         .expect("Cannot fail creation from const array"),
    //     ar_coeff_shift: 6,
    //     cb_mult: 0,
    //     cb_luma_mult: 0,
    //     cb_offset: 0,
    //     cr_mult: 0,
    //     cr_luma_mult: 0,
    //     cr_offset: 0,
    //     overlap_flag: true,
    //     chroma_scaling_from_luma: args.chroma_grain,
    //     grain_scale_shift: 0,
    //     random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
    // }
}

/// Write a set of generated film grain params to a table file,
/// using the standard film grain table format supported by
/// aomenc, rav1e, and svt-av1.
///
/// # Errors
///
/// - If the output file cannot be written to
pub fn write_grain_table<P: AsRef<Path>>(
    filename: P,
    params: &[GrainTableSegment],
) -> anyhow::Result<()> {
    let mut file = BufWriter::new(File::create(filename)?);
    writeln!(&mut file, "filmgrn1")?;
    for segment in params {
        write_film_grain_segment(segment, &mut file)?;
    }
    file.flush()?;

    Ok(())
}

fn write_film_grain_segment(
    params: &GrainTableSegment,
    output: &mut BufWriter<File>,
) -> anyhow::Result<()> {
    writeln!(
        output,
        "E {} {} 1 {} 1",
        params.start_time, params.end_time, params.random_seed,
    )?;
    writeln!(
        output,
        "\tp {} {} {} {} {} {} {} {} {} {} {} {}",
        params.ar_coeff_lag,
        params.ar_coeff_shift,
        params.grain_scale_shift,
        params.scaling_shift,
        u8::from(params.chroma_scaling_from_luma),
        u8::from(params.overlap_flag),
        params.cb_mult,
        params.cb_luma_mult,
        params.cb_offset,
        params.cr_mult,
        params.cr_luma_mult,
        params.cr_offset
    )?;

    write!(output, "\tsY {} ", params.scaling_points_y.len())?;
    for point in &params.scaling_points_y {
        write!(output, " {} {}", point[0], point[1])?;
    }
    writeln!(output)?;

    write!(output, "\tsCb {}", params.scaling_points_cb.len())?;
    for point in &params.scaling_points_cb {
        write!(output, " {} {}", point[0], point[1])?;
    }
    writeln!(output)?;

    write!(output, "\tsCr {}", params.scaling_points_cr.len())?;
    for point in &params.scaling_points_cr {
        write!(output, " {} {}", point[0], point[1])?;
    }
    writeln!(output)?;

    write!(output, "\tcY")?;
    for coeff in &params.ar_coeffs_y {
        write!(output, " {}", *coeff)?;
    }
    writeln!(output)?;

    write!(output, "\tcCb")?;
    for coeff in &params.ar_coeffs_cb {
        write!(output, " {}", *coeff)?;
    }
    writeln!(output)?;

    write!(output, "\tcCr")?;
    for coeff in &params.ar_coeffs_cr {
        write!(output, " {}", *coeff)?;
    }
    writeln!(output)?;

    Ok(())
}

#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TransferFunction {
    /// For SDR content
    BT1886,
    /// For HDR content
    SMPTE2084,
}

impl TransferFunction {
    #[must_use]
    pub fn to_linear(self, x: f32) -> f32 {
        match self {
            TransferFunction::BT1886 => {
                // The screen luminance in cd/m^2:
                // L = α * (x + β)^λ
                let luma = bt1886_alpha() * (x + bt1886_beta()).powf(BT1886_GAMMA);

                // Normalize to between 0.0 and 1.0
                luma / BT1886_WHITEPOINT
            }
            TransferFunction::SMPTE2084 => {
                let pq_pow_inv_m2 = x.powf(1. / PQ_M2);
                (0_f32.max(pq_pow_inv_m2 - PQ_C1) / PQ_C3.mul_add(-pq_pow_inv_m2, PQ_C2))
                    .powf(1. / PQ_M1)
            }
        }
    }

    #[allow(clippy::wrong_self_convention)]
    #[must_use]
    pub fn from_linear(self, x: f32) -> f32 {
        match self {
            TransferFunction::BT1886 => {
                // Scale to a raw cd/m^2 value
                let luma = x * BT1886_WHITEPOINT;

                // The inverse of the `to_linear` formula:
                // `(L / α)^(1 / λ) - β = x`
                (luma / bt1886_alpha()).powf(1.0 / BT1886_GAMMA) - bt1886_beta()
            }
            TransferFunction::SMPTE2084 => {
                if x < f32::EPSILON {
                    return 0.0;
                }
                let linear_pow_m1 = x.powf(PQ_M1);
                (PQ_C2.mul_add(linear_pow_m1, PQ_C1) / PQ_C3.mul_add(linear_pow_m1, 1.)).powf(PQ_M2)
            }
        }
    }

    #[inline(always)]
    #[must_use]
    pub fn mid_tone(self) -> f32 {
        self.to_linear(0.5)
    }
}

fn generate_luma_noise_points(args: NoiseGenArgs) -> ScalingPoints {
    // Assumes a daylight-like spectrum.
    // https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s
    const PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND: f32 = 11260.;

    // Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into
    // account.
    const EFFECTIVE_QUANTUM_EFFICIENCY: f32 = 0.2;

    // Also reasonable values for current cameras. The read noise is typically
    // higher than this at low ISO settings but it matters less there.
    const PHOTO_RESPONSE_NON_UNIFORMITY: f32 = 0.005;
    const INPUT_REFERRED_READ_NOISE: f32 = 1.5;

    // Assumes a 35mm sensor (36mm × 24mm).
    const SENSOR_AREA: f32 = 36_000. * 24_000.;

    // Focal plane exposure for a mid-tone (typically a 18% reflectance card), in
    // lx·s.
    let mid_tone_exposure = 10. / args.iso_setting as f32;

    let pixel_area_microns = SENSOR_AREA / (args.width * args.height) as f32;

    let mid_tone_electrons_per_pixel = EFFECTIVE_QUANTUM_EFFICIENCY
        * PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND
        * mid_tone_exposure
        * pixel_area_microns;
    let max_electrons_per_pixel = mid_tone_electrons_per_pixel / args.transfer_function.mid_tone();

    let mut scaling_points = ScalingPoints::default();
    for i in 0..NUM_Y_POINTS {
        let x = i as f32 / (NUM_Y_POINTS as f32 - 1.);
        let linear = args.transfer_function.to_linear(x);
        let electrons_per_pixel = max_electrons_per_pixel * linear;

        // Quadrature sum of the relevant sources of noise, in electrons rms. Photon
        // shot noise is sqrt(electrons) so we can skip the square root and the
        // squaring.
        // https://en.wikipedia.org/wiki/Addition_in_quadrature
        // https://doi.org/10.1117/3.725073
        let noise_in_electrons = (PHOTO_RESPONSE_NON_UNIFORMITY
            * PHOTO_RESPONSE_NON_UNIFORMITY
            * electrons_per_pixel)
            .mul_add(
                electrons_per_pixel,
                INPUT_REFERRED_READ_NOISE.mul_add(INPUT_REFERRED_READ_NOISE, electrons_per_pixel),
            )
            .sqrt();
        let linear_noise = noise_in_electrons / max_electrons_per_pixel;
        let linear_range_start = 0_f32.max(2.0f32.mul_add(-linear_noise, linear));
        let linear_range_end = 1_f32.min(2_f32.mul_add(linear_noise, linear));
        let tf_slope = (args.transfer_function.from_linear(linear_range_end)
            - args.transfer_function.from_linear(linear_range_start))
            / (linear_range_end - linear_range_start);
        let encoded_noise = linear_noise * tf_slope;

        let x = (255. * x).round() as u8;
        let encoded_noise = 255_f32.min((255. * 7.88 * encoded_noise).round()) as u8;

        scaling_points.push([x, encoded_noise]);
    }

    scaling_points
}

#[cfg(test)]
mod tests {
    use quickcheck::TestResult;
    use quickcheck_macros::quickcheck;

    use super::*;

    #[quickcheck]
    fn bt1886_to_linear_within_range(x: f32) -> TestResult {
        if !(0.0..=1.0).contains(&x) || x.is_nan() {
            return TestResult::discard();
        }

        let tx = TransferFunction::BT1886;
        let res = tx.to_linear(x);
        TestResult::from_bool((0.0..=1.0).contains(&res))
    }

    #[quickcheck]
    fn bt1886_to_linear_reverts_correctly(x: f32) -> TestResult {
        if !(0.0..=1.0).contains(&x) || x.is_nan() {
            return TestResult::discard();
        }

        let tx = TransferFunction::BT1886;
        let res = tx.to_linear(x);
        let res = tx.from_linear(res);
        TestResult::from_bool((x - res).abs() < f32::EPSILON)
    }

    #[quickcheck]
    fn smpte2084_to_linear_within_range(x: f32) -> TestResult {
        if !(0.0..=1.0).contains(&x) || x.is_nan() {
            return TestResult::discard();
        }

        let tx = TransferFunction::SMPTE2084;
        let res = tx.to_linear(x);
        TestResult::from_bool((0.0..=1.0).contains(&res))
    }

    #[quickcheck]
    fn smpte2084_to_linear_reverts_correctly(x: f32) -> TestResult {
        if !(0.0..=1.0).contains(&x) || x.is_nan() {
            return TestResult::discard();
        }

        let tx = TransferFunction::SMPTE2084;
        let res = tx.to_linear(x);
        let res = tx.from_linear(res);
        TestResult::from_bool((x - res).abs() < f32::EPSILON)
    }
}